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Abstract 

Women now surpass men in overall rates of college graduation in many industrialized countries, 

but sex segregation in fields of study persists, even within STEM majors. In a world where 

gender norms have changed but gender stereotypes remain strong, we argue that attitudes and 

orientation towards behaviors are less constrained by gendered institutions than are the behaviors 

themselves. Accordingly, sex segregation in the broader choice set of majors considered by 

student applicants may be lower than the sex segregation in their first preference field of study 

selection (first choice). Over time, this may lead to diminishing sex segregation in higher 

education and the labor market. With unique data on the broader set of fields considered by 

STEM-bound applicants to elite Israeli universities, we find support for this theory. Moreover, 

the factors that drive the gender gap in the first choice, in particular labor market earnings, risk 

aversion and the sex composition of fields, are weaker in the broad set of choices than in the first 

choice. The result is less segregation in considered majors than in the first choice. We consider 

the theoretical implications of these results. 
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Orientation vs. Behavior:  
Gender Differences in Field of Study Choice Set  

 

Women now surpass men in overall rates of college graduation in many industrialized 

countries, and women attain masters, professional, and doctoral degrees at rates that approach, 

equal, and even sometimes exceed men’s in some Western countries (Buchmann and DiPrete 

2006; Goldin, Katz, and Kuziemko 2006; DiPrete and Buchmann 2013).  Despite this progress, 

however, and despite the near gender parity in math performance (Hyde et al., 2008), sex 

segregation in fields of study persists at all levels of higher education.  Women still pursue 

science, technology, engineering, and mathematics (STEM) degrees at much lower rates than 

their male peers do but segregation exist even within STEM majors (Jacobs 1995; Charles and 

Bradley 2002; England and Li 2006; Mann and DiPrete 2013; Morgan, Gelbgiser and Weeden 

2013). This horizontal sex segregation has negative implications for the supply of qualified labor 

in science and engineering and for the closing of the gender gap in earnings (Dey and Hill 2007), 

and the question of why this gap persists has become the subject of intense research by a large 

community of scholars. 

Research on the gender gap in field of study has frequently taken a “pathways” approach 

(e.g., Xie and Shaumann 2003) that focuses attention on the determinants of intent to major in 

certain fields at various points in the educational life course. The choice model that underlies this 

approach assumes that students form preferences for majors that are based on a student’s field-

specific aptitudes and perceptions of opportunity in addition to personal taste, self-assessment, 

and values. Student performance, tastes, values, and perceptions are modeled at the individual 
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level as the productions of the home environment, peers, and teachers as well as the broader 

environment.  These environmental influences produce systematic differences between boys and 

girls in the values, perceptions of opportunity, and perceptions of self-competence via the 

production of stereotypes and other cultural forces (Eccles et al. 1983, Ridgeway, and Bourg 

2004; Ridgeway and Correll. 2004; Steele 1997).  

This model for gender differences is informative, but it is limited by its lack of attention 

to the choice model that is embedded within it. The standard choice model in economics and 

rational choice-based sociology assumes that decision-makers rank the possible options and 

choose the one that maximizes utility.  From this perspective all options are considered and the 

“best” one wins.  Real people, however, do not process information in this way.  It is now well 

established that people use heuristics when making choices (Tversky and Kahneman 1974; 

Kahneman 2011). Some options are considered while others are ruled out with only cursory 

consideration and still others are never thought about in the first place. Individuals do not 

generally know with precision how important are each of the major components of an alternative 

to their “utility,” and they do not generally have definitive knowledge about how to score each 

alternative on the relevant dimensions.  Instead, they have more or less clear perceptions about 

the implications of choices, and their perceptions as well as their “utility weights” will change 

over time in response to (true or false) factual information they learn from their environment 

about the potential choices, the opinions of significant others, and more subtle environmental 

cues from the media and elsewhere that may affect the relative attractiveness of alternative 

options. 

We argue that the standard choice model, which is implicitly or explicitly embedded in 

the study of gender differences in behaviors such as field of study in college, obscures important 
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aspects of the process that produces gender differences in behavior in our world of conflict and 

continuing ambiguity over the salience of gender for educational and career decisions.   In a 

world where gender norms are becoming more egalitarian but where gender stereotypes remain 

salient (Ridgeway and Correll 2004; Ridgeway 2011; Steele 2010), we conjecture that attitudes 

and orientations may be less constrained by gendered institutions than are behaviors themselves, 

especially during periods of cultural change or when conflict between alternative cultural models 

creates ambiguity for behavior.  

Choosing a field of study and a career is an example of an important behavior where 

cultural models are ambiguous and in conflict—one that pushes for traditional gender-

differentiated behavior, the other for the ideal of gender egalitarianism.  Therefore, we expect 

that gender segregation in the considered options for such behavior, i.e., the broader choice set of 

considered majors (i.e., orientations) may be lower than are the gender differences in the most 

preferred major selections (i.e., behavior).1 This conjecture is difficult to test because data about 

the fields of study that are considered by students are almost never available to researchers. 

Neither “intent to major” or declared major questions in surveys nor administrative data about 

the college experience allow scholars to observe the student process of ranking and choosing 

from among candidate fields. In one recent study in economics, students were asked to provide 

their preference orderings across all majors including their actual major and then are asked their 

subjective assessments about their abilities or expected earnings in alternative majors 

(Arcidiacono, Hotz, and Kanga 2012). This study did not focused on gender and used as data 

“low-stakes” rankings, where the named preferences are “subjective” and do not involve actual 

behavior with consequences. Zafar (2009) examined the reasons for gender differences in the 
                                                

1 The student’s actual field of study is not necessarily the same as the first choice major (even ignoring the issue of 
preference change) because entry into fields of study is often competitive. 
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choice of major at an American university, but he used similar “subjective” data on preference 

rankings for a sample of college sophomores to examine gender differences in pecuniary and 

non-pecuniary factors connected with alternative majors. The problem, then, is that the typical 

data either employ subjective data that does not have behavioral consequences or mixes the 

outcomes of two decision making processes: the individual (choices) and the institution 

(admission)—namely, the major that a student is already enrolled in and, consequently, the de-

facto fit between the student and the major. Hällsten (2010), in contrast, recently used actual 

behavioral data on major rankings for Sweden (where one can apply to multiple majors but must 

rank them in the application process), but his focus was on class differences in rankings and the 

extent to which class effects differed by gender. 

In sum, the accumulated evidence on field of study sex segregation is arguably biased 

because it is largely based on the majors that enrolled students chose and were admitted to, and 

not on their larger set of preferences. With unusual data on the broader set of fields applied to 

(including the ranking of choices) in the actual application process by the STEM-bound 

applicants to elite Israeli universities, the Technion and Tel Aviv University, we study the 

consideration process behind the formation of major choice sets and the gender gap in making 

real educational choices.  

CONFLICTED PREFERENCES AND THE GENDER GAP IN COLLEGE MAJOR  

The closing and then reversal of the gender gap in rates of college degree attainment was 

associated with a decline in sex segregation in fields of study during the 1960s through the early 

1990s, but in recent years, the trend in sex segregation has stabilized even as the share of college 

degrees earned by women has continued to grow (Allison and DiPrete 2013). Various theories 
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for the persistence of the gender gap have been proposed, but they explain relatively little of the 

horizontal sex segregation in statistical terms (Xie and Shaumann 2003; Mann and DiPrete 

2013). The inability to explain gender segregation satisfactorily in terms of academic skills or 

work and family values has caused scholars to invoke “gender-essentialism” as the explanation 

for the divergent pattern for women and men (Charles and Bradley 2009), but this amounts to 

little more than a renaming of an unexplained phenomenon and has refocused attention on the 

childhood experiences that may account for the persisting gender gap in STEM fields.   

Relatively little is known about the evolution of academic and occupational preferences 

over the childhood, adolescent, and early adult life course, including not just a person’s current 

preferred option (if one exists) but more generally the set of options that an adolescent considers 

as she grows older.  Two aspects of this process, however, have been addressed in the literature.  

First, childhood aspirations and evaluations tend to become more realistic as children get older 

(Ginzberg et al. 1951; Csikszentmihalyi and Schneider 2001; Tracey et al. 2005).  Second, 

gendered stereotypes and gendered preferences emerge early in childhood and continue to 

elaborate throughout childhood and adolescence (see Legewie and DiPrete 2012 for a recent 

summary of this literature). Research indicates that parents and educators tend to perceive girls 

as less qualified than boys in math-oriented fields, which are largely considered masculine, and 

to view these fields as less important for girls' future career paths than boys' (Correll 2001; 

Eccles and Jacobs 1986; Eccles, Jacobs, and Harold 1990). These stereotypes are internalized by 

children and adolescents; for example, most studies of self-assessment of math and science 

abilities find that girls tend to have lower self-assessments than do boys, and the gap persists 

even when objective performance in math and science is controlled (Correll 2001, 2004).  These 
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stereotypes help shape gender identities and they contribute to gender differentiation in academic 

interests and career choices (Eccles et al. 1983; Ridgeway and Correll 2004; Ridgeway 2011). 

Several studies suggest that the relative importance given to intrinsic, altruistic, or social 

rewards of a job and for the extrinsic rewards of power, money and prestige of a job vary by 

gender (Hakim 1991; Beutel and Marini 1995, Johnson 2001, Konrad et al. 2000).  At least in 

part, these differences may be traceable to gender differences in the family pay gap and its 

implications for career choice. Many young women anticipate work-family conflict long before 

they experience it as a reality in their daily lives (Cinamon 2006).  Some women may further 

perceive the work environments of certain otherwise desirable occupations are unsupportive for 

women (DiTomaso 1989; Heilman et al. 2004). Boulis and Jacobs (2010), for example, wrote 

about perceptions by female medical students that they would not feel welcome in certain 

predominantly medical specialties as being a more important reason for their refrained from 

entering this specialty than any concerns about such specialties being especially susceptible to 

work-family climate. Moreover, studies have found evidence that some women perceive the 

educational environments of predominantly male majors such as engineering as “chilly” and 

unpleasant for women (Ulku-Steiner et al. 2000; Ecklund, Lincoln, and Tansey 2012).  

Perceived conflict between one’s gender identity and otherwise attractive academic and 

career options may affect the extent to which women value career options and may also affect 

their estimates of their probability of success in fields that lead to these options. These 

perceptions may in turn produce gender disparities in social and psychological attributes such as 

risk aversion, confidence, and attitudes toward competition.  Laboratory experiments 

demonstrate that women may be more risk averse and less competitive than men (Bertrand 2010; 

Croson and Gneezy 2009; Eckel and Grossman 2008; Gneezy, Niederle, and Rustichini 2003; 
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Niederle and Vesterlund 2007). For example, Eckel and Grossman (2002) found that men are 

more likely than women to choose riskier gambles with higher expected payoffs. It appears that 

while women tend to overestimate the probability of negative outcomes (Flynn, Slovic, and 

Mertz 1994; Silverman and Kumka 1987; Spigner, Hawkins, and Loren 1993), men are 

particularly overconfident in their relative abilities when it comes to tasks perceived as 

masculine (Bertrand 2010).  But whether this difference in risk aversion/confidence is an 

“essentialist” characteristic of gender—even a personality trait that may be related to testosterone 

levels—or a behavioral preference shaped by cultural beliefs, socialization and environmental 

factors and thus a response to the gender differences in valuations of career options and estimates 

of the chances of success is unknown (Bertrand 2010). In this study we develop an explicit 

measure of risk aversion and model whether and how this construct shapes the major choice set 

of applicants with the highest quantitative skills. We hypothesize that women applicants are less 

likely than men to apply to majors in which there is uncertainty regarding their admission 

likelihood. Our investigation also sheds light on the nature versus nurture debate that surrounds 

the issue of gender gaps in psychological attributes (see Bertrand (2010) for review of recent 

literature).  

Furthermore, there is evidence that women, relative to men, may systematically 

underperform in competitive environments and that many women, even among the most able, 

may simply prefer to stay away from such environments. The core idea in stereotype threat 

theory is that groups are aware of stereotypes about them, and while they may reject the validity 

of the stereotypes, they remain vulnerable to anxiety about the possibility that stereotypes are 

true (Steele and Aronson 1995; Steele 1997).  Alon and Gelbgiser (2011), for example, 

demonstrate that female students thrive in female-dominated learning and social environments. 
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Gneezy et al. (2003), meanwhile, report that although women perform as well as men in single-

sex settings, men outperform women in more competitive circumstances, where stereotype threat 

is more likely to be activated. The findings of Gneezy et al. (2003) are especially pertinent to the 

current study because their subjects are students at the Technion in Israel, the same engineering- 

and science-oriented university included in our analysis, which suggests that a gender gap in 

psychological attributes may exist even among STEM-bound applicants with high quantitative 

skills.  

Given that women are more averse to competition than are men (Croson and Gneezy 

2009), we expect that women would avoid applying to exceptionally competitive majors relative 

to their male counterparts, and demonstrate greater aversion to male-dominated fields. We also 

expect that the labor market returns of a major may shape men’s choices more strongly than 

women’s, because jobs with greater levels of risk and competition are paid higher wages 

(Hartog, Ferrer-i-Carbonell, and Jonker 2002), and because women value the non-pecuniary 

aspects of jobs—such as security, flexibility in hours, paid leave and vacation provisions—more 

than they value wages (Currie 1997; Zafar 2009). Indeed, it has been documented that while 

expected earnings are an essential component in the selection of a college major, women are less 

influenced by this factor than are men (Montmarquette, Cannings, and Mahseredjian 2002).  

In this study we use three objective characteristics to assess how men and women with 

excellent quantitative skills both rank their alternatives: the expected wage from a job arising 

from any particular field of study, its sex composition, and the ease or difficulty in being 

admitted into any particular field of study. The key question, however, is whether women’s 

perception of greater conflict between careers and family formation affects the process of 

forming preferences and making the choices that lead to the observed difference between men 
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and women in their fields of study in college. The standard model would see preferences and 

choices arise from a weighting of the advantages and disadvantages of each alternative.  It would 

see trends in the distribution of preferences and choices as arising either from changes in the 

magnitude of advantages and disadvantages or from changes in the way people weight these 

factors.  But this perspective does not tell us whether gender differences in preferences are fully 

revealed in the distribution of actual choices.  It may be that women would alter their career 

preferences to be more like men’s in a world without work-family conflict and without gender 

bias in work climate.  If women imagine a world without gender bias even as they contemplate 

the world as it is when making educational and career choices, it may be that the alternatives that 

women and men consider seriously are less colored by gender than are the choices they actually 

make.  Figure 1 diagrams this perspective. 

[Figure 1 about here] 

We use data that allow us to explore the major choice set, and to examine whether the 

interplay of two powerful forces—one that pushes for traditional gender-differentiated behavior, 

the other for a widely accepted (and even more widely acknowledged) ideal of gender 

egalitarianism—results in greater gender segregation in behavior than in orientation, the 

considered options for such behavior. Our hypothesis is that attitudes and orientations may be 

less constrained by gendered institutions than are behaviors themselves. We address the 

hypothesis with a formal choice model for the formation of the major choice set and how it may 

contribute to horizontal sex segregation.   
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THE CHOICE MODEL: UNIDIMENSIONAL OR MULTINOMIAL?  

The typical rational choice model fit to choice data is a latent index model; individuals 

assign utilities to each of the possible outcomes, rank the utilities, and choose the highest ranked 

option. With the notation of Allison and Christakis (1994), individual “i” has utilities 

!!" = !!" + !!" 

where “j” indexes the options from 1,…,J.  The standard model presumes that !!" is a function of 

alternatives of chooser and of option, i.e.,  

!!" = !!!! + !!! + !!!" !!!!!!!!!!!!!(1) 

where !! are characteristics of choosers, !! are characteristics of the alternatives, and !!" are 

relations between choosers and alternatives.  A single set of coefficients determines the relative 

preference for any alternative relative to any other alternative.  This same set of coefficients 

determines the probability that any particular option would be the first choice, second choice, or 

any other ordered choice, given the values of the covariates in equation (1).  

If data about the ranking of preferences are available, then this standard framework 

allows the estimation of a “rank-ordered logit model” (Allison and Christakis 1994), which in the 

marketing literature is referred to as the “exploded logit model.”  Using this framework and 

letting !!" be the rank of alternative “j” for individual “i,” then the probability that any particular 

alternative (e.g., alternative !′) is ranked first becomes: 

! !!!! = 1 = exp !!!!
exp !!"!

!!!
!!!!!(1) 

The probability that another alternative (!′) is the second choice becomes 

! !!!!! = 2 = exp !!"!! / exp !!"
!!!!
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and so forth for ranks 3, …, J.  In this model, the ranking of any alternative is determined by the 

same set of criteria (coefficients) applied to each alternative’s specific attributes, and the 

probability of any particular alternative being chosen first, second, third, or in any other ranked 

position is similarly governed by a uniform set of criteria. We refer to this model, with its strong 

assumption about the uniformity of preference determination across the ranking of preference 

options, as the unidimensional preferences model. 

The rank-ordered logit model has frequently been applied in marketing research and very 

occasionally in sociology.  Hällsten (2010) recently used a unidimensional preferences rank-

ordered logit model in order to study class differences in preferences for field of study in 

Sweden.2 We argue, however, that the unidimensional preference model may break down in 

situations where people use different criteria to decide whether an alternative is near the top of 

their preferences and whether it is their first choice.  In particular, it may break down in 

distinguishing the criteria that women use to rank a field highly in their preference ordering from 

the criteria that women use to rank this field as their first choice. What have been called “gender-

essentialist” forces may have a stronger impact on the first choice than on the considered options, 

and consequently the level of gender segregation in the considered options may be lower than the 

segregation revealed in the pattern of first choices.   In other words, women’s model for their 

considered options (orientation) may differ from their model for selecting a first choice 

(behavior).   

We examine the validity of the unidimensional preference assumption by studying how 

gender affects the distinction between strongly considering an alternative and ranking an 

alternative as one’s top choice. We argue that a multinomial preference model, in which 

                                                
2 Zafar (2009) and Arcidiacono et al. (2012) also employ the unidimensional preferences model to study the effects 
of various attributes of majors and expected career outcomes on ranked major preferences; yet they did not have 
data on actual choices. .  
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applicants use different utility weights for the considered majors (orientation) and the top choice 

(behavior) may be more appropriate to describe the formation of the choice set and horizontal 

sex segregation. We examine two alternative specifications for this multinomial process that 

applicant may follow in reality. The first assumes that a sequential decision process in which 

applicants first determine their top choice, and then determine their top choice from the 

remaining options.  We term this alternative a sequential multinomial preferences model. The 

second model for the decision making process is what we term a considered options multinomial 

preferences model. Under this model applicants follow a different logic, in which they first 

narrow their choices to a top group of options and then decide among this top group.  Our 

analytical strategy tests for the validity of the unidimensional preferences model and then 

considers the implications of the two alternative multinomial preference models.   

THE SETTING  

We test our theory on STEM-bound applicants in elite Israeli universities. The focus on this elite 

group of applicants with similar academic preparation and orientations helps us circumvent one 

of the popular explanations for gender disparities in field of study selection, namely the tendency 

of women to avoid STEM and mathematically-oriented majors in college. The application and 

admission processes for a bachelor degree at Israeli universities makes them attractive for the 

current investigation: both the application and admission processes are specific to each 

combination of major and institution, and departments within each institution vary in their 

selectivity level; most professional degrees are offered at the undergraduate level; and applicants 

need to rank their preferences in the application form. The ranking process means that an 

applicant is considered by every department she applies to and is either accepted or rejected by 
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each one.  If the applicant is accepted to more than one department, she is informed about the 

acceptance decision to the department to which she gave the highest preference ranking.  

Admission decisions at elite Israeli universities are formulaic, based entirely on a 

composite score that is calculated by taking the weighted mean of an individual’s matriculation 

diploma grades (weighted by type and level of courses) and psychometric test score (similar to 

an SAT score). The outcome of the application process depends almost entirely on three 

variables: the applicant's composite score, the difficulty of gaining admission, and the preference 

ranking assigned to departments by the applicants.  The difficulty of gaining admission depends, 

of course, on the level of competition, but other factors also matter: universities set constraints 

on the size of the major based on factors such as the resources needed to teach students in each 

particular major, absolute standards set by majors for applicant quality, labor market 

considerations, and the historically-determined factors (such as the capacity of teaching 

laboratories) that affect each department's ability to handle a class of any given size. Applicants 

may also apply to departments at other universities, and thus may choose to decline the invitation 

to matriculate in a specific department at a specific university.  It is unfortunately not possible to 

link applications by the same person to departments at different universities, but this gap does 

not prevent an analysis of the gender differences in applications to first and second choices 

within the same university. 

Data and Institutions 

To assess the gender differences in field of study choice set, we used the institutional 

administrative data obtained directly from two Israeli universities for periods ranging from ten to 

twelve consecutive years (circa 1997 to 2008; for more details see Alon (2011). The first 

institution is the Technion (TECH), a research university that offers degrees in STEM fields 
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only.3 To substantiate the Technion results, we replicated the analyses with data from Tel Aviv 

University (TAU), a comprehensive university that, in addition to STEM fields, offers degrees in 

the social sciences and the humanities.4 To focus on STEM-bound applicants, we limited the 

TAU analyses to the STEM fields in the applicants’ major choice sets. Appendix A details the 

stages involved in replicating the analyses for TAU. 

We analyzed data for applications to the Technion from 1998 to 2008 and to the TAU 

from 1997 to 2008. Because the specification of the choice model uses lagged variables, we 

excluded the applicants for the first year for each of these universities from the models.  The 

analyses for the TECH are based on 1,414,822 person-major-choice observations. The analytical 

sample includes around 27,000 applicants to the Technion over a period of 10 years (1999-2008; 

we omitted the 1998 applicants), with entries for both first and second choices and complete data 

for all the relevant variables. The analyses for TAU are based on 771,350 person-major-choice 

observations, based on data from around 20,000 STEM applicants over a period of 11 years 

(1998-2008; 1997 applicants were omitted).  

The Technion is a highly selective institution. In addition to the typical admission 

requirements for elite Israeli universities, applicants to the Technion are required to have taken 

the highest level of math and physics offered in high school. Not surprisingly, as an institution 

limited to STEM fields, the TECH has a male-dominated student body: only 34 percent of its 

students from 1998 to 2008 were women, compared to 55 percent in the other three leading 

universities in Israel. Yet, as Figure 2 depicts, there has been a steady rise in the share of women 

among TECH applicants, admits, and graduates. In the recent decade, for example, the share of 

                                                
3 The Technion is sometimes referred to as the Israeli Institute of Technology. In the Shanghai ranking for 2013, it 
ranked in the 38th place in sciences, in the 46th place in engineering and technology and in 18th place in computer 
science. Cornell University and the Technion partner in “Cornell Tech” a new applied sciences institution in New 
York City,. 
4 In the Shanghai ranking for 2013, TAU ranked in the 33rd place in Math, and in 44th place in computer science. 
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women applicants rose from 34 to 39 percent (1998 and 2008, respectively). At the same time 

that female applications were increasing, the overall number of applications to the Technion was 

declining from 6,000 to around 4,500. At TAU the STEM fields are less engineering-oriented 

than at the Technion and lean more toward the sciences: during the period of investigation, only 

a third of TAU STEM students were enrolled in engineering fields compared to two thirds at the 

Technion. Among STEM applicants at TAU, the share of females between 1997 and 2008 was 

43 percent (higher than in the Technion), rising from 40 to 45 percent (see Figure 2). 

[Figure 2 about here] 

In the current investigation, we focus on the major choice set of first-time applicants. 

When applying to the Technion, applicants can list two ranked preferences for their major 

(hereinafter referred to as first choice and second choice, respectively), and they cannot choose a 

dual major. At TAU, applicants may list three ranked preferences for major, each of which may 

be a dual major.5 In order to make the TAU data parallel in structure with the Technion data, we 

censored the data to only consider a maximum of two STEM choices.  We dropped medicine and 

architecture from the major choice set because these majors can be selected only as a first choice 

(and are thus excluded from the second choice slot by default), and because their unique 

admission processes would interfere with the comparison of all applicants on a single scale. 

Since these are the two most popular STEM majors in women’s major choice sets, our results 

provide conservative estimates for the gender gaps in major choice sets.  

During the period of investigation, the Technion offered degrees in 28 fields of study, 

while TAU offered degrees in 22 STEM fields, and these are the majors we used in our analysis. 

Tables 1a and 1b, respectively, list and characterize these majors by their student bodies.  We 

describe briefly these and other variables used in our analysis in the text below. 
                                                

5 More details about the complexity of dual majors are provided in Appendix A 
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[Tables 1a and 1b about here] 

Individual and Fields of Study Characteristics 

To estimate the ease or difficulty of gaining admission, we used the academic 

performance information used by the admissions committees of these two universities. An 

individual’s composite academic score is the only criterion for admission used by Israeli 

universities. It is calculated by taking the weighted mean of an individual’s matriculation 

diploma grades, which are similar to Advanced Placement (AP) grades, and a psychometric test 

score, which is similar to an SAT score. We use the score calculated by the Technion for all its 

applicants, and use the engineering composite score calculated by TAU for its applicants to 

STEM majors. Both scores emphasize applicants’ achievements in math and physics courses 

taken in high school as well as quantitative skills. This variable ranges from 6 to 104 among the 

Technion applicants, but more than 75 percent of them scored above 80 (mean=83; SD=7). TAU 

uses a different scale (with a mean of 644 (SD = 59)). Figure 3a shows the distribution of the 

composite academic scores of female and male applicants to the Technion.  As can be seen, male 

scores are slightly higher on average than female scores; the male mean is 83.2 with a standard 

deviation of 7.5, and the female mean is 82.6 with a standard deviation of 7.3. At the TAU, a 

slight academic advantage is also visible (see Figure 3b).  These gender differences are reversed 

from what is generally found in the population but it is important to keep in mind that these 

samples are highly selected to favor academically talented students with an interest in science. 

[Figures 3a and 3b about here] 

The difficulty of gaining admission to a major depends not only on one’s own academic 

score but also on the academic scores of the students one is competing against.  To compute 

academic threshold scores, we gathered information on the academic scores of individual admits 
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by major and by year. For each combination of major and year, we calculated the 25th percentile 

(Q1- bottom quartile), based on the academic scores of admitted students. This variable 

approximates each major’s admission threshold, information that is readily available to 

applicants. Every year before the application season, the universities in Israel publish these 

“thresholds” for admission, computed from the academic scores of the previous year’s admits. At 

the Technion, electrical engineering, computer science, and biomedical engineering are the 

majors with the highest academic threshold, on average (see Table 1a), while chemistry, 

agricultural engineering, and a program for science teaching are the majors with the lowest. At 

the TAU, the fields with the highest academic thresholds are bioinformatics, computer 

engineering and computer science (alone or as part of a joint major with a non-STEM discipline).  

During the application process, applicants typically compare their individual academic 

scores to the previous year’s admission thresholds.6 This way they can obtain a rough estimate of 

their likelihood of admission to major j. We created a variable that measures the risk involved in 

the application process to each of the possible majors for each student. This variable is calculated 

as the distance between an applicant’s academic score and the academic threshold for each major 

based on data from the previous year. A negative value for this variable indicates that the 

applicant’s academic score is below the 25th percentile for major j, while a positive value 

indicates the opposite.7 We allow this variable to have nonlinear effects by transforming this 

difference measure into a set of categorical variables based on the size of the difference.  To 

obtain thresholds for the categorical variables, we used the cut points for the deciles of these 

difference scores across the distribution of applicants’ first and second choices, where the top 

                                                
6  In recent years applicants can compute their composite scores at each institution’s website. 
7 For example, a 10-point gap refers to an applicant with an individual academic score of 90 relative to a major 
academic score of 80, as well as to an applicant with an individual academic score of 80 relative to a major 
academic score of 70. 
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decile consists of applicants who are least likely to be admitted to a major and the bottom decile 

consists of applicants who are most likely to be admitted. Table 2 presents the mean gaps for 

each decile.8  

On one side of the risk distribution (decile (1)), we observe the largest negative 

individual-major gaps (-16 points on average at the Technion). This gap suggests that the 

individuals in this category are underqualified for major j, that their likelihood of admission to 

that major is low, and that applying to major j (as opposed to other majors at the Technion) is the 

most risky choice for them. At the Technion, the 5th decile contains students with the closest 

match with the 25th percentile of admits in the previous year for major j and thus serves as the 

omitted category in the specification (we omitted that category at TAU as well). On the other 

side of the distribution (decile (10)), we have the largest positive gaps—15 points on average at 

the Technion—which implies over-qualification, a high likelihood of admission to major j, and 

the least risky application choice. Applicants who apply to majors with more negative gaps are 

taking bigger risks with their application choice than are students who apply to majors with 

smaller gaps. Individual differences in risk do not necessarily indicate that one applicant is more 

risk-averse than the other in the pattern of applications; it may instead be the case that one 

applicant’s preference for highly competitive majors is greater than that of another student.  The 

same observation applies to gender differences in average risk-taking.  We return to this issue 

below. 

 [Table 2 about here] 

                                                
8 It should be emphasized that our conception of risk is different from that recently employed by Hällsten (2010) in 
his study of class differences in field of study choice in Sweden.  For Hällsten, applying to a particular field of study 
is risky if the inequality of earnings for graduates from that field of study is high.  For us, applying to a particular 
field of study is risky if one’s chances of being accepted into that program are low. 
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We also gathered information on the gender of individuals by major and by year and 

display the average annual share of females in each major’s student body. The results for 

Technion in Table 1a show that the share of women is lowest in mechanical engineering (10 

percent), electrical engineering (14 percent; with or without physics), and physics (16 percent). 

Twelve percent of the student body studied computer science, another male-dominated and 

lucrative field (77 percent of computer science majors are male). The share of women in 

industrial and management engineering, however, rises to 41 percent (9 percent of the student 

body), and in chemistry, molecular biochemistry, medical laboratory sciences, and biology 

exceeds 70 percent. The results for TAU in Table 1b depict a similar picture: more than two 

thirds of the students in biology, chemistry and related fields are female, while they comprise 

only 16 percent in electrical engineering and in mechanical engineering. Similar to the TECH, 43 

percent of students in industrial and management engineering are women. These patterns are 

similar to what is reported in data for elite universities in the U.S. (e.g., Arcidiacono, Aucejo and 

Spenner 2012).   

To measure labor market expectations, we used a measure for earnings that captures the 

monthly salary that a graduate in a certain field can anticipate upon labor market entry. The 

earnings information was obtained from the published reports of the Israeli Central Bureau of 

Statistics, which are based on the tax authorities’ administrative records for on salaried workers, 

by major and institution. The pay data, based on individual monthly salaries during a graduate’s 

first two years in the labor market, was collected for four cohorts of university graduates (2000-

2003).9 Tables 1a and 1b list the expected salaries by field of study. The salaries range from 

4,500 to 20,000 New Israeli Shekels (NIS), in 2004 prices. It is immediately evident from Tables 

                                                
9 The data included the average annual earnings of graduates and the number of months employed. In order to adjust 
for differences in labor supply, we divided the annual earnings by the number of months employed for graduates in 
each field of study. 
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1a and 1b that the gender gap in field of study choice is associated with labor market earnings. 

Electrical engineering, for example, is not only one of the largest majors at both institutions, but 

also the one with the highest expected salary. The least lucrative majors are female-dominated 

fields. The share of females in a major turns out to be negatively correlated both with the 

expected salary (-0.66 and -0.84 in the Technion and TAU, respectively) and with the major 

academic score (-0.25 and -0.31, respectively).  Figures 4a and 4b show that the relationship 

between salaries and the competitiveness of the major is positive at both universities, though 

clearly this relationship is much stronger at the Technion (with a positive correlation of 0.67) 

than at the TAU (where the correlation is 0.55).  The symbol for each major in figures 4a and 4b 

is larger when the percent of majors who are women is larger.  It is clearly the case at both 

universities that the majors which lead to the highest paying jobs tend to be male dominated.  

[Figures 4a and 4b about here] 

RESULTS  

Horizontal Sex Segregation 

The first step in testing the hypothesis that egalitarian influences are stronger in shaping 

orientation than in shaping behavior is to assess whether the level of horizontal sex segregation is 

greater in the broader set of candidate fields than in the first choice. Figure 5 presents the 

popularity of majors in each institution as revealed by male and female applicants’ first choices. 

About a third of male applicants to the Technion sought admission to electrical engineering (29 

percent, including the track with a concentration in physics). The second-most popular major 

among men was computer science (about 20 percent, including the variant tracks with 

concentrations in physics and math). Thus, about half of the men listed these two majors as their 

first choice. A similar trend exists among the TAU applicants: 20 percent of male applicants 
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listed electrical engineering as their first choice, and 29 percent listed computer science or 

computer engineering. An additional 9 percent of male applicants to the Technion, and 6 percent 

at TAU, listed mechanical engineering as their first choice. While men’s distribution of first 

choices is quite skewed by their strong preference for electrical engineering and computer 

science, women’s first choice distribution is more dispersed. The two most in-demand fields of 

study among the Technion women are the industrial and management engineering major and the 

biotech and food engineering major (each of these majors accounts for 13 percent of female 

applicants).  Computer science and biology follow these majors in third and fourth place. The 

different orientation of the two institutions, engineering vs. sciences, is apparent in the finding 

that at TAU, almost one in three female STEM-bound applicants listed biology as their first 

choice.  

[Figure 5 about here] 

To formally measure the level of horizontal sex segregation in the first choice and to 

assess whether it is lower in the second choice, as we hypothesize, we calculated three indices of 

dissimilarity for each of the application cohorts between 1999 and 2008.10 We find a high and 

persistent level of horizontal sex segregation among the applicants to both institutions, even after 

                                                
10 The results are available upon request. The D (index of dissimilarity) index, ! = ! |! !! !!

!!! −
!! ! !| ∗ 100 ∗ !!! which is independent of gender composition but dependent on major composition—that is, the 

value of D will rise over time if highly segregated majors grow larger and, hence, contribute more to the overall 
index value (the same will happen if integrated majors become smaller over time)—indicates the percentage of 
students of one gender who must shift majors in order to generate a sex-natural distribution (Duncan and Duncan 
1955). The alternative DS index (Gibbs 1965) 
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composition but therefore gives equal weight to majors regardless of their size in the construction of the index. 

Finally, the R index (Charles and Grusky 2004), ! = !"# !
! ∗ ! ln !!

!!
− !!! ∗ ! ln !!

!!
!
!!! !

!!
!!!

!
!
    which is 

independent of both gender and major compositions, is the multiplicative factor by which males and females are, on 
average, overrepresented in the educational categories being analyzed. Like DS and unlike D, the R index gives 
equal weight to majors regardless of their relative size.  
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accounting for majors’ size and the influx of women into the applicant pool. Pertinent to the 

distinction between orientation and behavior is the evidence that in almost all years of the 

investigation, the level of sex segregation in the first choice majors is higher than in the second 

choice majors.  

 

The Formation of the Choice Set 

We address the hypothesis that women’s model for their considered options (orientation) 

may differ from their model for selecting a first choice (behavior) with a formal choice model. 

We begin with the unidimensional preference model—with its strong assumption about the 

uniformity of preference determination across the ranking of preference options—as a baseline. 

In this analysis we assumed that men and women both rank their alternatives based on two 

characteristics: the expected wage from a job arising from any particular field of study, and the 

ease or difficulty in being admitted into any particular field of study. 11 Table 3 shows the 

estimated coefficients of this model for men and women, with panel A coefficients being for the 

Technion and panel B for the TAU. Figure 6 graphs the predicted probabilities of choosing each 

major, based on these coefficients, and also the residuals from the models in panel A of Table 3 

for the Technion, and panel B for the TAU. 

[Table 3 about here] 

[Figure 6 about here] 

There is a big gender gap at both universities in the responsiveness of applicants to the 

economic potential of majors. For men, higher expected returns translates into a higher 

probability of applying to that major, net of the distance between that major’s threshold and 

                                                
11 In the case of a single choice being to do a dual STEM major, which is an allowed possibility at the TAU, we use 
the characteristics in each sub-choice.  
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one’s own composite academic score: every extra 1000 NIS per month boosts the odds by 25 

percent that a male applying to the Technion will apply to this major. In contrast, expected 

earnings have no effect at all on a woman’s likelihood of applying to a major.  At TAU, the male 

responsiveness to expected labor market earnings is smaller than at the Technion but the gender 

gap at TAU is nearly as large as at the Technion because female applicants to majors at TAU are 

actually less likely to apply to any particular major if the labor market returns to this major are 

relatively large.  Because the major options at the two universities are different, we cannot 

attribute differences in the coefficients to special characteristics of either the applicants or the 

school.  The important point for our analysis is the fact that the gender gap in responsiveness to 

potential earnings is similar at both schools, and in the expected direction.  

Next we turn to the gender profiles of risk behavior displayed by applicants at the two 

universities. At least from the perspective of these baseline models (we will turn to more 

elaborate models shortly), TAU and the Technion differ in the gender profile of risk behavior. As 

Table 3, panel B shows, women and men at TAU have generally similar risk profiles.12  In 

contrast, female applicants at the Technion appear to be unambiguously less risk-averse than 

men in their application decisions (see Table 3, panel A).  The modal decile for female applicants 

is category 4, which is risker than the category 5 modal category for males; this difference is 

especially notable in light of the slightly lower mean academic scores for women than for men.13  

Moreover, female students are relatively more likely to apply to majors in high risk deciles than 

are males, and they are also less likely to apply to majors for which they are “overqualified” than 

are males. 

                                                
12 Women are less likely than men to apply to majors in the riskiest deciles, but the differences between the genders 
are not large. 
13 A “category 4 major” is thus defined with respect to a specific student; these categories measure relative distance 
between students and potential majors. 



Orientation vs. Behavior 
 

 
 

25 

The gender difference in the coefficient pattern has obvious and important implications 

for the predicted gender difference in the pattern of applications. Figure 6 shows the predicted 

probabilities of men and women applying to each of the majors at the Technion.  As implied by 

the coefficient pattern, the baseline model predicts a variance in application patterns across 

majors for males but not for females.  Table 1a shows that the majors with the highest earnings 

potentials are generally the ones that are most popular, and this relationship is approximately 

reproduced in Figure 6, but only for the males.  Expected wages and the difficulty of admission 

provide little guidance as to the majors favored by the women applicants to the Technion.  In 

contrast, the baseline results for the TAU do provide some predictive power for female as well as 

male applicants because of the negative coefficient on labor market wages in the female model; 

across the spectrum of majors at the TAU, women are generally more likely to apply to those 

fields that pay less, while men apply to the fields that pay more. 

Panels A and B of Table 3 suggest that female applicants are either less risk averse than 

are male applicants (at the Technion) or not much more risk averse (at the TAU), but these 

results are not necessarily informative about the true gender differences in risk aversion.  An 

individual student may apply to highly competitive majors because she is risk-loving, but she 

may instead simply prefer for other reasons the majors that are highly competitive. Similarly, 

men may appear more risk-averse than women only because their average preferences for majors 

differ on other grounds than risk from those of women.  We can better isolate the impact of risk 

on the pattern of applying to majors by including fixed effects for the different major 

possibilities in the models for each university.  A fixed effects model will show whether year-to-

year fluctuations in the difficulty of getting into specific majors affect the pattern of applications 

that year differently for men and women.  This model, therefore, will provide a clearer measure 
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of how male and female applicants respond to changes in risk, which, as we noted above, the 

applicants are generally aware of.  Panels C and D of Table 3 display the coefficients for risk in 

the fixed effects model for both universities.14 Both panels show that female applicants are 

apparently more risk-averse than male applicants, once the underlying differences in the gender 

pattern of major preferences is controlled.15  Net of the baseline “essentialist” gender pattern of 

major preferences, female applicant odds of applying to a major in the highest risk category at 

the Technion were only 68 percent as high (relative to the middle category) as for males, and 

female odds of applying to the second highest risk category were only 77 percent those of 

males.16  The gender difference at the TAU was smaller, but women applicants had lower (91 

percent) odds of applying to the highest risk category than males, and 93 percent as likely as 

males to apply to the second highest risk category, after the “essentialist” aspects of the major 

choices were controlled. 

All the results discussed to this point, however, make the strong assumption that the 

unidimensional preferences model is correct both as the basis for determining the set of 

considered options and for determining the final choice.  This assumption is empirically testable.  

As discussed above, our theoretically preferred model is a multinomial preferences model in 

which applicants use different utility weights in their first choice than they do in their second 

choice. We test for the validity of the unidimensional preferences model in model 2 by 

suppressing information about the second choice from the data and estimating a conditional logit 

model; this is equivalent to a rank-order logit model (equation (1)) when only the top choice is 

ranked in the data.   

                                                
14 Expected wages do not vary over time in our data so the coefficient for expected wages cannot be estimated in a 
fixed effects model.  
15 The hypothesis of gender equality of the risk coefficients is rejected quite strongly (Χ! = 39 with 9 df for the 
Technion). 
16 These results are obtained from estimates of a model that interacts gender with risk.  
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Table 4 shows the set of coefficients that correspond to Table 3 except that they pertain to 

the first choice only. The results reveal that women applicants are less responsive to the wage 

expectations of majors and that women are more risk averse than men when picking a major as a 

top choice, once the underlying “essentialist” preference structure for majors is controlled.  The 

important question for us is whether the unidimensional preferences model accurately captures 

the full process of considering, ranking, and the first choice major.  We report statistical 

(Hausman) tests for the unidimensional preferences model in Appendix B, and clearly reject the 

null hypothesis that the rankings of majors by Technion and TAU applicants follows the 

unidimensional preferences model for male applicants only, for women applicants only, and for 

the two genders combined.  The process of deciding one’s first choice and one’s second choice 

major cannot accurately be described as a simple matter of ranking majors on their 

characteristics using a single set of utility weights for either women or men. 

[Table 4 about here] 

Clearly, the results from Tables 3 and 4 reject the unidimensional preferences model. We 

fit a model for the second choice major, given that the applicant had already made a first choice. 

This step estimates the weights of factors that determine an applicant’s second choice, and allow 

us to contrast the decision process separately for second choices and for first choices. Table 5 

shows the set of coefficients in the second choice model. Two findings are evident from the 

comparison of the coefficients in Table 5 to those in the first choice model (Table 4).  The first 

finding is that women and men differ in the importance of expected wages when deciding on 

their second choice, just as was true for their first choice.  Women applicants to the Technion 

pay no attention to expected wages for either their first or their second choice major, while male 

applicants to the Technion weight expected wages about equally for both choices.  At the TAU, 
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the coefficient for expected wages on second choice major is negative for women applicants, as 

it is for their first choice application, while for male applicants the weight for expected wages is 

positive.  The second finding is that both women and men are more risk averse in their second 

choice application than in their first, but the shift towards risk aversion is much larger for male 

than for female applicants.  Women applicants to the Technion continue to be more risk averse 

than men in their second choice major, but the gender difference is much smaller for the second 

choice than for the first choice. Women applicants at the TAU are actually less risk averse in 

their second major choice than are men, which is a turnaround from the much greater risk 

aversion shown by female relative to male TAU applicants for the first choice major. To put it 

another way, men are considerably more willing than women to apply to risky majors for their 

first choice than are women at both the Technion and the TAU, while for the second choice the 

men are as much or more focused on risk as are the women. 

[Table 5 about here] 

The substantive interpretation of this pattern is straightforward.  The most competitive 

majors are the ones that pay the highest average salaries.  The applicants who focus on salaries 

when making their decisions about majors are predominantly males.  Male applicants who care 

predominantly about salaries are therefore often in a position of being only marginally 

competitive or worse for their preferred major unless they have top academic scores.  The model 

results imply that males often use their first choice to apply to a “reach” major and protect 

themselves in their second choice with a safer major.  Female applicants, who have a similar 

overall distribution of academic scores as the male applicants, are less focused on the most 

lucrative majors than are the males.  Women applicants are consequently less likely than men to 

be in a situation where they are strongly motivated by financial goals to apply to the majors that 
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are hardest to get into and thus would be “reach” majors for them.  What is less clear, however, 

is the reason for the gendered pattern.  It could be that Israeli women are truly less interested in 

labor market returns than are men and thus their pattern of major preferences is “undistorted” by 

market considerations.  It is instead possible that female applicants are deterred from applying to 

the most competitive majors because women are more risk-averse, and therefore that the gender 

difference in risk-aversion contributes to the different pattern of applications by males and 

females.  A third possibility is that female applicants are deterred from applying to the most 

competitive majors because these majors are male dominated and uncomfortable for women, and 

the deterrence produced by this discomfort is the reason for the “essentialist” difference in the 

baseline distribution of majors applied to by males and females (we next assess this possibility).  

The time-varying pattern of risk-avoidance suggests that females are indeed more risk averse on 

average than males, but the data are nonetheless open to multiple interpretations of why women 

and men end up in a different distribution of majors.  

The strategy just described assumes a sequential decision process in which applicants 

first determine their top choice, and then determine their second choice from the remaining 

options (a sequential multinomial preferences model).  Applicants in reality may indeed follow 

such a sequential process when making their choices.  An alternative conceptualization, 

however, is that applicants make a different sequential decision in which the first step is to 

narrow their choices to a set of considered options and the second step is to decide which of the 

considered options is the first choice (a considered options multinomial preferences model).  

Table 6 shows the coefficients on the risk variables that stem from this conceptualization.  Panel 

A gives the coefficients for the decision model about the considered option set, and Panel B 

gives the coefficients for the decision about which of the considered options is the first choice.  
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Panel A shows, as before, that women applicants are more risk averse than men; women avoid 

putting a major in risk deciles 1, 2, and 3 into their considered option set even after the baseline 

“essentialist” preferences are controlled. Panel B reinforces the pattern of gender differences in 

Panel A in showing that men more than women favor riskier majors when choosing which of 

their considered options should be the first choice. With the data at hand we cannot adjudicate 

between the sequential multinomial preference process and the considered options multinomial 

preference process, but what is clear is that under both models applicants are more likely to take 

a risk for their top choice than for the second choice and men take more risks than women. 

[Table 6 about here] 

We next test the possibility that the sex composition of fields (and occupations) is an 

important criterion in shaping women choices and the hypothesis that second choices are less 

gender-segregated than are first choices.  We perform this test in three ways. First, we use the 

predicted major choices for the applicants from a model with dummy variables for each major to 

compute the index of dissimilarity for the first choices and for the second choices as well as from 

the unidimensional preferences model and the considered options model, and we compare these 

values directly.  Second, we include a one-year lagged value for each major’s sex composition of 

the majors, and we compare the coefficient of sex composition for the unidimensional 

preferences model and for the multinomial preference model.  Third, we determine whether the 

sex composition of the major is related to the choice of which major in the considered options set 

is the first choice, net of the effect of sex composition on the construction of the considered 

options set.  The results from these tests are displayed in Table 7. 

[Table 7 about here] 
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The first column of Table 7 shows the index of dissimilarity of the distribution of 

predicted majors under alternative models for the major choice process at both institutions.  Each 

of these indices is a function of the coefficient for lagged percent female in the column 2.  The 

table clearly shows that first choice majors at the Technion are more gender segregated (D = 

.434) than are second choice majors (D = .367), and that this difference is statistically 

significant.17 A difference of .434 and .367 is large enough to be of substantive importance; it 

equals the change in the index of dissimilarity measure for gender segregation of occupations in 

the U.S. labor force between 1980 and 2000 (Blau et al. 2012), or the overall change in gender 

segregation in fields of study for BA recipients in the U.S. between the late 1980s and the 

present (Mann and DiPrete 2013).  The second panel of Table 6 shows comparable results for 

TAU.  The results for TAU are not as dramatic as for the Technion but the same general pattern 

prevails.  Gender segregation in first choice majors is considerably greater than for second 

choice majors, just as was true at the Technion 

One might argue that the lower level of segregation visible in predicted second choice 

options relative to first choice options is driven not by differences between a female applicant’s 

orientation and behavior but rather by changes in male behavior that is connected with strategic 

behavior in major application.  According to this interpretation, males prefer male-dominated 

high-paying hard to get into majors, and they use more gender-integrated majors as second 

choice backups to their often more high risk first choice for majors.  While there is certainly 

some truth to this interpretation it is not the whole story.  Partly this is because women’s risk 

preferences also differ significantly between their first and second choice, even if the difference 

                                                
17 The difference between the coefficients on gender composition in these two models is 0.01, which is about 10 
times as large as the square root of the sum of the squared standard errors for these two estimates. 
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in this regard for women is not as large as for men.18  Importantly for our theory, women’s first 

and second choices differ in their response to the gender composition of majors.  To show this, 

we next focus only on the female applicants, and analyze the implications of the percent female 

in a major on a woman’s choice patterns.   The second column in each panel of Table 7 shows 

that the impact of the percent female of a major on a female applicant’s major choice is stronger 

on her first choice major than on her second choice major.  At the Technion, every one 

percentage point increase in the sex composition of a major increases a woman’s odds of 

applying to that major as her first choice by 2.6 percent, but only increases her odds of applying 

to the major as a second choice by 1.6 percent A qualitatively similar though less pronounced 

pattern is also visible at the TAU.    

The fourth entry in the second column of each panel in Table 7 shows that the process of 

developing a considered options set is also strongly associated with gender composition of the 

alternative majors. The odds that a major will be included in a woman’s considered options set 

rises by 2.1 percent for each one percentage point increase in that major’s percent female at the 

Technion, and by 1.2 percent at the TAU.  It could certainly have been the case that women gave 

strong weight to a potential major’s gender composition in deciding whether to include it as a 

finalist in her choice but that she made her first choice decision from her two finalist options on 

other grounds.  However, the data support the interpretation that the gender composition of a 

major plays a continuing role even after a female applicant has whittled down her top choice 

decision to only two contenders.  At the Technion, each percentage point increase in the percent 

female of a “finalist” major raises the odds that it will emerge as a woman’s top choice by nearly 

a full percentage point at the Technion and by 0.38 of a percent at the TAU.  Thus, under either 

                                                
18 The Hausman test results (Appendix B) show statistical significance tests in the difference between coefficients 
from the alternative models. Moreover, the differences in risk coefficients across the unidimensional and 
multinomial models are significant.   
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the sequential multinomial preference model or the considered options multinomial preference 

model, women applicants are more likely for her top choice than for her backup choice to choose 

a major that is disproportionately female.  The world of second choices is less gendered than is 

the world of first choices.  Similarly, the world of considered options is less gendered than is the 

world of first choices.  

DISCUSSION  

The conclusion from our investigation is that orientation is less constrained by traditional 

forces than behavior, and that, as a result, sex segregation in the broader choice set of considered 

majors is lower than in the first choice selections. We show that the factors that drive the gender 

gap in the first choice, in particular labor market earnings, risk aversion and the sex composition 

of fields, are weaker in the broad set of choices than in the first choice. Men tone down their 

willingness to take risks in their second major backup plan.  Women, meanwhile, tone down 

their preference to be in a major that is disproportionately female for their second choice.  The 

result is less segregation in the world of second choices than in the world of first choices. 

The evidence that the gender gap in risk orientation disappears in the second-choice 

selection of major leads to a radical conclusion: in making educational choices, the gender gap in 

risk aversion, competitiveness and confidence is situational. That is, in a high stakes, first choice 

situation, women are less likely than men to take chances. These findings suggest that risk 

aversion is a behavioral preference and point to the role of the perceived importance of a 

situation in determining its level and in shaping the difference between women and men. Our 

results do not rule out the possibility of biological grounds for the gender gap in risk aversion, 

but they do suggest that innate differences, if they indeed exist, are moderated by environmental 

forces.  
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The definitive interpretation of this moderating tendency in second choices, however, 

cannot be ascertained from the data themselves. We see three different interpretations of the 

meaning of this gender difference.  It may be the case that men are more confident than women 

and more inclined to compete in the application process for the most competitive majors.  It may 

instead be the case that men are more focused on external rewards, that their focus has produced 

a positive correlation between competitiveness and expected salaries, and that women are less 

interested in competing for these majors because they are less interested in external rewards than 

are men.  A third possibility is that women are repelled by male dominated majors and it is the 

male domination of these majors rather than women’s lack of interest in external rewards that 

affects their preferences.  The results from the multinomial preferences model go a long way 

towards clarifying the different choice processes undertaken by women and men.  Additional 

research with different data is needed to clarify the questions that cannot be answered with data 

on academic records, preference orderings, competitiveness of majors and expected salaries by 

graduates in the various majors.  

Another question that cannot be answered with the existing data is whether change is 

occurring in the considered option sets of academically elite Israeli women and whether the 

changes in the considered options set is more rapid than are the changes in the top choice major.   

The period of time covered by these data is one of relatively weak trends in the gendered 

character of major preferences.  In this way, the Israeli data are similar to data for the U.S. 

(Mann and DiPrete 2013), where trends are also weak.  Nonetheless, when change picks up again 

or when more years of data are available in this world of slow change, we predict that the 

additional data will show that change comes more quickly to the considered options set than it 

does to the final choice itself.  If true, such a finding would also imply that behavioral change is 
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a multi-part process in which people first take an option seriously and then more seriously before 

they finally begin to behave in ways that reveal their shifting orientations. More data are needed 

in order to establish the validity of our prediction as well as to understand how the barriers 

between attitudes and behavior erode over time.  
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Appendix A: TAU Data and Sample 

This appendix details the steps required to replicate the Technion analyses for TAU. In 

order to focus on STEM-bound applicants, we limit the analyses to the STEM fields in 

applicants’ major choice sets. STEM applicants are defined as applicants who chose at least one 

STEM major for their first or second choice. When applying to TAU, applicants may list three 

ranked preferences for major, each of which may be a dual major (although this is not an option 

for several of the STEM majors). To deal with this complexity, we devised a twofold strategy: In 

cases where one of the majors in a dual major selection is non-STEM, we ignored the 

information for the non-STEM major and considered it an entry with missing data. In cases 

where both majors in a dual major were STEM, we allowed for multiple choices. Each of the two 

STEM majors was regarded as a sub-choice, with distinct characteristics (such as individual-

major match, sex composition and wage). For example, if the applicant's first choice was a 

biology-chemistry dual major, we derived two sub-choices from it (biology and chemistry), 

using the applicant's personal data (identical for both sub-choices) and each sub-choice’s distinct 

characteristics. Instead of using the general composite academic score, used in TAU for all 

applicants, we used the academic composite engineering score used by TAU to rank applicants 

for STEM fields. This score places greater weight on quantitative skills and on math and physics 

courses completed in high school than does the general composite academic score. 

 



Figure 1: The Formation of the Major Choice Set
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Figure�2:�The�share�of�women�in�the�applicant,�admit,�and�student�bodies
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Figure�3a.��Distribution�of�Academic�Scores,�by�Gender,�TECH Figure�3b.��Distribution�of�Academic�Scores�by�Gender,�TAU
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Figure�4:�The�relationship�between�major's�salary,�competitiveness,�and�the�share�of�females
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Figure�5:�The�distribution�of�first�choice�majors,�by�gender

0
5
10
15
20
25

TECH�applicants,�1999Ͳ2008

men women

0
5
10
15
20
25
30
35

TAU�applicants�,�1998Ͳ2008

men women



Figure�6a1.��Predicted�Field�of�Study�for�the�Technion�from�a�RankͲOrdered�Logit�Model�(Table�3)�with�Risk�and�Wages�as�Covariates,�TECH
Figure�6a2.��Residuals�from�the�RankͲOrdered�Logit�Model�of�Panel�A,�Table�3
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Figure�6b1.��Predicted�Field�of�Study�for�the�Technion�from�a�RankͲOrdered�Logit�Model�(Table�3)�with�Risk�and�Wages�as�Covariates,�TAU
Figure�6b2.��Residuals�from�the�RankͲOrdered�Logit�Model�of�Panel�B,�Table�3
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Table�1A:�Fields�of�study�and�selected�characteristics,�TECH�1998Ͳ20081

Major�# Major
Share�of�
students

%�Women�
(students)

Academic�
threshold��

(P25�admits)

Expected�
monthly�

salary��(NIS)2

3 Electrical_Eng 14.5% 14% 88 17777
12 Computer_Science 10.7% 23% 88 17019
8 Indust_and_Mngmnt_Eng 9.9% 41% 84 14262
2 Mechanical_Eng 9.3% 10% 80 12128
1 Civil_and_Env_Eng 7.2% 23% 77 8223
7 Aerospace_Eng 4.1% 17% 82 8745
5 Biotech_and_Food_Eng 3.7% 70% 84 8745
15 Education_in_Tech_and_Science 3.6% 47% 74 6113
4 Chemical_Eng 3.5% 58% 79 8464
10 Physics 3.3% 15% 80 10199
19 Environmental_Eng 3.2% 32% 77 8745
17 Biology 3.1% 73% 80 5430
21 Materials_Eng 2.5% 41% 82 8745
24 Electrical_Eng_and_Physics 2.5% 15% 92 17777
25 Biomedical_Eng 2.3% 57% 90 8745
26 Information_System_Eng 2.0% 35% 86 8745
18 Math_and_Computer_science 1.9% 26% 86 12518
6 Agricultural_Eng 1.9% 18% 74 8745
16 Chemistry 1.8% 63% 76 4502
9 Math 1.7% 35% 81 1141
11 Economic_and_Management 1.6% 54% 83 9812
20 Molecular_biochemistry 1.6% 72% 81 4966
13 Landscape_Architecture 1.0% 68% 77 6782
14 Medical_Laboratory_Science 0.9% 76% 84 5430
23 Math_and_Physics 0.8% 24% 82 10199
27 Biochemistry_Eng 0.7% 69% 86 8745
22 Quality_Eng 0.6% 73% 80 8745
28 Physics_and_Computer_Science 0.1% 20% 89 17019

1)�Biomedical�Engineering�started�in�1999;�System�Engineering�in�2001;�
Biochemistry�Engineering�in�2004;�and�Physics�&�Computer�Science�in�2005
2)�based�on�averages�of�graduates�between�2000Ͳ2003
Note�:�sorted�by�the�share�of�students



Table�1B:�Fields�of�study�and�selected�characteristics,�TAU�1997Ͳ20081

Major�# Major
Share�of�
students

%�Women�
(admits)

Academic�
threshold��

(P25�admits)

Expected�
monthly�

salary��(NIS)2

7 Biology 16.2% 67% 612 5615
9 Electrical_Eng 9.9% 16% 672 20296
5 Math 9.3% 31% 650 11920
6 Computer_Sciences 9.1% 27% 685 17608
11 Mechanical_Eng 6.6% 17% 608 12169
3 Chemistry 5.8% 67% 599 6893
2 Physics_and_science 5.7% 21% 637 12598
8 Indust_and_Mngmnt_Eng 5.4% 43% 672 15091
22 Comp_Sci_and_Non_STEM 4.5% 32% 692 17608
13 Bio_Med_Eng 3.8% 52% 685 8892
10 Computer_Eng 3.8% 21% 702 17608
4 Stat_and_Perform 3.0% 48% 603 9766
18 Elec_Eng_and_Physics 2.7% 13% 691 20296
19 GeoPhysics 2.2% 37% 577 12598
20 BioInformatics 1.8% 46% 708 17608
16 Chem_and_Bio 1.8% 66% 639 6893
12 Life_and_Med_Science 1.7% 77% 677 5615
17 BioTech 1.6% 62% 671 5615
14 Math_Physics 1.5% 20% 651 12598
15 Chem_and_Comp 1.4% 61% 599 17608
21 Brain_sci 1.2% 78% 693 5615
1 Science_general 0.9% 42% 550 14725

1)�Life_and_Med_Science�started�in�2000;�Bio_Med_Eng�in�2001;�BioInformatics�in�2001;�
Brain_sci�in�2002;��BioTech�in�2002;�Chem_and_Bio�in�2006�;�
Chem_and_Comp�terminated�in�2007�;�Science_general�in�2006
2)�based�on�averages�of�graduates�between�2000Ͳ2003
Note�:�sorted�by�the�share�of�students



Table�2:�The�mean�score�for�the�individualͲmajor�match�by�deciles1�

decile TECH TAU
1 Ͳ15.87 Ͳ143.39
2 Ͳ7.7 Ͳ80.03
3 Ͳ4.06 Ͳ49.9
4 Ͳ1.39 Ͳ27.78
5 0.89 Ͳ9.39
6 3.04 7.83
7 5.22 26.14
8 7.54 47.96
9 10.37 75.47
10 15.33 121.55

1)�This�is�calculated�as�the�distance�between�the�applicant’s�academic�score�and�the�
major's�academic�treshold�(P25)�in�the�previous�year.�
category�1�indicates�ind.�below�major's�threshold�Ͳ�most�risky�application�choice
category�10�indicates�ind.�above�major's�threshold�Ͳ�least�risky�application�choice
"Perfect�match":�category�5



Table 3.  Effects of expected wage and Difficulty of Being Accepted, by Gender on the Ranked Choice

F M F M F M F M

VARIABLE (1) (2) (3) (4) (5) (6) (7) (8)

1bn.cb_pct -1.287*** -2.655*** -1.064*** -1.015*** -1.654*** -1.274*** -0.989*** -0.891***
(0.0525) (0.0376) (0.0534) (0.0380) (0.0779) (0.0531) (0.0884) (0.0609)

2.cb_pctl -0.806*** -1.547*** -0.707*** -0.676*** -1.018*** -0.763*** -0.625*** -0.551***
(0.0372) (0.0257) (0.0418) (0.0301) (0.0499) (0.0341) (0.0594) (0.0413)

3.cb_pctl -0.382*** -0.838*** -0.345*** -0.392*** -0.495*** -0.351*** -0.310*** -0.299***
(0.0309) (0.0212) (0.0367) (0.0263) (0.0365) (0.0253) (0.0450) (0.0311)

4.cb_pctl 0.0498* -0.159*** -0.150*** -0.214*** 0.00245 0.0836*** -0.131*** -0.153***
(0.0267) (0.0185) (0.0345) (0.0241) (0.0283) (0.0199) (0.0373) (0.0256)

6.cb_pctl -0.410*** -0.188*** -0.126*** -0.101*** -0.389*** -0.423*** -0.151*** -0.155***
(0.0288) (0.0200) (0.0334) (0.0231) (0.0303) (0.0213) (0.0358) (0.0245)

7.cb_pctl -0.829*** -0.531*** -0.402*** -0.310*** -0.793*** -1.001*** -0.472*** -0.437***
(0.0324) (0.0233) (0.0351) (0.0246) (0.0367) (0.0265) (0.0417) (0.0287)

8.cb_pctl -1.460*** -0.894*** -0.703*** -0.576*** -1.403*** -1.586*** -0.838*** -0.779***
(0.0391) (0.0282) (0.0375) (0.0269) (0.0473) (0.0338) (0.0511) (0.0356)

9.cb_pctl -2.106*** -1.294*** -1.154*** -1.016*** -1.999*** -2.243*** -1.353*** -1.226***
(0.0472) (0.0353) (0.0416) (0.0311) (0.0604) (0.0437) (0.0658) (0.0465)

10.cb_pctl -3.376*** -2.029*** -2.200*** -2.160*** -3.127*** -3.376*** -2.377*** -2.079***
(0.0692) (0.0502) (0.0590) (0.0442) (0.0895) (0.0644) (0.0949) (0.0681)

WAGE -0.0134*** 0.231*** -0.126*** 0.0806***
(0.00252) (0.00201) (0.00189) (0.00147)

Observatio 221,905 485,506 134,572 251,103 221,905 485,506 134,572 251,103

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

without controlling for major dummy variables controlling for major dummy variables 

TAU
PANEL A

TECH
PANEL B

TAU
PANEL C

TECH
PANEL D



Table�4.��Effects�of�expected�wage�and�Difficulty�of�Being�Accepted,�by�Gender,�on�the�First�Choice

F M F M F M F M

VARIABLE (1) (2) (3) (4) (5) (6) (7) (8)

1bn.cb_pct -0.804*** -2.205*** -1.057*** -0.911*** -1.417*** -0.765*** -1.000*** -0.623***
(0.0698) (0.0510) (0.0706) (0.0516) (0.106) (0.0730) (0.119) (0.0819)

2.cb_pctl -0.470*** -1.223*** -0.745*** -0.571*** -0.809*** -0.388*** -0.662*** -0.335***
(0.0499) (0.0352) (0.0555) (0.0405) (0.0683) (0.0472) (0.0796) (0.0553)

3.cb_pctl -0.143*** -0.617*** -0.291*** -0.290*** -0.325*** -0.0999*** -0.270*** -0.130***
(0.0419) (0.0292) (0.0473) (0.0350) (0.0499) (0.0350) (0.0595) (0.0415)

4.cb_pctl 0.207*** 0.0165 -0.128*** -0.146*** 0.128*** 0.272*** -0.116** -0.0570*
(0.0364) (0.0255) (0.0447) (0.0320) (0.0389) (0.0275) (0.0491) (0.0340)

6.cb_pctl -0.565*** -0.353*** -0.153*** -0.139*** -0.517*** -0.594*** -0.157*** -0.213***
(0.0414) (0.0297) (0.0437) (0.0311) (0.0437) (0.0314) (0.0474) (0.0329)

7.cb_pctl -1.201*** -0.819*** -0.570*** -0.503*** -1.115*** -1.311*** -0.612*** -0.670***
(0.0495) (0.0361) (0.0476) (0.0342) (0.0555) (0.0404) (0.0568) (0.0396)

8.cb_pctl -1.887*** -1.301*** -0.889*** -0.773*** -1.766*** -2.029*** -0.983*** -1.048***
(0.0607) (0.0460) (0.0513) (0.0379) (0.0720) (0.0535) (0.0694) (0.0492)

9.cb_pctl -2.829*** -1.742*** -1.314*** -1.168*** -2.625*** -2.738*** -1.434*** -1.497***
(0.0812) (0.0590) (0.0569) (0.0436) (0.0981) (0.0699) (0.0888) (0.0639)

10.cb_pctl -4.141*** -2.600*** -2.354*** -2.210*** -3.673*** -4.032*** -2.420*** -2.275***
(0.117) (0.0876) (0.0810) (0.0595) (0.142) (0.105) (0.128) (0.0917)

WAGE -0.0139*** 0.239*** -0.137*** 0.0785***
(0.00340) (0.00287) (0.00254) (0.00199)

Observatio 221,905 485,506 134,572 251,103 221,905 485,506 134,572 251,103

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

without controlling for major dummy variables controlling for major dummy variables 

PANEL A PANEL B PANEL C PANEL D
TECH TAU TECH TAU



Table�5.��Effects�of�expected�wage�and�Difficulty�of�Being�Accepted,�by�Gender,�on�the�Second�Choice

F M F M F M F M

VARIABLE (1) (2) (3) (4) (5) (6) (7) (8)

1bn.cb_pctl -1.834*** -3.164*** -1.067*** -1.139*** -2.011*** -1.874*** -0.949*** -1.277***
(0.0801) (0.0562) (0.0819) (0.0566) (0.117) (0.0789) (0.133) (0.0923)

2.cb_pctl -1.187*** -1.908*** -0.653*** -0.801*** -1.296*** -1.197*** -0.552*** -0.851***
(0.0562) (0.0383) (0.0640) (0.0453) (0.0746) (0.0505) (0.0898) (0.0627)

3.cb_pctl -0.649*** -1.070*** -0.427*** -0.516*** -0.700*** -0.618*** -0.372*** -0.528***
(0.0461) (0.0312) (0.0587) (0.0400) (0.0542) (0.0370) (0.0700) (0.0475)

4.cb_pctl -0.127*** -0.354*** -0.182*** -0.297*** -0.144*** -0.125*** -0.155*** -0.282***
(0.0395) (0.0272) (0.0548) (0.0370) (0.0418) (0.0292) (0.0583) (0.0395)

6.cb_pctl -0.262*** -0.0473* -0.0907* -0.0620* -0.269*** -0.276*** -0.130** -0.0895**
(0.0403) (0.0274) (0.0524) (0.0349) (0.0424) (0.0292) (0.0555) (0.0374)

7.cb_pctl -0.511*** -0.311*** -0.197*** -0.106*** -0.532*** -0.764*** -0.296*** -0.175***
(0.0437) (0.0309) (0.0528) (0.0357) (0.0503) (0.0358) (0.0624) (0.0425)

8.cb_pctl -1.097*** -0.608*** -0.487*** -0.375*** -1.120*** -1.273*** -0.665*** -0.475***
(0.0519) (0.0364) (0.0559) (0.0387) (0.0646) (0.0451) (0.0765) (0.0527)

9.cb_pctl -1.575*** -0.993*** -0.969*** -0.864*** -1.588*** -1.900*** -1.241*** -0.908***
(0.0602) (0.0449) (0.0621) (0.0447) (0.0811) (0.0581) (0.0991) (0.0690)

10.cb_pctl -2.795*** -1.670*** -2.031*** -2.129*** -2.753*** -2.933*** -2.310*** -1.825***
(0.0877) (0.0626) (0.0869) (0.0663) (0.120) (0.0846) (0.142) (0.102)

WAGE -0.0146*** 0.221*** -0.112*** 0.0834***
(0.00376) (0.00283) (0.00287) (0.00219)

Observations 213,576 467,262 104,078 215,642 213,576 467,262 104,078 215,642
Standard e
*** p<0.01, 

PANEL A PANEL B PANEL C PANEL D

without controlling for major dummy variables controlling for major dummy variables 

TAUTECHTAUTECH



Table�6.��Effects�of�expected�wage�and�Difficulty�of�Being�Accepted,�by�Gender,�on�Considered�Choice�Set
controlling for major dummy variables 

Considered Choice Set Considered Choice Set

F M F M F M F M
VARIABLES (1) (2) (3) (4) (5) (6) (7) (8)

1bn.cb_pctl -1.503*** -1.158*** 0.709*** 1.181*** -0.723*** -0.541*** 0.583*** 1.053***
(0.0797) (0.0550) (0.179) (0.122) (0.0832) (0.0579) (0.190) (0.131)

2.cb_pctl -0.935*** -0.703*** 0.601*** 0.856*** -0.467*** -0.346*** 0.303** 0.811***
(0.0514) (0.0357) (0.115) (0.0787) (0.0580) (0.0404) (0.130) (0.0894)

3.cb_pctl -0.450*** -0.314*** 0.430*** 0.484*** -0.226*** -0.190*** 0.372*** 0.573***
(0.0379) (0.0267) (0.0808) (0.0544) (0.0457) (0.0318) (0.0983) (0.0667)

4.cb_pctl 0.0271 0.103*** 0.316*** 0.383*** -0.0948** -0.110*** 0.151* 0.298***
(0.0297) (0.0214) (0.0595) (0.0399) (0.0394) (0.0273) (0.0792) (0.0533)

6.cb_pctl -0.427*** -0.457*** -0.309*** -0.391*** -0.195*** -0.225*** -0.223*** -0.214***
(0.0317) (0.0228) (0.0644) (0.0437) (0.0382) (0.0264) (0.0747) (0.0503)

7.cb_pctl -0.863*** -1.086*** -0.736*** -0.698*** -0.578*** -0.573*** -0.666*** -0.704***
(0.0382) (0.0280) (0.0824) (0.0579) (0.0433) (0.0299) (0.0889) (0.0601)

8.cb_pctl -1.521*** -1.726*** -0.923*** -0.950*** -1.047*** -1.018*** -0.958*** -0.923***
(0.0488) (0.0353) (0.111) (0.0767) (0.0513) (0.0356) (0.110) (0.0751)

9.cb_pctl -2.167*** -2.450*** -1.392*** -1.031*** -1.686*** -1.610*** -1.111*** -1.155***
(0.0622) (0.0454) (0.149) (0.104) (0.0641) (0.0451) (0.143) (0.100)

10.cb_pctl -3.394*** -3.673*** -1.477*** -1.193*** -2.871*** -2.671*** -1.481*** -1.277***
(0.0921) (0.0666) (0.220) (0.154) (0.0918) (0.0653) (0.202) (0.144)

Observations 221,905 485,506 16,658 36,488 134,572 251,103 12,358 26,095
Note: Majors
Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

TECH TAU

PANEL A PANEL B PANEL B

 First Choice, Given 
the Considered 

Choice Set 

 First Choice, Given 
the Considered 

Choice Set 
PANEL A



Table�7.�Measures�of�the�Impact�of�Gender�Composition�in�the�Major�on�the�Pattern�of�Applications

Index�of�Dissimilarity Percent�Female�in�Major
coef. se

Unidimensional�Preference�Model 0.414 0.0203 (.00049)
First�Choice�of�All�Alternatives 0.434 0.026 (.00075)
Second�Choice�of�Remaining��Alternatives 0.367 0.016 (.00067)
Considered�Options�Model 0.425 0.0206 (.0005)

First�Choice,�Conditional�on�Considered�Options 0.0094 (.0013)

Index�of�Dissimilarity Percent�Female�in�Major
coef. se

Unidimensional�Preference�Model 0.466 0.011 (.00066)
First�Choice�of�All�Alternatives 0.482 0.013 (.00090)
Second�Choice�of�Remaining��Alternatives 0.404 0.0081 (.00099)
Considered�Options�Model 0.492 0.012 (.00069)

First�Choice,�Conditional�on�Considered�Options 0.0038 (.0019)

Note:�The�coefficient�for�percent�female�in�major�is�from�the�model�estimated�on�female�applicants�only

TECH

TAU



Appendix�B.�Tests�for�the�Validity�of�the�Unidimensional�Preferences�Model

Men�and�Women�Combined
Model

Expected�Wage x x
Lagged�SexͲComposition�of�Major x
Risk�Score�for�PersonͲPotential�Major�Match x x x
Dummy�Variables�for�Majors x

Hausman�test�(TECH)�pͲvalue <.00001 <.00001 <.00001
Hausman�test�(TAU)�pvalue <.00001 <.00001 <.00001

Women�Only
Model

Expected�Wage x x
Lagged�SexͲComposition�of�Major x
Risk�Score�for�PersonͲPotential�Major�Match x x x
Dummy�Variables�for�Majors x

Hausman�test�(TECH)�pͲvalue <.00001 <.00001 <.00001
Hausman�test�(TAU)�pvalue <.00001 <.00001 <.00001

Men�Only
Model

Expected�Wage x x
Lagged�SexͲComposition�of�Major x
Risk�Score�for�PersonͲPotential�Major�Match x x x
Dummy�Variables�for�Majors x

Hausman�test�(TECH)�pͲvalue <.00001 <.00001 <.00001
Hausman�test�(TAU)�pvalue <.00001 <.00001 <.00001


