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Abstract

We study a stationary, single-stage inventory system, under periodic review, with fixed or-
dering costs and multiple sales levers (such as pricing, advertising, etc.). We show the optimality
of (s,S)-type policies in these settings under both the backordering and lost-sales assumptions.
Our analysis is constructive, and is based on a condition which we identify as being key to
proving the (s, .S) structure. This condition is entirely based on the single-period profit function
and the demand model. Our optimality results complement the existing results in this area. We

also provide improved bounds on the optimal (s,S) parameters.

1 Introduction

In this paper, we study the optimal control problem for a periodically-reviewed single-stage inven-
tory system with fixed ordering costs and stochastic, but controllable, demand. In each period, a
manager makes inventory decisions as well as decisions that influence demand, for example, the

price choice or the advertisement budget. We refer to these decision variables as sales levers.

For a single stage system with inventory and pricing control and a fixed ordering cost, the

optimality of (s, S)-type inventory policies! has been established in recent papers such as Chen and

*An earlier version of this paper was entitled “Optimality Results in Inventory-Pricing Control: An Alternate
Approach”
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Simchi-Levi (2004a,b). They generalize the classical approach of Scarf (1960) who showed (s, S)
optimality when demands are exogenous. The only sales lever in these papers is the price. The
proofs in these papers rely heavily on induction arguments and dynamic programming formulations,
which are pervasive in the area of stochastic inventory theory. A majority of their results require
joint-concavity of the single-period expected profit function with respect to inventory and price.
We extend the optimality of the (s,.S)-type structure for stationary systems by allowing a multi-
dimensional sales lever, and a less-restrictive single-period expected profit function (permitting, for

example, quasi-concavity).

Our proofs, completely different from the earlier proofs in the joint inventory-pricing literature,
are constructive and based on a condition which we identify as being key to proving the (s, .S) struc-
ture. We believe that our proofs are important in their own right. Our ideas are a generalization
of some arguments used by Veinott (1966), who provided an alternate proof for (s,.S) optimality

when demands are exogenous.

1.1 Problem Definition

Consider the following periodic review system with a planning horizon of T' periods (T can be
finite or infinite), and a discount factor v € (0,1). All parameters of the system are assumed to
be stationary. Periods are indexed forwards. At the beginning of period ¢ (¢ < T'), we have x
units of inventory. At this instant, an order can be placed to raise the inventory to some level y
instantaneously (that is, there is no lead time). There is a fixed cost or a set-up cost, K, associated
with ordering any strictly positive quantity. This ordering opportunity is a control on the supply
or inflow process. Similarly, we have a set of levers to control the demand or outflow process.
Examples of these levers are prices, sales-force incentives and advertisements. We model the sales
lever control by a vector d within some compact convex subset D C R"; the first component could
denote the price discount and the second component could denote the advertisement expense and

SO OH.2

After y and d are chosen, the demand in period ¢ is realized next. It is a random variable
D(d, ), where € is an exogenous random variable. (That is, the distribution of demand depends

on the sales lever control, and e is the source of randomness.) The net inventory at the end of

2We also allow the possibility of D containing a single element; this represents traditional inventory control without

any sales levers.



the period is y — D(d, €), and a holding or a shortage cost is charged based on this quantity. We
let 7(y,d) denote the expected profit in this period, excluding the set-up cost (that is, the total
expected profit is 7(y,d) — K - 1[y > z]); 7 includes sales revenue, the cost of choosing the sales
lever and the holding and shortage costs. The inventory level at the beginning of the next period is
given by ¥ (y — D(d, €)), where 1 is one of the following two operators: (a) an identity map if excess
demand is completely backordered, or, (b) the positive part operator if excess demand is lost. The
objective is to find a pair (y,d) for every = and ¢, that maximizes the expected discounted-profits

in periods t, t+1, ..., T.

A purchase cost, linear in the order size y — z, could also be present. However, a simple
assumption about salvaging inventory left at the end of T periods can be used to transform the
system into one in which this proportional cost is zero and the other cost parameters are suitably
modified. Consequently, we will not consider this linear cost in our analysis. Our proofs for the
finite horizon results depend on this assumption. Although it is useful for notational simplicity, our
infinite horizon results and proofs do not require this assumption. Veinott (1966) makes a similar

observation (see page 1072).

We make the following assumption throughout the paper.

Assumption 1.

(a) Either )(x) = x (complete backlogging), or 1 (x) = (z)* (lost sales).

(b) m(y,d) is continuous, and maxqm(y,d) — —oo as y — oo. Furthermore, max, q)7(y,d)

exists.

(¢) The demand model is stationary, that is, the sequence of €’s in time periods {1,2,...,T} is

independent and identically distributed.

(d) D(d,e€) is continuous in (d,€). Moreover, for every e, D(d,€) is component-wise monotone

ind.?

Let (y*,d*) be the maximizer of 7(y,d), and let 7* be the maximum value. We remark that
(y*,d*) would be the solution chosen in a single-period problem in which there is no fixed cost and

the starting inventory is lower than y*.

3The monotonicity requirement of demand with respect to each sales lever does not cause any loss of generality in

a practical sense. For example, price discounts and advertising budgets have a clear monotone effect on the demand.



The dynamic programming formulation for the finite-horizon problem is given by

Ue) = max [Vi(y) — K-1[y > a]]
{y:y>x}
where
Vily) = {dr}gi%%}[Wt(%d)], and
,d) + ~- E.U, — D(d, , Ht<T,
Wiy d) — m(y,d) + v +1(¢¥(y — D(d,¢€))), i
m(y,d), ift="T.

(The subscript ¢ in the above formulation denotes the period index.) It can be shown using standard

arguments that the above maxima exist.*

An optimal policy for this finite-horizon problem specifies a feasible pair (y,d), for every x and
t, that maximizes Wy(y,d) — K - 1[y > x]. The infinite-horizon optimal policy specifies a feasible
pair (y,d), for every x, that maximizes W(y,d) — K - 1[y > z], where W (-,-) is the point-wise
limit of Wi(-,-) as T approaches infinity." In this paper, we study finite-horizon problems and

infinite-horizon discounted-profit problems.

The following definitions are based on the dynamic programming formulation and become useful

later:

e Let yi be the smallest maximizer of V;(y), and y° be the smallest maximizer of V' (y), where

V(y) :== max{W(y,d) : d € D};

e Q(y) := max{n(y,d) | d € D}.

Next, we list the three kinds of demand models we use to capture the dependence of D(d,€) on

e Additive Demand Model: For any d € D , where D is a closed real interval, D(d,¢) is
nonnegative for almost every e, and can be expressed as D(d,e) = d + e. (In this model, we

use d instead of d since D C R!.)

4 Available upon request from the authors.
"Theorem 4.2.3 and Lemma 4.2.8 of Hernandez-Lerma and Lassere (1996) give conditions for the existence of

an optimal stationary policy and for the convergence of the finite-horizon dynamic program to the infinite-horizon

dynamic program. The models studied in this paper satisfy these conditions. The details are available upon request.



e Linear Demand Model: For any d € D, D(d,¢) is nonnegative for almost every €, and
can be expressed as D(d,e) = a-d + 3, where € = (o, ), and € R" and 3 € R. Here,
we assume that D is a convex compact set. When § = 0, this is commonly known as the

multiplicative demand model in the literature.

e Concave Demand Model: For any d € D, D(d, ¢) is nonnegative, monotonic and concave

in d for almost every e. Again, we assume that D is a convex compact set.

Among these models, the strongest structural results hold under the Additive Demand Model.
For example, Chen and Simchi-Levi (2004a) show the optimality of (s, .S, p) policies for finite horizon
problems with backordering and the Additive Demand Model; however, they show that the result
does not always hold under the Linear Demand Model. Similarly, Chen et al. (2006) require the
Additive Demand Model in order to prove the optimality of (s,S,p) policies with the lost sales
assumption. Under the backordering assumption, the infinite horizon results in Chen and Simchi-
Levi (2004b) are proved using the Linear Demand Model. Notice that the Linear Demand Model is
a generalization of the Additive Demand Model, and the Concave Demand Model is a generalization
of the Linear Demand Model. Federgruen and Heching (1999) introduced the Concave Demand

Model when there is no fixed cost for ordering.

1.2 Literature Review and Summary of Contributions

The primary focus of this paper is to provide an alternate, constructive proof technique for im-
portant results in joint inventory-pricing control. In this section, we first review early classical
work on inventory models with fixed ordering costs without any pricing or sales-lever decisions.
Then, we review recent papers on joint inventory-pricing control, followed by an explanation of our

contribution to the literature.

1.2.1 Classical Results without Pricing Decisions

Scarf (1960) and Veinott (1966), both seminal papers in Inventory Theory, establish the optimality
of (s,S5) policies for inventory systems with fixed ordering costs. (No sales lever decisions are

considered.)

Scarf shows that the cost function in the finite horizon dynamic program possesses a property,

he named as K-convexity. A key step in the proof is demonstrating by induction that this property



holds for an (n 4 1)-period problem if it holds for the n period problem. The proof, although
originally presented for stationary models, can be extended to non-stationary environments as
noted by Veinott (1966). Scarf’s main assumption is that the single-period expected holding and

shortage cost function is convex with respect to the inventory level after ordering.

Veinott presents another proof for the (s,S) optimality result under different assumptions. He
generalizes the assumption on the expected holding and shortage cost function to include quasi-
convex functions, but requires the sequence of minimizers of these functions to be weakly increasing.
His proof does not use induction based on the dynamic program. While his proof is algebraic, he

sketches another proof that is constructive. Our work is inspired by this constructive approach.

1.2.2 Joint Inventory-Pricing Control

We now discuss the literature on joint inventory-pricing control. (We refer the reader to these

papers for an exhaustive list of references.)

With complete backlogging, no fixed ordering costs, and the Concave Demand Model, Fed-
ergruen and Heching (1999) show the optimality of the base-stock list-price policy for the non-
stationary finite-horizon model as well as the stationary infinite-horizon model. (A base-stock
list-price policy is defined as follows: if the starting inventory level is less than some level ¥/, then
order up to y;, and charge a fixed list-price in period ¢; otherwise, do not order and offer a price
discount.) They assume that the single-period expected profit function 7(y,d) is jointly concave

in inventory (after ordering) and price.%

With complete backlogging, positive fixed cost, and the Additive Demand Model, Chen and
Simchi-Levi (2004a) show that the (s,.S,p) policy is optimal in the finite horizon. (An (s, S,p)
policy is defined as follows: order nothing if inventory exceeds s; order up to S otherwise. The
price chosen depends on y, the inventory level after ordering, through a specified function p(y).)
They also present an example indicating that the (s, S, p) policy may not be optimal in the finite-
horizon problem when demand is not additive. With the Linear Demand Model, Chen and Simchi-
Levi (2004b) show the optimality of the (s,S,p) policy in infinite-horizon models both with the
discounted-profit and the average-profit criteria. They require joint concavity of m(y,d) for their

results on the finite-horizon problem as well as the infinite-horizon discounted-profit problem. They

5As Chen and Simchi-Levi (2004a) point out, the only sufficient condition provided by Federgruen and Heching
(1999) for this assumption is the linearity of the demand model.



develop the notion of symmetric K-concavity, a generalization of K-concavity, and show that the
profit function in the finite horizon dynamic program possesses this property. This is the key step
in their proof, which uses inductive arguments and is quite involved. Feng and Chen (2004) use
fractional programming to establish (s, .S, p)-optimality for the average-profit criterion, and provide
an algorithm for computing the optimal parameters. The continuous review extensions have been

studied by Feng and Chen (2003) and Chen and Simchi-Levi (2006).

With the lost sales assumption, Chen et al. (2006) study a periodic-review finite-horizon problem
with the Additive Demand Model. They introduce some restrictions on the function relating
expected demand and price as well as additional restrictions on the distribution of e. With these

assumptions, they demonstrate the optimality of the (s, .S, p) policy.

Subsequent to the initial version of the current paper, a number of papers on the optimality
of (s,5)-type policies have been written. Yin and Rajaram (2005) extend the results of Chen and
Simchi-Levi (2004a,b) to Markovian environments. Song et al. (2006) prove (s,S,p) optimality
with lost sales and the multiplicative demand model. Chao and Zhou (2006) provide algorithmic

results for models with a Poisson demand process.

1.2.3 Contributions

The papers mentioned in Section 1.2.2 use several inductive arguments for finite-horizon results
and rather involved convergence arguments to establish the infinite-horizon results. The contrast
between the simplicity of the structure in the optimal policies ((s, .S, p) policies and base-stock list-
price policies) and the complexity of the optimality proofs is quite striking. As mentioned earlier,

the main contribution of this paper is to provide constructive proofs for these types of results.

In the process of developing this proof technique, we identify a sufficient condition to guarantee
the optimality of (s,S)-type policies (Condition 1). This condition can be verified by simply
studying a single-period problem; meanwhile, the existing results in the literature are proved by
studying the value function from the dynamic program, which is typically more difficult to analyze.
This is our second contribution. The sufficiency of Condition 1 for (s, S) optimality has been
used to prove new results in other settings — namely, Song et al. (2006) for lost sales models with
multiplicative demands, and Huh and Janakiraman (2004) in the context of selling through auction

channels.



Finally, our results complement the existing literature in some ways. In particular, we relax
the usual assumptions on the demand model and profit functions; for example, we replace the joint
concavity of 7(y,d) with joint quasi-concavity. Instead, we require the stationarity assumption.
Table 1 summarizes the recent work on single-stage systems with sales levers along with our results.

In addition, we improve existing bounds on the optimal s and S values.

For joint inventory-pricing problems, there has been a remarkably long time gap between
Thomas (1974)’s conjecture of the optimality of (s,S)-type policies and Chen and Simchi-Levi’s
proof. Even through their proof is inspired by Scarf’s work, their work has rightfully gained a lot of
attention because the generalization is significant both in terms of the result and the methodology.
Our work is a similar advancement of the approach initiated by Veinott. More specifically, proving
optimal policy structure with inventory and price as decision variables is much more involved than

merely appending the price variable in the proofs of classical papers in which prices are exogenous.

1.3 Organization

We present our analysis in the following sequence. In Section 2, we present Condition 1, a sufficient
condition for (s,S) optimality. In Section 3, we prove the optimality of (s, S)-type policies when
Condition 1 is satisfied. The validity of Condition 1 is shown in Section 4 for the backordering case

and in Section 5 for the lost sales case.

2 A Single-Period Condition

In this section, we present a set of assumptions on the expected single-period profit 7 that lies at
the core of our proofs. Although the following condition appears technical, we show in Sections 4

and 5 that common modeling assumptions found in the literature satisfy this condition.

Condition 1.

7

(a) Q(y) = maxgqep m(y,d) is quasi-concave’, and

(b) for any y' and y? satisfying y* < y' < y? and d?, there exists

d'e{d|n(y',d) > n(y*d*)} (1)

TA function f : R — R is quasi-convex if the level set {w : f(w) < I} of f is convex for any I € R. A convex

function is quasi-convex. We say f is quasi-concave if — f is quasi-convex.
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such that for any e,
d(y' — D(d'e)) < max{y(y® — D(d?€)), y*}. (2)

Recall that (y*,d*) maximizes 7(y,d). Thus, y* maximizes Q(y). It follows from part (a) that

the set in (1) is nonempty.

The above assumption ensures that the problem has sufficient structure. An intuitive explana-
tion of the condition follows. Part (a) indicates that the closer the starting inventory level (after
ordering) is to y*, the greater the single-period profit the system can generate. As a result, in a
single-period problem without the fixed cost, it is optimal to order up to y* if y < y* and to order
nothing if y > y*. By part (b), if y* < y' < y?, the system starting from y! is capable of ensuring
that it will be at a “better” inventory level in the immediate following period than the system
starting from %2; in the next period, the starting inventory of the y'-system is closer to y* than
that of the y?-system, or ordering up to y* is possible since the starting inventory of the y!-system

is below y*.

3 (s,5) Optimality and Condition 1

This section contains the proof of the optimality of (s, S)-type policies under Condition 1. Prelim-
inary results are established in Section 3.1. Infinite horizon and finite horizon optimality results
are presented in Section 3.2 and Section 3.3, respectively. We provide improved bounds on s and

S values in Section 3.4.

3.1 Preliminary Results

In this section, we establish that in period t, if the starting inventory level before ordering is below
y;, and an order is placed, then it is optimal to order up to y; (Proposition 3.1). Furthermore, if

the starting inventory level is above g7, then it is optimal not to order (Corollary 3.3).

Throughout the paper, we use z; to denote the starting inventory level before ordering, whereas

y; is the inventory level after ordering.

Proposition 3.1. Suppose xy < y;. Then, yy = yi mazimizes {Vi(y) | v+ > x¢}. That is, if the

fized cost K is waived in period t only, then it is optimal to order y; — x¢ units.

10



Proof. It follows from the optimality of y; and the zero variable ordering cost assumption. O

Proposition 3.2. Suppose Condition 1 holds. For any yi and vy} satisfying y* < y} < y? or

y?2 <yl <y*, we have
Vi(yl) + 7K > Vi(yi).

Proof. We prove the result for the finite-horizon case. The infinite-horizon discounted-profit case
follows directly. If t = T, Condition 1 (a) implies V;(y;) > Vi(y?), and the required result holds.

We proceed by assuming t < T'.

We compare two systems starting with y; and 3?2, and use the superscript 1 and 2 to denote
each of them. Suppose the y%-system follows the optimal decision to attain V;(y?). Let d? be the
sales lever decision of the y2-system. We claim that there exists d} such that 7(y},d}) > 7(y?,d?)

and @y < max{z},,, y*} < max{yf,,, y*}.

If y? < y} < y*, Condition 1 (a) implies the existence of d} such that 7(y},d}) > w(y?,d?),
and we know :c%H < y* since yf < y*. On the other hand, when y* < y} < y?, Condition 1 (b)
*

is applicable. In either case, the claim is true, and either (a) z},; < y7,; or (b) y7,; < 2{,, <y

holds.

e Case (a): xtIH < ytzﬂ: In the next period ¢ + 1, set the ordering quantity of the y!'-system
to yt2+1 — :L'%H. Thus, l/tl+1 = yt2+1. From period ¢ + 2 onwards, let the y'-system mimic the

yz—system.

e Case (b): th_H < x%_i_l < y*: In period t+1, the y'-system does not order, i.e., set yt1+1 = xtl+1.
By Condition 1 (a), we choose d,; such that m(y},,,d},;) > 7(y?,1,d? ;). We continue
choosing the sales lever in the y'-system in this way until we come across the first period in

which Case (a) is encountered.

Therefore, the y'-system generates as much profit 7 as the y2-system in each period after period
t. Furthermore, the y'-system does not place an order in periods in which the y2-system does not
order, with possibly one exception (where the first case is applied). Thus, the ordering cost of the
yl-system is at most K more than the y?-system. Hence, the discounted-profit of the y'-system

is at worst 7K less than the discounted profit in the 3%-system. O

11



A corollary of this proposition is the optimality of not placing any order when the starting

inventory level z; is at least y* or y;.

Corollary 3.3. Under Condition 1, we have the following. If v+ > min{y*, y¢}, then it is optimal

not to order in period t, i.e., Yy = xy.

Proof. Suppose that the starting inventory before ordering is x;, and we order up to y;, where

yt > x¢. The ordering cost K is incurred in period ¢t. One of the following cases occurs.

o (Case xy > y*: Since y; > x; > y*, we apply Proposition 3.2 to get

Vi(ze) > Vilye) —vK > Vi(ye) — K.

o Case y; < xy < y*: By Proposition 3.2 and the choice of y7, we have

Vi(we) > Vily)) —vK > Vi(y) —vK > Vi(ye) — K.

It follows that when the starting inventory level is greater than min(y*,y{), ordering a positive

quantity does not increase the discounted profit by more than the fixed cost K of ordering. O

Remark. In Appendix A.1, we discuss the implication of Corollary 3.3 to the zero fixed cost case,

i.e., the optimality of myopic base-stock policies.

3.2 Infinite-Horizon Discounted Profit Model with Positive K

In this section, we establish the optimality of (s, S)-type policies in the infinite-horizon discounted-

profit model, in which T'= oo and v < 1.

Theorem 3.4. Suppose Condition 1 holds. In the infinite-horizon discounted-profit model, there
exist s and S such that if T > s, it is optimal to not order, and otherwise to order up to S. That

is, an (s,S) policy is optimal.’

Proof. We first prove the following claim: for 2% < x! < y*, if it is optimal to place an order when
the beginning inventory level is !, then, it is also optimal to order when the starting inventory

level is z2.

8Since we do not make any claims about the optimal sales lever to be chosen, we prefer referring to this as an

(s,S) policy rather than an (s, S, d) policy.

12



For the infinite-horizon discounted-profit model, the profit function and the optimal policy are
both stationary. (See the comments following Assumption 1.) Thus, we assume the current period
t is 0, and drop the subscript t when ¢ = 0. By Corollary 3.3, we proceed by assuming z! < y5 = 1°,

since it is not optimal to order when the inventory level is above y°.

If we order when the starting inventory level is either 2! or z2, then the order-up-to level is 7°
by Proposition 3.1, and the maximum profit from period ¢ onward is v° := V(y°) — K. Suppose
the starting inventory level is z'. By deferring order placement to the next period, we can obtain
a present value of profit equal to Q(x!) + yv°. Since it is optimal to order in the current period,

we must have v° > Q(z!) + yv°. Thus,
(1—~)° > Q(z}) > Q(z) for all z < x!, (3)
where the second inequality follows from Condition 1 (a).

Now, suppose the starting inventory level is 2. Let J denote the period in which the next
order is placed according to the optimal solution. Thus, x? = 33(2) > x% > m% >0 > a:?,_l. From
2?2 < 2! and (3), an upper bound on the present value of the maximum profit between periods 0

and period J — 1 is given by

IN

(I+y+-+77HQwY
(T+y+- ") (L=

(1—~7)°.

(I+y+-+97HQ(?

N

In period J, an order is placed. Thus, the present value of the maximum expected profit from J
onwards is 7/v°. In summary, the present value of the expected profit in all periods is bounded

o

above by (1 — 47)v° 4+ 47v° = v°, which is attained if we order in the current period. Thus, we

complete the proof of the claim.

Let s = max{z : it is optimal to order when the inventory level is 2}. Corollary 3.3 implies

s < y°. Thus, by Proposition 3.1, the optimal order-up-to level is S = y° for all z < s. O

3.3 Finite-Horizon Model with Positive K

In this section, we prove the optimality of an (s, S¢)-type policy, an (s,S) policy with time-
dependent parameters, for the finite horizon problem. For proving this result, we need a stronger

version of Condition 1. We will use this version in Sections 4.2 and 5.
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Condition 2.

(a) Same as Condition 1 (a).
(b) Same as Condition 1 (b).

(c) If y* >y > 42, there exists d* satisfying (1) such that for any e,
vy = D(d,e) = v(y* - D(d*e)) . (4)

Note that Condition 2 implies Condition 1.

Proposition 3.5. Suppose Condition 2 holds. Then, Vi(y:) is nondecreasing in the interval
(—oo, min{y*, y; }] for each t.

Proof. Suppose y} and y? satisfy y? < yi < min(y*,y7). We want to show Vi(yt) > Vi(y?).
Suppose the y%-system with the starting inventory level 3? follows an optimal policy and attains

Vi (y?). Below, we construct a policy for the y!-system such that

e the expected profit of the the y'-system before accounting for the ordering cost in every period

is at least that of the corresponding quantity in the y?-system, and

e the y'-system places an order in a period only if the y2-system places an order in that period.

Let d? be the optimal sales lever of the y?-system in period ¢. By Condition 2, there exists
dj such that 7(y},d}) > n(y7,d7) and z{,, > 27, for any realization of € in the demand model.
Thus, if z} 1 < y? ', 1 occurs, an order must have been placed in the y?-system. In that case, let
the y!-system place an order such that y} 1= y? "1, and mimic the y?-system for the remaining
periods. Otherwise, we repeat the above process until both the systems have the same ending

inventory level. This concludes the proof of the proposition. O
Theorem 3.6. Suppose Condition 2 holds. Then, in a finite-horizon model, an (s, St) policy is

optimal in period t.

Proof. Proposition 3.1 and Corollary 3.3 state that it is optimal to order only if z; < min(y*,y;),
and the order-up-to level is Sy = y7. Thus, if an order is placed in period ¢, the optimal profit from

the remaining periods is independent of the starting inventory level x;. For z; < min(y*,yy), it is

14



optimal to order if Vi(z:) < Vi(yy) — K, and not to order if Vi(z;) > Vi(yy) — K. Consequently,
the monotonicity of V; in the interval (—oo, min{y*,y7}] (from Proposition 3.5) establishes the

existence of s;, which is any solution to to Vi(s;) = Vi(S;) — K. O

REMARK: Note that Theorem 3.6 depends on Condition 2 only through Proposition 3.5. Thus,
this theorem still holds if Condition 2 is replaced with Condition 1 and the monotonicity of V; in

the interval (—oo, min{y*, y7}].

3.4 Bounds on s and S

In Sections 3.2 and 3.3, we have shown the optimality of (s, S)-type policies. In this section, we
establish bounds on the values of s and .S in the case of the infinite-horizon discounted profit case,
and on s; and S in the case of the finite-horizon case. Our bounds improve those existing in the
literature. Chen and Simchi-Levi (2004b) have first established bounds on s and S (or s; and S;
also) for systems with backordering. Their bounds hold even for finite-horizon systems with the
Linear Demand model, for which the optimal policy is not always an (s, S) policy; however, the
derivation of our bounds (in Theorem 3.7) relies on the optimality of (s, ) policies. On the positive
side, we note that our bounds are tighter than their bounds. In particular, as K — 07, our bounds
converge to y* whereas their bounds do not. Furthermore, our bounds are also applicable to the

lost sales case.

Let

= inf {y|Q(y") — Q) >~K foreach y >y }
m sup { y | Q(y") — Q(y') > K for each y' <y}

M = sup {y]| Q") —Qy)>(1+7)K foreachy’ <y } .

Clearly, M < m < y* <.

Theorem 3.7. The following statements are true:

(a) In Theorems 3.4, there exist s and S satisfyingm < s < S < m, and s < y*.

(b) In Theorems 3.6, there exist sy and Sy satisfying M < s, < y* < Sy < m.
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Proof. These bounds are derived using the constructive proof technique we employed in proving
the sufficiency of Condition 1 for (s, S) optimality earlier in this section. See Appendix A.2 for the
proof. O

4 Application to the Backordering Model

In this section, we apply the results of the previous section to the case where excess demand is
backordered. The specification of Condition 1 in Section 2 is quite technical. However, we will
now show that it is a generalization of common modeling assumptions found in the literature.
We present two sets of sufficient conditions for Condition 1 to hold, and formally establish the

optimality of (s, S)-type policies for finite and infinite horizon models under these conditions.

4.1 Joint Quasi-Concavity of 7: A Sufficient Condition for Condition 1

It is shown in the following proposition that the Concave Demand Model the quasi-concavity of the
expected single-period profit function m, together, imply Condition 1. These modeling assumptions
are more general than those used in the literature. Federgruen and Heching (1999) assume both the
concavity of D(p, €) in p, and the joint concavity of the single-period profit 7 (y, p). For the infinite-
horizon discounted-profit criterion, Chen and Simchi-Levi (2004b) use a Linear Demand Model and
assume that the single-period profit function is concave. Thus, the following proposition implies

that these models also satisfy Condition 1.

Note that if f is a quasi-concave function and w* is its maximizer, then f(w* + Av) is nonin-

creasing in A > 0 for any v.

Proposition 4.1. With the Concave Demand Model, the joint quasi-concavity of w implies Con-
dition 1.

Proof. Since 7 is jointly quasi-concave, Q(y) = maxq 7(y,d) is quasi-concave, and part (a) of
Condition 1 is satisfied.

Suppose y!' and y? satisfy y* < y' < y2. Let A := (y> —y')/(y*> — y*). For any d?, let d' be the

following convex combination of d* and d?: d! = Ad* 4 (1 — \)d?. Since 7 is quasi-concave,
n(y',d') > 7(y? d%).
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The concavity of D(d, ¢) in d implies D(d', e) > AD(d*,¢) + (1 — A\)D(d?,¢). Thus,

yl - D(dlve)

IN

Aly* = D(d",e)] + (1 = N)y* — D(d? ¢)]
< max{y* — D(d*,e), y? — D(d? €)}

< max{y*, y* — D(d% )}

It follows ¥ (y! — D(d', €)) < max{y*, ¥(y* — D(d?, ¢))}, satisfying part (b) of Condition 1. O

We are now ready to show the infinite horizon optimality result holds under the Concave

Demand Model if 7 is jointly quasi-concave.

Theorem 4.2. Assume the Concave Demand Model and the joint quasi-concavity of w. Then, for

the infinite-horizon discounted-profit model, an (s,S) policy is optimal.

Proof. By Proposition 4.1, we know that Condition 1 is satisfied if 7 is jointly quasi-concave. The

result now follows from Theorem 3.4. O

The above theorem shows the optimality of an (s, S)-type policy in the infinite-horizon discounted-
profit model when excess demand is backordered. We point out the following differences between
our results and those contained in Chen and Simchi-Levi (2004b). They assume the concavity of
the expected single-period profit function whereas quasi-concavity is found to be sufficient for our
results. While they use the Linear Demand Model, we use the more general Concave Demand
Model. In addition, our proof holds with multi-dimensional sales levers. However, they are able to
show the optimality of (s, S,p) policies even in the infinite-horizon average-profit case, which we

have not shown.

4.2 Additive Demand Model and the “Separability” of 7: Another Sufficient

Condition for Condition 1

We now show that when the Additive Demand Model is used, a separability-like condition on 7 is
sufficient to guarantee Condition 1. Here, the sales lever d is single-dimensional, corresponding to

the expected demand associated with the decision.

Assumption 2. There exist quasi-concave ¢** and quasi-convex ¢ such that m(r+d,d) = T (d) —

oM (r).
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This assumption holds, for example, under the Additive Demand Model with backordering in
which revenues are received based on total demand and not on demand satisfied. In this case,
™ denotes the revenue function and ¢ denotes the holding and shortage cost function. Notice
that this assumption does not imply the joint quasi-concavity of w. Assumption 2 is more general
than the Additive Demand Model of Chen and Simchi-Levi (2004a) which assumes concave ¢ and

convex ¢,

Let d* := argmax ¢®(d), and r* := argmin ¢ (r). Clearly, y* = r* + d*. The following

proposition shows that under the Additive Demand Model, Assumption 2 implies Condition 2.
Proposition 4.3. Under the Additive Demand Model, Assumption 2 implies Condition 1 and

Condition 2.

Proof. Suppose y' and y? satisfy y* < y' < y?. For any fixed d?, set 72 := y? — d?. Set r! :=
min{r?, y' — d*}, and d' := y' —r'. (It can be shown that d' is sandwiched between d* and d2.
Therefore, d* € D since D is convex.) Clearly, by r! < r? and the additivity of demand, (2) is

satisfied.

Now consider the following two cases.

o Case r!' =r2: Clearly, ¢ (r') = ¢ (r?). Since r! < y' — d*, we get
dt < yl—rl < y2—r = y2—r = d2.

Since d' := y' — r!, we have d* < d' < d?. It follows from the quasi-concavity of ¢ that

¢f(d") = ¢™(d?).
e Caser! =y! —d*: It follows d' = d*, implying ¢T(d') = ¢F(d*) > ¢f(d?). We have

N R Ry L S

By the quasi-convexity of ¢, it follows that ¢ (r2) > ¢ (r!).

Therefore, for every d?, there exists d' such that w(y!,d') = ¢(r!,d') > ¢(r?, d?) = n(y?, d?).
We thus verify Condition 2 (b). Furthermore, we obtain that Q(y) is nonincreasing for y > y*.

If y* and y? satisfy y* > y' > 92, let r! := max{r?, y' — d*} instead. Clearly, r! > r2. A
similar argument shows that Condition 2 (c) holds and Q(y) is nondecreasing for y < y*. Thus, it

follows that () is quasi-concave. O
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We now establish that Assumption 2 implies the optimality of (s, .S)-type policies for finite and

infinite horizon problems.

Theorem 4.4. Consider the Additive Demand Model. Suppose Assumption 2 holds. In the finite-
horizon model, an (s¢, Sy) policy is optimal in period t. For the infinite horizon case, an (s,S)

policy is optimal.

Proof. Recall that Assumption 2 satisfies Condition 1 and Condition 2 by Proposition 4.3. Thus,
the infinite horizon optimality result follows from Theorem 3.4. The finite horizon result follows

from Theorem 3.6. OJ

Chen and Simchi-Levi (2004a) also show the finite horizon optimality result. Our result is
more general in that, for instance, the single-period profit function does not even need to be quasi-
concave, whereas they assume concavity of this profit function. (Also see comments following

Assumption 2.) On the other hand, their results hold in non-stationary systems also.

5 Application to the Lost Sales Model

Chen et al. (2006) study a finite-horizon model in which any unsatisfied demand is lost. They
introduce some technical assumptions that facilitate their dynamic programming, induction-based
proof of the (s, .S) optimality result. In this section, we will demonstrate that their assumptions are
sufficient to prove the result for both the finite and the infinite horizon discounted profit models

using our proof technique. We apply results from Section 3.
They use the Additive Demand Model in which the sales lever is the per-unit selling price p per
unit?, i.e.,

D(p;€) = d(p) + € (5)

where d(p) is the deterministic part of demand. Let f and F' denote the probability density and
cumulative distribution functions of €, respectively. Let P := [0, P%] be the domain of p. Assume

that any p € P satisfies d(p) > 0. They impose the following additional technical assumptions.

9In this section, we use p in place of d, because in this model, the only sales lever is the price, p.
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Assumption 3 (Chen et al. (2006)). Demand is additive and is given by (5), where d(p) is
a deterministic function, and € is a nonnegative, continuous random variable defined on a closed

interval [0, B]. The probability density of € is strictly positive on (0, B). We have

(a) d(p) is decreasing, concave, and 3d" + pd” <0 on P, and

(b) The failure rate function r(u) := f(u)/(1 — F(u)) of € satisfies r'(u) + 2[r(u)]?> > 0 for any
u € (0,B).

(c) The expected single-period profit function is given by
ﬂ-(yap) = D E[mln(yv D(pa 6))] —h- E[(y - D(pv 6))+] —b- E[(D(pa 6) - y)+]7

where h is a holding cost per unit and b is a penalty cost per unit.

This assumption is satisfied by a wide range of demand functions and distribution functions of
€; see Chen et al. (2006) for a discussion. Our proof makes use of some intermediate results they

derived using the technical assumption above.

Proposition 5.1. In a finite-horizon model, Assumption 8 implies Condition 1 and Condition 2.
Proof. See Appendix A.3. O

We are now ready to demonstrate the application of our proof technique to the optimality of

(s,S,p) policies for both the finite and the infinite horizon discounted profit models with lost sales.

Theorem 5.2. Suppose Assumption 3 holds. In the finite-horizon model, an (s, S;) policy is

optimal in period t. For the infinite horizon case, an (s,S) policy is optimal.

Proof. For the infinite-horizon case, we know from Proposition 5.1 that Condition 1 is satisfied; the
result now follows from Theorem 3.4. Moreover, for the finite-horizon case, Proposition 5.1 implies

Condition 2 holds. Therefore, the finite horizon result now follows from Theorem 3.6. O

The appendix of this paper can be found online. In addition to the proofs omitted here, it also

contains a section on stochastically increasing, additive demands.
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A Appendix

A.1 A Special Case: Zero Fixed Cost

In this section, we prove the optimality of base-stock list-price policies in the absence of the fixed

ordering cost. This result is similar to Federgruen and Heching (1999).

Theorem A.1. If Condition 1 holds and K = 0, then, the optimal ordering policy for the finite
horizon problem or the infinite horizon discounted profit problem has the following structure. If

xr < y*, then order up to y*, and set the sales lever to d*. Otherwise, do not order.

Proof. By Theorem 6.1 of Porteus (2002), it is easy to verify that (y*,d*) is the optimal action

pair if x; < y*. If x; > y*, it is optimal not to order by Corollary 3.3. O

Remark. We make the following two remarks on Theorem A.1: (a) If z; < y*, then the myopic
policy is optimal; (b) Theorem A.1 does not specify the optimal sales lever d; in period ¢ for x; > y*.

This computation can be efficiently performed as follows.

Suppose the horizon T is finite or the profit is discounted, i.e., v < 1. Federgruen and Heching
(1999) give the following dynamic programming formulation. Recall U;(x¢) is the optimal value
function as a function of the beginning inventory z; in period t, i.e., Uy(x¢) = maxy,>a, Vi(ye).

Then,

Ui(ry) = max tW(yt,dt) + YE[Up1 (4 (ye — Dy(dy, €)))]

yt>xt, d

for t < T, and Up41(-) = 0. This dynamic program is well-defined when 7 is finite.

Once the starting inventory level x; falls below y*, the expected profit in each subsequent period

is Q(y*). Thus, the expected profit (discounted to period ¢) from period ¢ to T is

QUL +y+ -+ = Q") - L—7"""H/(1—).
As a result, we simplify the dynamic programming recursion as follows: for any t < T,

maxq, (2, d¢) + YE[Uir1(Y(xe — Di(dy, €)))], for z > y*,

Ut(ﬂ?t) =
Qly*) - (L —~T"1) /(1 =), for z; < y*,

and Urq1(-) = 0. It is well-defined when T is finite. For the infinite-horizon discounted-profit

problem, we let T'— oo and substitute U; with its pointwise limiting function.



We point out the following important differences between the results in this section and the
corresponding results in Federgruen and Heching (1999) under the backordering assumption. They
require the concavity of the expected single-period profit whereas we require Condition 1, which, for
example, is satisfied if 7 is quasi-concave (see Section 4.1). Their sales lever is single dimensional
whereas ours is multi-dimensional. However, our simplification relies upon the stationarity of all
the parameters of the system, whereas their finite-horizon results do not. For the lost sales case,
Chen et al. (2006) prove this result under some assumptions which imply Condition 1, as we have
shown in Section 5. It should be noted that subject to the validity of Condition 1, our result holds

for both the backordering and the lost sales cases.

A.2 Proof of Theorem 3.7

In this section, we prove Theorem 3.7 which contains the following results: (i) the order-up-to levels
(S and S;) in Theorems 3.4 and 3.6 are bounded above by 7; and (ii) the reorder points (s and s;)
in Theorems 3.4 and 3.6 are bounded below by m and M, respectively.

By the quasi-concavity of @ (Condition 1), we have M < m < y* < m. First, we show that

 is an upper bound on the value of S or S;. By Proposition 3.1, the order-up-to level in Theorem

3.4 (Theorem 3.6) is yy (y°), which maximizes V;(-) (V(+)).

Proposition A.2. Under Condition 1, y; <'m for each t, and y° <m.

Proof. Suppose, by way of contradiction, y; > m for some t. We compare two systems starting
with yf = y* and y? = y7, respectively. Thus, y < y?.

Suppose the y2-system follows the optimal decision to attain V;(y?), and let d? be its sales lever
decision in period t. Let d} be such that Q(y}) = 7(y},d}). Then, from 3P > m, the expected

profits of two systems satisfy

Tyt di) = QW) > Qi) +vK > w(yf,di) +1K . (6)

Consider the next period ¢ + 1. We have either (i) z{,; < 7, or (ii) y7,; < z7,,. In the first case,
the y!-system can incur the fixed cost of K, and order up to yt2+1, ie., ytlJrl = th_H. Thus, in period

t41,

U (zi1) > Vie(yiy) — K . (7)
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In the second case, let the y!'-system place no order, i.e., ytlJrl = ar%H. It follows yt2+1 < ytlJrl < y*.

By Proposition 3.2, we obtain

Viri(wis) = Vimlyin) — K . (8)

In either case, combining (7) or (8) with inequality (6), we obtain V;(y;) > V;(y?), contradicting

the choice of y? = v;.

The same proof shows the result for y° by replacing Uy+1 and Vi1 with U and V, respectively.
O

We now provide lower bounds for the value of the reorder point. In Proposition A.3, we show

M is a lower bound on s or s;.

Proposition A.3. Reorder points s in Theorem 3.4 and s; in Theorem 3.6 are both bounded below
by M.
Proof. Tt suffices to show that for any 32 < M,

Vily) > Vily)) + K 9)

holds. Then, when the starting inventory is #? = y?2, it is better to order up to y* than not to

order. Let d? be any sales lever decision of the y2-system.

Let y/ = y*, and let d} be such that Q(y}) = 7(y},d}). Then, y? < y} = y* implies 27, ; <

x,}ﬂ < y*. For any yt2+1 decision of the y?-system, let ytlH = Inax{yt?ﬂ, xtl+1}. Then, it follows
1[y1€1+1 > $t1+1] < 1[yt2+1 > 5L"t2+1] )
and either y},; =y, or y7,; < yi,; < y* holds. Thus, by Proposition 3.2,
V;H-l(ytlJrl) 2 ‘/;f+1(y152+1) 7K .
Furthermore, from y? < M, we have
Ty di) = QW) > Qi)+ (L+NE = 7(yf,dj) + (L +)K ,
which is an analogous statement to (6). From these three results, we obtain

Vi(y*) m(yr,di) = vK - 1ypy > o] + Ve (i)

v

> w(yp,d}) + (L+9)K —vK -1y > 2] + Wi (i) — VK

> 7(yi,di) — K - 1[yt2+1 > l‘%ﬂ] + 7W+1(yt2+1) + K
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for any choice of 32, d? and y? 1 in the y2-system. Thus, we obtain (9). O

We recall that Theorem 3.4 considers the infinite-horizon discounted-profit case. In this case,
we are able to prove a stronger lower bound on s. The following result is used in establishing

Proposition A.5.

Proposition A.4. In Theorem 3.4, S > m holds.

Proof. Suppose, by the way of contradiction, S = y° is strictly less than m. We compare two
systems starting with yi = y* and y? = y° < m. Let y'-system follow order-up-to y* and choose
d* in each period. The expected single-period profit of the y'-system is Q(y*) — K in each period,
except the first period in which it is Q(y*). Let y?-system follow the optimal decision to attain
V(y°). By Theorem 3.4, y? never exceeds m in each period ¢, and the y?-system’s expected single-
period profit 7(y?,d?) is bounded from above by Q(y*) — K. Thus, we obtain V(y°) < V(y*), a

contradiction. O

Proposition A.5. The reorder point s in Theorem 3.4 is bounded below by m.

Proof. By Proposition A.4, m is a lower bound on ¥°, the optimal order-up-to level. It suffices to

show that for each ¢, y? < m implies
V() > V) +K.

Without loss of generality, we proceed by assuming ¢t = 1.

Let the y2-system follow the optimal policy to achieve V (y?). Let 7 = min{t | y? > z?} be the
first period in which the y?-system places an order (and incurs the fixed cost of K). By Theorem
3.4, y2 = y°. For each t < 7, we have 2? < y? < m, and thus the expected single-period profit in
period t is at most Q(y?) < Q(y*) — K. It follows

T—1
V) < D ATNRWH) - K] + V() - K] (10)
t=1
We make the following claim:
Qly") - K 0
- K
T Vi(y°)
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Consider a system which starts at y* and orders up to y* in every period. The infinite-horizon
discounted profit of this system is given by

Q") - K

QW)+ VM QW)-K) = K+ +7HQW)-K) = K+ -
t=2 t=2

However, this cost is bounded above by V(y°) by the choice of y°. Thus we complete the proof of

the above claim.

Now from (10) and the claim, we obtain

T—1
V(y}) < YA =NV(EY) — K] + V(YY) — K]
t=1
= V(@°) - K
This completes the proof. O

Now, s < y* and s; < y* follows from Corollary 3.3. It remains to prove the following result.

Proposition A.6. In Theorem 3.6, S; > y* holds.

Proof. 1t suffices to show that under Condition 2,
Vi(y?) < Vily) if y? <y andy' =y".

In each period ¢ > t, let dtl, of the y'-system be as given by Condition 2 for any dtZ, € D of the
y?-system. Furthermore, whenever the y2-system orders, let the y'-system order up to max{y*, yt%}
where yt% is the order-up-to level of the y2-system. Then, in each period ¢/, 4% < y' < y* or % = y'.
Thus, it can be shown that ﬂ(yg,,d%,) > W(yt%,d?,), and that the ordering cost is no higher in the
yl-system than in the y2-system. ]

A.3 The Chen et al. (2006) Model: Proof of Proposition 5.1

We introduce the following notation and definitions used in Chen et al. (2006). Let z := y—d(p) be
the “riskless” leftover inventory at the end of a period. Let G(z,p) be the expected single-period
profit without considering the fixed ordering cost, i.e., G(z,p) = 7(z + d(p),p).'° Let P(y) be the

1071 this section, p corresponds to the sales lever d used in earlier sections.



optimal price when the starting inventory level after ordering is y, i.e., P(y) := arg max, 7(y,p).

Thus, 7(y, P(y)) = Q(y). Let Z(y) :=y — d(P(y)). It follows that

G(Z(y), P(y) = Qy) = 7(y,P(y))- (11)

Also, let p(z) := arg max, G(z,p). We denote the maximizer of G(z,p(z)) by Z. Then, the single-
period optimal stocking quantity satisfies y* = Z + d(p(Z)).

Chen et al. (2006) give the following list of properties based on Assumption 3. They are related
to the expected single-period profit function.
Fact 1 (Equation (6)).

9?G(z,p)

a7 <O

Fact 2 (Lemma 1 and Its Corollary). p(z) is continuous on [0, +00). Furthermore, p(z) is increasing
on [0,00).
Fact 3 (Lemma 3). Z(y) is nonnegative and increasing on [0, +00).

Fact 4 (Theorem 1). P(y) < p(z) for y > y*, and P(y) > p(z) for y < y* where

y = z+d(p(z)). Furthermore, G(Z(y), P(y)) is unimodal on [0, +00) and y* is its maximizer.

Proof of Proposition 5.1

Fact 4 shows the quasi-concavity of Q(y) = G(Z(y), P(y)), implying Condition 1 (a).

CASE y* < y' < y?. Suppose that a pair of y' and y? satisfy y* < y' < y?, and p? is given. Let
22 :=y? — d(p?). By (11), Fact 4, and the definition of P(y),

m(y', P(y")) = G(Z(y").P(y") > G(Z(*),PWy?) = =(* Py?) > =(y*p?).

Thus, if Z(y') < 22 holds, p' = P(y!) satisfies Condition 2 (b), i.e., (2). As a result, we proceed

by supposing
Z(yh) > 22 (12)

We consider the following two cases: 22 + d(p(z?)) < y! and 22 + d(p(2?)) > y'.

Case 22 + d(p(z?)) < y': Choose p? such that d(p?) = y' — 22. (This is possible because d(-) is

continuous and y' — 22 is bounded below by d(p(z?)) and bounded above by y? — 22, which is the
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same as d(p?).) Since 22 + d(p?) = y! and 2% + d(p?) = v?, it follows y! — d(p?) = 22 = y? — d(p?).
We also obtain that
24+dpzY) <yt <y,

which is equivalent to

d(p(z*) < d(p’) < d(p”).
Therefore we obtain p(2%) > p* > p?. Now, the definition of p(2?) = arg max, G(2?,p) and Fact 1
imply that G(22,p) is increasing in p for p < p(z?). Thus,
m(y',p’) = G(*pY) > G pY) = 7y’ %)
Thus, Condition 2 (b) is satisfied with p3.

Case 22 + d(p(2?)) > y': If Z(y') < y*, then Condition 2 (b) holds with p! = P(y'). We

proceed by assuming otherwise, i.e., Z(y!) > y*.

Let y' := 22 +d(p(2?)) > y'. Then, ¥/ > y* > Z(y') > y*. By Fact 4, we obtain P(y’) < p(z?),

which implies

Thus, by (12), Z(y') > 22 > Z(y'), which contradicts the monotonicity of Z (Fact 3) since y* < 3.

Thus, this case cannot happen.

CASE y* > y' > y2. Consider a pair y' and y? such that y?> < y* < y*. For any p?, let 2% =

y? —d(p?). We will show that there exist p' such that (i) 2! := y* —d(p') > 22, and (i) G(z!,p!) >
G(2%,p%).

Recall Z(y') = y! — d(P(y')). If 22 < Z(y'), then p' = P(y') satisfies (i). Furthermore, the

quasi-concavity of @ implies
m(y', P(yh)) = Q') > Q) = n(y*, P(y*)) > n(y*,p°),
which shows (ii). Thus, we proceed by assuming
Z(y') < 2% (13)
Let ¢/ := 22 +d(p(z?)).
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Case y' > y*: We choose p! such that y' = 2% + d(p'). (Note that such a p' can be chosen
because d(p(-)) is a continuous function, and 3! — 22 is bounded below by d(p?) = y? — 22 and above
by d(P(y')) = y' — Z(y').) Then, 2% = y' — d(p') shows (i). Now, note that

y' =2 4dp?) < yl=24dpY) <y =22 +dp(z?)
implies p? > p! > p(z?), and p = p(2?) maximizes G(22,p). Thus, Fact 1 shows 7(y!,p!) =
G(2%,p') > G(2%,p%) = n(y*,p?), verifying (ii).

Case y' < y': Recall 22 + d(p(22?)) = v/. Also, by the monotonicity of Z (Fact 3) and (13), we
have Z(y') < Z(y') < 22. Thus,

dp(z?) =y —2* < ¥y —Z(y) = dPY)),

implying p(z%) > P(y'). Then, by Fact 4, ¢’ > y* must hold. However, it contradicts the assumption

y' < y' < y*. Thus, this case cannot happen.

A.4 The Case of Stochastically Increasing, Additive Demands

All the results we have shown in this paper so far assume that all cost parameters and the demand
distributions are stationary. In this section, we extend our results to a special class of non-stationary
problems. We use the Additive Demand Model in this section. Due to non-stationarity, we will use

the time index as a subscript for all parameters.

Theorem A.7. In the finite-horizon model, suppose the following conditions hold:
(a) Demand is additive.
(b) {y;} is an increasing sequence.'!

(c) Ky > ~v- K1 holds for every t.

(d) Either (i) excess demand is backordered and Assumption 2 holds for every t; or, (ii) excess

demand is lost and Assumption 3 holds for every t.'?

111 models with stationary cost parameters, this assumption usually holds when {e:} is a sequence of stochastically

increasing random variables.

2Tn (i), Assumption 2 now involves m;, ¢f* and ¢¢’. In (ii), Assumption 3 now involves di(p), €, B, fi, Ft, rt, T,

ht and bt.
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Then, an (s¢, Sy) policy is optimal in each period t.

Proof. The proof of this theorem is similar to the stationary case presented in the paper, and
we provide a high-level sketch of this proof. In the backordering case, an argument similar to
Proposition 4.3 shows modified versions of Condition 1 and Condition 2, where y* is replaced with
yf. In the lost sales case, likewise, Proposition 5.1 can be adapted to show the same result. Then,

the proof of Theorem 3.6 can be adjusted to show the required result using the modified versions

of Condition 1 and Condition 2. O
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