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Abstract

One of the most important decisions that a firm faces in managing its supply chain
is a procurement decision: selecting suitable suppliers among many potential compet-
ing sellers and reducing the purchase cost. While both auction and bargaining have
been extensively studied in the literature, the research that combines both auction and
bargaining is limited. In this paper, we consider a combined auction-bargaining model
in a setting where a single buyer procures an indivisible good from one of many com-
peting sellers. The procurement model that we analyze is a sequential model consisting
of the auction phase followed by the bargaining phase. In the auction phase, the sellers
submit bids, and the seller with the lowest bid is selected as the winning bidder. In the
bargaining phase, the buyer audits the cost of the winning seller and then negotiates
with him to determine the final price. For this auction-bargaining model, we find a
symmetric bidding strategy equilibrium for the sellers in a closed form, which is simple
to understand and closely related to the classical results in the auction and bargaining
literature. We also show that the auction-bargaining model generates at least as much
profit to the buyer as the standard auction or sequential bargaining model.
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1. Introduction

Since procurement costs often constitute a large portion of a firm’s total operating costs

Bonser and Wu [6], selecting suppliers with attractive prices is an important decision that a

firm faces in managing its supply chain. The type of the transaction method for conducting

procurement decisions varies greatly depending on the context, ranging from (i) pricing

(including both static and dynamic pricing) to (ii) auctions and (iii) one-to-one bargaining

(Elmaghraby et al. [16]). While the posted price mechanism is popular in business-to-

consumer transactions, both auctions and bargaining are now widespread in business-to-

business procurement (Bajari et al. [1]). Each of these three methods have been studied in

the operations management literature, e.g., Federgruen and Heching [20], Chen [13], Chen

et al. [14], and Nagarajan and Bassok [33], but we note that many transactions in business
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practice cannot simply be categorized as pricing, auction or bargaining, as they may have

the characteristics of multiple methods. There have been a number of papers that combines

features of pricing and auction, e.g., Caldentey and Vulcano [10] and Gallien and Gupta

[22]. In this paper, we consider a procurement method that sequentially combine auction

and bargaining, where the outcome of the auction is not final and is subject to further

negotiation.

The motivation for this paper stems from our observation that the use of auctions in the

procurement process often does not completely determine the final outcome of the procure-

ment decision. Auctions perform poorly when the projects are complex and the contracts

cannot be fully specified (Bajari et al. [1]). Suppliers feel that the auction format of pro-

curement erodes their control over the final price and “commoditizes” their products (Jap

[24]). However, it is quite common that a purchasing manager will solicit bids from the pool

of potential suppliers (either by telephone, mail, or Internet), and based on the bids that

she has received, she will decide which buyers to examine closely and to possibly negotiate

with. The round of indicative bidding is valuable to the buyer in the case that the cost

associated with studying a supplier as part of due diligence is high. For example, in the sale

of Daewoo Moters in 1999, Ford bid in the indicative round between $5.4 and $6.3 billion,

higher than DaimlerChrysler-Hyundai’s joint bid of $4.5 billion, and subsequently Ford was

chosen as the sole bidder in the final negotiation phase (Ye [45]). In a supply chain setting,

the post-auction negotiation provides the buyer and the supplier with an opportunity to

learn more about the costs, knowledge and performance expectation (Dalya and Nath [15]).

Both auction and bargaining are commonly used in practice, and have been thoroughly

studied in the literature. Auctions provide efficiency and simplicity in connecting the buyer

to the seller with the lowest cost (Manelli and Vincent [28]), and the buyer prefers auctions

when she has relatively less information about the sellers’ cost (Waehrer [41]). There exists

a vast amount of literature on the theoretical analysis of auctions in both the economics and

the operations management literature; we refer the reader to Krishna [26] and Menezes and

Monteiro [30] for a review of the auction theory and Myerson [32] for the optimal auction

design. The types of auctions include: first price or second price auctions, sealed-bid or

open-bid auctions, and auctions with or without a reserve price. Another common way of

determining the terms of trade (e.g., supplier selection and price decision) is bargaining,

which occurs between the buyer and one or many sellers (Nagarajan and Bassok [33]). Ac-

cording to Bajari et al. [1], bargaining was used in 45 percent of procurement decisions for the
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public-sector non-residential construction projects in Northern California between 1995 and

2000. For more references in the bargaining literature, we refer to Rubinstein [36] or Osborne

and Rubinstein [35] for a general review, and Wu [44] for an emphasis on procurement. Ex-

amples of commonly used bargaining models include the ultimatum take-it-or-leave-it offers,

and the sequential alternating offers.

While there are several papers that compare auction and bargaining in terms of mini-

mizing the procurement cost, empirical and experimental studies yield no clear verdict. For

example, Kjerstad [25] argues from an empirical study of procurement contracts of medical

and surgical products that auctions do not provide significantly lower prices compared to

bargaining. Bajari et al. [1] empirically analyze contracts awarded in the construction in-

dustry, and find that auctions do not perform well in some cases because of the insufficient

number of bidders. In an empirical study of timber sales, Leffler et al. [27] note that con-

ducting an auction might incur a significantly high cost to the auctioneer if she does not use

professional assistance from a forestry consultant; in this case, auctions would be less prefer-

able to bargaining. In an experimental study, Thomas and Wilson [39] compare the first

price auction to multilateral bargaining between a single buyer and multiple sellers where

the buyer solicits price offers by showing each seller his rival’s price offers while restricting

communication between sellers. They report that, with four sellers, the buyer’s acquisition

costs through auction and bargaining are almost the same. While the above-mentioned com-

parisons are with respect to cost, many papers make comparisons along other dimensions

such as the quality of the product, for example, Manelli and Vincent [28], Bonaccorsi et al.

[5], and Tunca and Zenios [40].

In this paper, we consider a setting where a risk-neutral profit maximizing buyer procures

an indivisible product from one of many competing suppliers. We propose a model that

combines auction and bargaining sequentially in two phases. The first phase is the standard

auction such as the first or second price auction where one seller is selected among multiple

competing sellers. At this time, while the buyer’s value is public information, each seller’s

cost is private information unknown to other sellers and the buyer. In the second phase, the

buyer bargains with the chosen seller over the final price of the product. We assume that, at

the beginning of the bilateral bargaining, information regarding the seller’s true cost becomes

available to the buyer. This assumption is justifiable if the value and cost information can be

accurately estimated (through the on-going supplier-customer relationship, the maturity of

the market, or an additional investigation as a part of due-diligence), or if such information
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is equally uncertain to both parties of bargaining. (The buyer’s true value has already

become public in the first stage – thus, the buyer does not have any information advantage

over the chosen seller.) The outcome of bargaining results in a price that is between the

seller’s true cost and the buyer’s valuation. During the bargaining process, the buyer has the

option to purchase the product at the price that is equal to the seller’s winning bid in the

first phase. For this combined auction-bargaining system, we study the sellers’ equilibrium

bidding strategy in the first phase, and also the buyer’s choice of the reserve price, if allowed.

1.1 Literature Review

While the procurement systems that combine auction and bargaining are not uncommon

in practice, the literature on the analysis of such models is rather limited (Engelbrecht-

Wiggans and Katok [18]). Single-unit sequential auction-bargaining models with the first-

phase auction and the second-phase bargaining have been studied by Bulow and Klemperer

[8], Elyakime et al. [17] and Wang [43].

The seminal paper in this literature is Bulow and Klemperer [8]. They propose an auction-

bargaining sequential model, where the winning bidder is determined by an open-bid second

price auction, followed by a take-it-or-leave-it offer by the auctioneer (which may be accepted

or rejected by the only remaining bidder). The major result of this paper is that while the

auctioneer’s ability to make an ultimatum bargaining offer increases her expected profit, the

amount of this increase is bounded above by the expected gain of having one additional

bidder in the standard auction. (Thus, the buyer prefers having an additional seller in the

auction as opposed to conducting the second phase of ultimatum bargaining.) While Bulow

and Klemperer [8] use the ultimatum bargaining model with incomplete information, we are

able to incorporate the relative bargaining power of the buyer and the seller in a bargaining

model with complete information. We also show that their major result mentioned above

may not hold if a bargaining model other than the ultimatum bargaining is used.

Elyakime et al. [17] study a single-unit sequential model, where the first phase is the first

price sealed-bid auction where the auctioneer also submits a secret sealed-bid reserve price.

If all the bids do not meet the reserve price, then the second-phase bargaining takes place,

and the trade occurs with the auctioneer and the most-attractive bidder where the gain of

trade is split equally between them. Thus, the cost and value information becomes public at

the beginning of the second phase (as in our model). They present an equilibrium bidding

strategy as a solution to a first-order differential equation. Numerical results indicate that
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both the auctioneer and the bidders prefer this model to the auction model that does not

have the possibility of second phase bargaining.

In the model proposed by Wang [43], the buyer has a private valuation (unknown to

sellers), and does not submit any bid in the auction phase. The seller with the most attractive

bid becomes the winning seller. The buyer has the choice of either accepting the winning

bid of the auction as the price of the product, or entering into second-phase bargaining with

the winning seller. In the latter case, the winning seller’s cost becomes known to the buyer

while the buyer’s valuation remains private, and the second-phase bargaining is modeled as

a Rubinstein-style dynamic game with one-sided uncertainty. For this model, the sellers’

symmetric equilibrium strategy is given as a solution to a first-order differential equation.

As his model is the closest to our model, we highlight the difference between the two models.

(1) While the buyer’s valuation is private in his model, we model her valuation as public

information. (2) Whereas the buyer in his model decides whether to continue to the second

phase where the winning seller’s bid no longer has any effect, the buyer in our model always

continues to the bargaining phase where the winning bid remains consequential and acts as

an outside option. (3) While he models the equal bargaining power between the buyer and

the winning seller, we allow the possibility that the buyer may have a stronger bargaining

power than the seller. (4) While he considers only the first price auction in the first phase,

we consider both the first price and the second price auctions. (Our analysis later shows

that the second price auction generates more profit to the buyer than the first price auction.)

(5) More importantly, while there is no closed-form bidding strategy in Wang [43], we find

an equilibrium bidding strategy in a closed form that is simple to analyze and intuitive to

understand.

While the above papers involve only a single unit, Salmon and Wilson [37] consider

an auction-bargaining sequential model with two identical units. The buyer procures one

unit through an auction in the first phase, followed by a second phase where the second

unit may be procured through a take-it-or-leave-it offer from the seller with the second

highest bid in the auction phase. They show the nonexistence of the pure strategy for the

sellers. Experimental results indicate that the buyer’s profit in this model is higher than the

sequential auction where the second phase is also conducted as an auction.

In all of the auction-bargaining models mentioned thus far, auction is followed by bargain-

ing; we mention that Engelbrecht-Wiggans and Katok [18] consider a model where bargaining

precedes auction. The buyer wants to procure multiple products from sellers, each capable
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of producing one unit. In the first phase, the sellers’ costs have not been realized, and the

buyer offers some sellers an opportunity in which they may commit to procure one unit at a

price to be established later in the second-phase auction. These sellers are excluded from the

second-phase auction, regardless of whether or not they have accepted the buyer’s offer, and

the second-phase auction is conducted as a generalization of the second price auction. In ad-

dition, the growing literature on the auctions with the buyout option (“buy it now” option)

could be considered as a combined bargaining-auction model, where the buyout price acts

as a take-it-or-leave-it offer before the bidders participate in the auction. It has been noted

that when the bidders exhibit impatience over time, this option can increase the auctioneer’s

profit (Mathews [29], Budish and Takeyama [7], Hidvégi et al. [23], Caldentey and Vulcano

[10], Gallien and Gupta [22]).

1.2 Contribution

There are a limited number of papers that combine auction and bargaining, especially com-

pared to the vast literature on auction and on bargaining, and our paper studies a sequential

auction-bargaining model that complements existing models in the literature. Our model

admits a symmetric equilibrium bidding strategy in a closed form. This is our main con-

tribution. (In all the existing auction-bargaining models, the bidders’ equilibrium strategies

are either simple truthtelling or unable to be expressed in a closed form.) As a result, we are

able to compute the buyer’s expected profit, and show that she generates higher profit in the

auction-bargaining model compared to standard auction or bargaining stand-alone models.

In the special case of uniform cost distributions, we show that the equilibrium strategy that

we find is unique. Interestingly, the equilibrium bidding strategy in our model is closely tied

to the standard results in the classical auction and bargaining literature.

As our second contribution, we study the auction-bargaining model where the buyer

announces a reserve price at the beginning of the auction phase. The reserve price increases

the buyer’s expected profit in this model, consistent with the auction model, and we show

how to find the optimal reserve price. In the auction-bargaining model, we find that the

buyer sets a reserve price that is less aggressive than in the standard auction-only model.

We also characterize the sellers’ equilibrium bidding strategies when the buyer’s reserve price

is present.

Our third contribution is to compare the use of the first price auction and the second

price auction during the auction phase of the model. While the expected profit of the buyer

6



in a standard auction remains the same regardless of the auction format, we find that, in

the sequential auction-bargaining model where the Revenue Equivalence Theorem does not

apply, the expected profit of the buyer is higher when the second price auction is used in

the auction phase than the first price auction. Thus, a risk-neutral profit-maximizing buyer

prefers the second price auction-bargaining model to the first price auction-bargaining model.

The organization of this paper is as follows. In Section 2, we describe the auction-

bargaining model in detail. In Section 3, we summarize some preliminary results in the auc-

tion and bargaining theory for further analysis. In Section 4, we study the auction-bargaining

model, and in particular develop the sellers’ symmetric equilibrium bidding strategy. Our

analysis includes the use of the second price auction, the first price auction, and the buyer’s

reserve price. We consider extensions and variants of the auction-bargaining model in Section

5, and we conclude in Section 6. All the proofs are in the appendix of this paper.

2. Model Description

Suppose that a buyer (e.g., a manufacturer) wants to procure an indivisible product from one

of n+ 1 potential sellers (e.g., suppliers), where n ≥ 1. The products offered by these sellers

are identical, and the sellers are indexed by i = 1, 2, . . . , n + 1. Each seller i’s opportunity

cost of the product is drawn from a random variable Ci, and we assume that the distributions

of Ci’s are independent and identical, having the support of [c, c], where c ≥ 0 and c < ∞.

Let F (·) and f(·) denote the cumulative distribution function and the probability density

function of each Ci, respectively. We assume that the ex post cost ci of seller i is initially

private information, but the distribution function F (·) is public information. It is convenient

to define a random variable Y , which denotes the minimum of n independent and identically

distributed random variables having the common distribution F , i.e., Y ∼ min{C1, . . . , Cn}.

It follows that Y has the cumulative distribution function G(c) = 1 − (1 − F (c))n and the

probability density function g(c) = n · (1 − F (c))n−1f(c). Also, let G(c) = 1 − G(c). For

simplicity of exposition, we assume that f(c) > 0 for all c ∈ [c, c]. Lastly, we denote an

indicator function by I{·}.

The value of the product to the buyer is denoted by v. We assume that v is public

information, thus known to every seller, and lies above the support of F , i.e., c ≤ v < ∞.

(We can easily extend our model to the scenario where the value of the product is uncertain

to both the buyer and sellers, in which case, we use v to denote the expected value of the
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product for the risk-free buyer.) The assumption of publicly available v is applicable if the

suppliers have long-term relationships with the buyer, if suppliers can infer the value of the

product from market conditions, or if the value is equally uncertain to both the buyer and

the suppliers.

We take the viewpoint of the buyer, who wants to maximize her expected profit. Maximiz-

ing the buyer’s expected profit is an objective commonly employed in the optimal mechanism

design literature. In this literature, a procurement mechanism refers to the determination

of allocation and payment, where the outcome depends only on the bids submitted by the

sellers. In this paper, however, we do not restrict our attention to the class of procurement

mechanisms; instead, we allow that the outcome may also depend on the sellers’ costs, pos-

sibly by auditing private information. We use the term procurement system to refer to this

broader class of procurement methods. Examples of procurement systems include auctions

and bargaining (discussed in Section 3).

In this paper, we study a procurement system that combines auction and bargaining

sequentially. In our model, the first-phase auction is used to select the winning seller, and

the second-phase bargaining determines the price (payment), which depends on both the bids

submitted during the auction phase and the winning seller’s cost. We call this an auction-

bargaining (A-B) procurement system. In the first phase, each seller i observes his ex post

cost Ci = c, which is private information known to him only, and then submits a sealed bid

to the buyer. This bid represents a price at which the seller is willing to sell the product,

should the buyer find it agreeable. The buyer selects the seller with the most competitive

bid (i.e., the lowest bid price). Once the winning seller is chosen, the buyer can purchase the

product at that price, or enter into second-phase bilateral bargaining with the winning seller

for a possibly better price. As soon as the winning seller is determined at the end of the first

phase, and prior to entering the bargaining phase, we assume that the buyer discovers the

true cost to the winning bidder either through additional investigation or auditing the cost

structure of the seller. (The notion of a post-auction audit has been used in multi-attribute

auctions; see the scoring rule auction by Che [11and 12] and its application in Beil and Wein

[2], Cachon and Zhang [9], Benjaafar et al. [3], and Wan and Beil [42].) We also assume

that the buyer obtains this information without additional effort; we can easily extend our

model to the case of positive cost associated with this additional effort by comparing it to the

benefit of the bargaining phase. (Without the post-auction audit, the analysis of the model

becomes quite involved as in Wang [43], and it does not yield results that are as simple as
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those presented in this paper.) At any time during the bargaining process, the buyer can

purchase the product from the seller at the winning bid, which acts as an “outside option”

that the buyer can exercise. Thus, the final price is bounded below by the winning seller’s

bid and above by the value v of the product to the buyer. Since the auction phase of the

A-B model is conducted using a first price sealed-bid format, we refer to this model as the

first price sealed-bid A-B model, or simply the first price A-B model.

If the first-phase auction is instead conducted using an open descending-price auction,

then we refer to this model as the the second price open-bid A-B model, or the second price

A-B model. Here, the buyer starts the bidding process at a high price, and continuously

lowers the price. Each bidder is initially active in the bidding process, and continues to

remain active as long as he is willing to sell the product to the seller at the current bid price,

and drops out when the current bid is no longer attractive. The bidding stops when there

remains exactly one seller, who becomes the winning bidder. The buyer enters a bargaining

process with the winning bidder, and the winning bid acts as an outside option for the buyer,

as in the first price A-B model.

We remark that our intention is not to design the optimal procurement system, departing

from the main focus of the mechanism design literature of economics. (For the buyer’s profit-

maximizing mechanism in the presence of the post-auction audit, it is possible to design a

mechanism where the audit eliminates information asymmetry and the buyer extracts full

rent; see Eső and Szentes [19]. However, such a mechanism is relatively complicated and

may not be suited for business practice.) Rather, we restrict our attention to the sequential

auction-bargaining system, which is simple and easy to implement in practice.

3. Preliminaries

Both auction and bargaining have been extensively studied in the literature. In this section,

we summarize some of the results in the auction theory (Section 3.1) and the bargaining

theory (Section 3.2), and establish elementary properties. These results will be useful later

in analyzing the auction-bargaining (A-B) system, and also in comparing this system to the

auction-only or bargaining-only systems.
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3.1 Auction

In a single-unit procurement auction, also known as a reverse auction, many potential sellers

bid for the right to procure to a single buyer. The seller with the lowest bid wins the

auction, and the payment to the seller is set by the lowest bid (in the first price auction),

or by the second lowest bid (in the second price auction). Under the assumption that the

sellers’ opportunity costs are independent and identically distributed, the auction has been

well analyzed in the literature (see, for example, a textbook by Krishna [26]). We review

some classical results here.

We consider the symmetric bidding strategy, denoted by β(c), where c is the ex post

opportunity cost of a seller. Let πA and ΠA be the expected payment and expected profit

made by the buyer. Recall that Ci’s are independent and identically distributed, and G

denotes the complementary cumulative distribution function of Y ∼ min{C1, . . . , Cn}.

Lemma 3.1. In the first price or the second price procurement auction without the buyer’s

reserve price,

β(c) =

{

E[Y |Y > c] in the first price auction
c , in the second price auction

πA = (n + 1) · E

[

E
[

Y · I{Y > Cn+1}|Cn+1

]

]

,

ΠA = v − πA .

See, for example, Section 2.3 of Krishna [26] for the proof of Lemma 3.1. Also, notice

that as long as f(c) > 0 for c ∈ [c, c], β(c) is a strictly increasing function of c. In the above

lemma, the expected payment πA made by the buyer is the same for both the first price

and the second price auctions, and this result is a consequence of the celebrated Revenue

Equivalence Theorem.

In the auction theory literature, the analysis and optimization of the reserve price has

been well-studied. Suppose that at the beginning of the auction, the buyer announces a

reserve price r, above which she commits herself not to pay. Let βr be the symmetric

equilibrium bidding strategy under the reserve price r in the auction only model. If r < c,

the analysis uses βr(r) = r as a boundary condition instead of β(c) = c. Let r∗A denote the

optimal reserve price that maximizes the buyer’s expected profit in the auction only model.

Let πrA and Πr
A denote the expected payment and profit of the buyer, respectively. Note that

the buyer can procure the product only if there exists at least one seller who bids below the

reserve price r, which occurs with probability 1 − (1 − F (r))n+1.
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Lemma 3.2. In the first price or the second price procurement auction with the buyer’s

reserve price r,

βr(c) =







E[min{Y, r}|Y > c] in the first price auction with c ≤ c ≤ r
c , in the second price auction with c ≤ c ≤ r
∞ , if c > r

πrA = (n + 1) · E

[

E
[

min{Y, r} · I{Y > Cn+1}|Cn+1

]

· I{Cn+1 ≤ r}
]

,

Πr
A =

[

1 − (1 − F (r))n+1] · v − πrA .

Furthermore, the optimal reserve price r = r∗A satisfies

v − r =
F (r)

f(r)
.

See, for example, Section 2.5 of Krishna [26] for the proof of Lemma 3.2. Also, notice

that if F (r)/f(r) is weakly increasing in r, the solution to the above equation is unique.

3.2 Bargaining

We review Rubinstein [36]’s bilateral bargaining model of the alternating offers under com-

plete information. Consider a bargaining game between the buyer with the valuation v and

the seller with the opportunity cost c, where v ≥ c. Let 1 − λ be the bargaining power of

the seller, where λ ∈ [0, 1]. (The bargaining power depends on the relative discount rates of

the buyer and the seller, and also on which player first proposes a take-it-or-leave-it offer.

If the seller proposes first, and δs, δb ∈ (0, 1) denote the discount factors of the seller and

the buyer, then 1 − λ = (1− δb)/(1− δsδb). Note that the seller’s bargaining power 1− λ is

increasing in δs and decreasing in δb.) We suppose that v, c and λ are public information.

Lemma 3.3. In the unique subgame perfect equilibrium of the alternating-offers bargaining

game, the pricing outcome function is given by

γ(c) = λc+ (1 − λ)v.

Thus, if the seller has as much bargaining power as possible, i.e., 1 − λ = 1, the price

outcome of bargaining is v, capturing all the gains from the trade and leaving zero profit to

the buyer. The proof of Lemma 3.3 is standard and can be found, for example, in Rubinstein

[36] and Osborne and Rubinstein [35]. Note that the seller makes profit of (1−λ)(v−c), which

is bargaining power times the gains from the trade, whereas the buyer earns λ(v−c). Lemma

3.3 implies that a strong bargaining power of the seller (with a low value of λ) results in a
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high negotiated price γ(c). While the price depends on both c and v, we hereafter suppress

its dependency on v for the simplicity of notation by treating the buyer’s valuation v as

fixed.

We now consider the case with multiple sellers, in which the buyer bargains with the

sellers in a sequential manner. As before, the buyer’s valuation v is public information. We

also suppose that the opportunity costs and bargaining powers of the sellers (ci and 1 − λi)

are also public. (This is an additional assumption to those assumptions given in Section

3.1.)

At any point, the buyer may continue bargaining with the current seller, or discontinues

current bargaining and start bargaining with a new seller. Once the buyer aborts bargaining

with a seller, she cannot re-enter another round of bargaining with the same seller at a later

point in time. For our discussion in this section, suppose that the sequence of sellers for

bargaining is exogenously fixed, and the objective is to minimize the buyer’s payment (the

cost of bargaining is negligible).

To analyze this sequential bargaining game, we first consider a simpler case with two

sellers. Let γi(c) = λi · c + (1 − λi) · v, where 1 − λi represents the bargaining power of

seller i. If the buyer bargains with the second seller (seller 2) only, then the outcome of the

price is γ2(c2). Thus, in bargaining with the first seller (seller 1), the buyer has an option

of aborting bargaining with seller 1 and then starting bargaining with seller 2. This option

is analytically equivalent to exercising an option to purchase from buyer 2 at price γ(c2).

During the bargaining with the first seller, this option involves procuring the product from

someone not involved in the current bargaining process, and it is referred to as an outside

option in the bargaining theory literature. (By contrast, the outside option refers to an

option to purchase from the seller currently being negotiated. See Binmore [4], Shaked [38]

and Muthoo [31] for details.) If γ1(c1) < γ2(c2), then the buyer will bargain with seller 1 to

reach the negotiated price of γ1(c1); if γ1(c1) > γ2(c2), then either the first seller will propose

the price of γ2(c2), or the buyer will immediately move to seller 2 for bargaining. Thus, the

price that the buyer pays is min{γ1(c1), γ2(c2)}. Extending the analysis to n+1 sellers (where

n ≥ 1), we can easily observe that the pricing outcome function of the sequential bargaining

game is mini γi(ci). Note that the expression for the price is independent of the sequence of

sellers. It is shown in a similar framework that the buyer is indifferent to the sequence of

bargaining while the sellers prefer to bargain earlier (Nagarajan and Bassok [33], Nagarajan

and Sosic [34]).
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Let πB be the expected payment of the buyer, by taking the expected value with respect

to all possible realizations of (C1, . . . , Cn, Cn+1), and let ΠB be the expected profit of the

buyer.

Lemma 3.4. In the sequential bargaining model,

πB =
n+1
∑

i=1

E

[

E
[

γi(Ci) · P[γi(Ci) ≤ γj(Cj), ∀j 6= i]|Ci
]

]

,

ΠB = v − πB .

Furthermore, if λi = λ for each i, then mini{γi(ci)} = γ(mini ci), and it follows that

πB = (n+ 1) · E[γ(Cn+1) ·G(Cn+1)] .

Both in the auction model and in the sequential bargaining model, the buyer procures the

product from one of the competing sellers, but the expected payments are not identical. The

celebrated revenue equivalence result is not applicable here since, in the bargaining model,

the payment by the buyer to the winning seller depends on the bargaining powers of all the

sellers. Thus, the bargaining model is not a procurement mechanism in the classical sense.

In fact, we caution the reader that these two models should not be compared directly since

the auction-only model assumes that the buyer does not know the seller’s cost, contrary to

the assumption made in the sequential bargaining model.

4. Analysis of the Auction-Bargaining (A-B) Model

In this section, we analyze the auction-bargaining (A-B) model described in Section 2. We

first consider the first price A-B model where the sellers have identical bargaining power

1 − λ and the buyer does not set any reserve price (Section 4.1). We find a symmetric

bidding strategy equilibrium, and derive an expression for the expected payment by the

seller, which we compare to the auction-only and sequential bargaining-only counterparts.

We also consider the model where a reserve price is set by the buyer in the auction phase

(Section 4.2), and the second price A-B model (Section 4.3).

4.1 First Price A-B Model

The A-B model consists of two phases: the auction phase followed by the bargaining phase.

The bids submitted by sellers during the auction phase are not only used to determine the
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winning seller (with the lowest bid), but also acts as a price for the outside option which the

buyer can exercise subsequently in the bargaining phase. Thus, when a seller submits his

bid, he strikes a balance between increasing the probability of winning in the auction phase

and decreasing the price of the buyer’s option in the event that he becomes the winning

bidder. In this section, we study the symmetric bidding strategy of sellers in the auction

phase of the first price A-B model.

We suppose that the sellers have identical bargaining power, i.e., 1 − λi = 1 − λ for all

i. We are interested in the symmetric bidding strategy of the first phase, which we denote

by ψ. It is straightforward to show that any reasonable bidding strategy satisfies ψ(c) ≥ c;

otherwise, the bidder’s profit would be negative. We assume that ψ is a strictly increasing

function of the bidder’s opportunity cost c. Recall that β and γ represent the symmetric

bidding strategy in the first price auction-only model and the pricing outcome function of

the bilateral bargaining game, respectively. We assume a technical condition that these two

functions β and γ intersect finitely many times in [c, c].

We start with the following lemma stating the relationship of the ψ function and γ

function. The proof of this result is based on the following observation that if a bidder

with cost c places an auction phase bid larger than γ(c), then the price outcome in the

subsequent bargaining phase cannot exceed γ(c). Thus, by decreasing his bid price to γ(c),

the bidder increases the probability of his winning without affecting his profit in the case

that he wins the auction phase. The proof of Lemma 4.1 and all other proofs are located in

the e-companion to this paper.

Lemma 4.1. In the first price A-B model, any strictly increasing equilibrium bidding strategy

ψ in the auction phase satisfies, for all c ∈ [c, c],

ψ(c) ≤ γ(c) .

If the bidder with ex post cost c wins the auction phase, then the price outcome of the

subsequent bargaining phase is the minimum of his winning bid in the first phase and γ(c).

Thus, as a corollary of the above lemma, the winning bidder receives ψ(c) from the buyer.

In Theorem 4.2 below, we present a symmetric equilibrium strategy ψ in the auction

phase. It turns out that this equilibrium strategy is given by a simple expression involving

β and γ. However, we introduce a technical condition that is required by Theorem 4.2.

Indeed, we show later that if this condition fails to satisfy, then ψ may not exist. Recall
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that 1 − λ is the bargaining power of the seller, and λ is the slope in the definition of the

bargaining outcome price function γ. Also, recall that g and G represent the probability

density function and cumulative distribution function of Y ∼ min{C1, . . . , Cn}, respectively.

For any given bidding strategy ψ : [c, c] → ℜ+, define Γψ to be a subset of [c, c] where the

inequality in Lemma 4.1 is tight, i.e., Γψ = {c ∈ [c, c] | ψ(c) = γ(c)}.

Condition A. A first phase bidding strategy ψ : [c, c] → ℜ+ satisfies the following condition:

for any interior point c of Γψ,

λ ≥
g(c)

G(c)
(γ(c) − c) . (1)

Condition A is a technical assumption required in proving Theorem 4.2, which provides a

simple expression for the first phase equilibrium bidding strategy. A sufficient condition

for this bidding strategy to satisfy Condition A will be given later in Lemma 4.3. In the

uniform [0, 1] distribution case, this sufficient condition is equivalent to the fact that the

seller’s bargaining power (1 − λ) does not exceed 1/(n+ 1). This is not unreasonable since

there are a total of n + 2 agents in the system (n+ 1 sellers and one buyer).

Theorem 4.2. Let ψ be a strictly increasing function defined on [c, c] by

ψ(c) = min{β(c), γ(c)} .

If ψ satisfies Condition A, then it is a symmetric equilibrium bidding strategy in the first

phase of the first price A-B model. Furthermore, if ψ does not satisfy Condition A, then it

is not a symmetric bidding strategy.

Theorem 4.2 implies that a seller’s bid is more aggressive in the A-B model than in the

auction-only model. The upper bound of γ on ψ (Lemma 4.1) partly explains the aggressive-

ness in the sellers’ first-stage bidding strategy. Each bidder does not submit any bid higher

than the corresponding γ value, and furthermore he knows that the other bidders will be

more aggressive than the auction-only model. It is also interesting to note that as the sellers’

bargaining power 1 − λ decreases, γ(c) decreases and sellers bid more aggressively. Thus,

the degree of the sellers’ aggressiveness in the first phase represents the relative weakness

in their bargaining position against the buyer. In an extreme case where 1 − λ is 0, γ(c)

becomes c, i.e., each seller bids his true cost and gains zero profit. In the other extreme case

of 1 − λ = 1, it follows γ(c) = v and ψ(c) becomes β(c), a symmetric equilibrium bidding

strategy of the auction-only model.
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The following result provides a sufficient condition for Condition A, which is easy to

verify when β ′(c) is readily available.

Lemma 4.3. A first-phase bidding strategy ψ = min{β(c), γ(c)} satisfies Condition A if

λ ≥ β ′(c) for all c ∈ [c, c].

Lemma 4.3 is useful when the bidding strategy β of the auction-only model is absolutely

continuous. For example, if F is a uniform distribution, then β is linear and one can easily

verify whether λ ≥ β ′(c) is satisfied. (We remark that Lemma 4.3 also holds if the condition

γ′(c) = λ ≥ β ′(c) holds only for interior points of Γψ; however this condition is stated such

that it is independent of ψ.)

The following corollary compares the expected payment of the buyer in the first price

A-B model under the symmetric equilibrium given in Theorem 4.2 to the expected payment

in the auction-only model or in the sequential bargaining model. It states that the A-B

model generates higher profit to the buyer than the auction-only or sequential bargaining

model. It can be explained by the fact that each seller’s bid in the A-B model (see Theorem

4.2) is less than or equal to both his corresponding bid in the auction-only model or the

price outcome in the bargaining model. For a given symmetric equilibrium bidding strategy

ψ for the auction phase, let πψAB and Πψ
AB denote the expected payment and profit of the

buyer, respectively. (Recall that the pair of πA and ΠA and the pair of πB and ΠB have

been similarly defined for the auction-only model and the sequential bargaining-only model,

respectively. Also, recall that Cn+1 has a cumulative density function F .)

Corollary 4.4. In the first price A-B model, suppose that ψ(c) = min{β(c), γ(c)} is a

strictly increasing symmetric equilibrium satisfying Condition A. Then, the buyer’s expected

payment and profit are given by

πψAB = (n + 1) · E
[

min{β(Cn+1), γ(Cn+1)} ·G(Cn+1)
]

,

Πψ
AB = v − πψAB .

Furthermore, Πψ
AB ≥ max{ΠA, ΠB}.

The proof of Corollary 4.4 is straightforward and thereby omitted. To establish the

inequality of Πψ
AB ≥ max{ΠA, ΠB}, we observe from Lemmas 3.1 and 3.4 that πA = (n +

1) · E
[

β(Cn+1) ·G(Cn+1)
]

and πB = (n + 1) · E
[

γ(Cn+1) ·G(Cn+1)
]

.
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We recall from Section 3 that the ranking between the auction-only model and the se-

quential bargaining model depends on the model parameters. Corollary 4.4 above establishes

that, for the risk-neutral buyer, the equilibrium of the A-B model given in Theorem 4.2 is

preferable to both the auction-only model and the sequential bargaining model. Thus, if this

equilibrium is the unique equilibrium, then it is not necessary for the buyer to study model

parameters when she is faced with the question of which procurement system would result

in the largest expected profit. The A-B model results in the buyer’s expected profit that is

higher than the expected profit of the other two models studied in Section 3. We caution

the reader that this result is based on our modeling assumption that running an auction or a

bargaining round is costless. When the cost of running a bargaining round is not negligible,

we determine whether the first price A-B model is still preferable to the auction-only model

by comparing this cost to the difference in expected profits, Πψ
AB − ΠA. Similarly, when

the cost of running an auction is not negligible, we compare the first price A-B model to

the sequential bargaining model by considering Πψ
AB − ΠB. We also note that while the

first price A-B model runs only one bargaining round, the sequential bargaining model can

possibly run multiple rounds of bargaining if the buyer does not discover a seller’s cost until

she enters bargaining with the seller. Thus, the first price A-B model has an advantage of

identifying the most competitive seller, with whom the buyer can bargain. (See Section 5

for details.)

While Theorem 4.2 shows one equilibrium bidding strategy for the A-B model, we now

consider the possibility of other symmetric increasing bidding strategies for ψ. Before we

continue with our analysis, we re-visit the symmetric equilibrium bidding strategy in the

first price auction-only model, discussed in Section 3.1. For this model, β(c) = E[Y |Y > c]

is an equilibrium bidding strategy, and it is a solution to the following differential equation:

0 =
∂

∂z

[

G(z) · (β(z) − c)
]

∣

∣

∣

z=c
= − g(c)(β(c)− c) +G(c)

∂

∂c
β(c) .

Solving this differential equation, we obtain a family of non-intersecting solutions character-

ized by the constant of integration K ∈ (−∞,∞):

βK(c) = E[Y |Y > c] +
K

G(c)
.

If K = 0, then βK corresponds to β given above in Lemma 3.1. If K > 0, then it can be

shown that βK forms a symmetric equilibrium for the first price auction-only model, but

it has the undesirable property that it approaches ∞ as c approaches c from the left. If
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K < 0, then βK is not monotone in [c, c]; however, it is used to define the first price bidding

strategy when a buyer specifies a reserve price. (When the reserve price is r ∈ [c, c], then the

equilibrium bidding strategy is given by βr = βK , where βK(r) = r.) The above definition

of βK proves to be convenient in defining bidding strategies for the first price A-B model.

Theorem 4.5. In the first price A-B model, suppose that a continuous and increasing func-

tion ψ satisfies Condition A. Then, ψ is an equilibrium bidding strategy for the auction

phase of the first price A-B model if and only if

(i) ψ(c) ≤ γ(c) for c ∈ [c, c], and

(ii) there exists {a0, a1, . . . , am} satisfying c = a0 ≤ a1 ≤ a2 ≤ · · · ≤ am = c such that for

each interval Ii = [ai−1, ai] where i = 1, . . . , m, either

ψ(c) = βKi
(c) for some Ki ∈ (−∞,∞), or ψ(c) = γ(c) .

Furthermore, ψ(c) = c.

Since the family of curves {βK | K ∈ (−∞,∞)} parameterized by K are nonintersecting

and ψ is continuous, we can assume without loss of generality that the sequence of intervals

Ii’s alternatively satisfies ψ(c) = βKi
(c) or ψ(c) = γ(c). Thus, Theorem 4.5 shows that an

equilibrium bidding strategy ψ in the first price A-B model consists by alternating γ and βKi

functions, provided that Condition A is satisfied whenever ψ coincides with γ. This result

is useful in constructing ψ. The next result states that Condition A must be satisfied for

every symmetric equilibrium bidding strategy.

Lemma 4.6. If a continuous increasing function ψ does not satisfy Condition A, then ψ is

not a symmetric equilibrium bidding strategy in the first phase of the A-B model.

We now remark on statement (ii) in Theorem 4.5, focusing on the right-most interval

Im = [am−1, am]. For c ∈ Im, either ψ(c) = βKm
(c) or ψ(c) = γ(c). In the former case,

we must have Km = 0. (Otherwise, strictly positive Km implies limc↑c βKm
(c) → ∞, con-

tradicting the definition of ψ in Theorem 4.2, and strictly negative Km implies decreasing

βKm
, contradicting the monotonicity of ψ.) In the latter case, we have ψ(c) = γ(c), which

is possible only if ψ(c) = γ(c) = β0(c) = c. Thus, we obtain ψ(c) ≤ c, which states that

the first-phase bid would not be higher than the highest possible cost, which is a reasonable

outcome.
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The following result is useful in constructing another symmetric equilibrium bidding

strategy from a given equilibrium. In the first proof of Corollary 4.7, we replace a sequence

of a symmetric bidding strategy ψ with γ; in the second part, we replace it with βK for some

K. The proof of Corollary 4.7 follows from Theorem 4.5 and Lemma 4.6, and is omitted.

Corollary 4.7. Let ψ be an equilibrium symmetric bidding strategy for the auction phase of

the first price A-B model. Let s and t satisfy c ≤ s < t ≤ c, and let ψ◦ be an increasing

function such that ψ◦(c) = ψ(c) for c /∈ (s, t).

(a) Suppose both ψ(s) = γ(s) and ψ(t) = γ(t) hold, and inequality (1) holds for c ∈ (s, t).

If ψ◦(c) = γ(c) for c ∈ (s, t), then ψ◦ is an equilibrium bidding strategy with Πψ◦

AB≤Πψ
AB.

(b) Suppose both ψ(s) = βK(s) and ψ(t) = βK(t) hold for some K, and ψ(c) ≤ βK(c) holds

for c ∈ (s, t). If ψ◦(c) = βK(c) for c ∈ (s, t), then ψ◦ is an equilibrium bidding strategy

with Πψ◦

AB≤Πψ
AB.

Corollary 4.7 shows that there exists a partially ordered ranking among symmetric equi-

libria with respect to the expected profit of the buyer. Corollary 4.8 below shows that there

is a biggest and smallest element in this partially ordered set, through yet another method

of constructing an equilibrium.

Corollary 4.8. Let ψ1 and ψ2 be equilibrium symmetric bidding strategies for the auction

phase of the first price A-B model. Then, both ψm(c) = min{ψ1(c), ψ2(c)} and ψM(c) =

max{ψ1(c), ψ2(c)} are also equilibrium symmetric bidding strategies. Furthermore,

ΠψM

≤ min{Πψ1

,Πψ2

} ≤ max{Πψ1

,Πψ2

} ≤ Πψm

.

The proof of Corollary 4.8 is straightforward and thereby omitted.

Notice that Theorem 4.5 implies the possibility of multiple equilibrium bidding strategies,

each characterized by a collection of intervals and Ki values. The profit-comparison result

of Corollary 4.4 (i.e., Πψ
AB ≥ max{ΠA, ΠB}) corresponds to a particular equilibrium (given

by ψ(c) = min{β(c), γ(c)}), and this result may not hold with other equilibrium bidding

strategies. The following theorem shows that the above comparison of profit holds for any

symmetric equilibrium bidding strategy.

Theorem 4.9. For any increasing and continuous symmetric equilibrium bidding strategy ψ

in the A-B model that satisfies Condition A, we have Πψ
AB ≥ max{ΠA, ΠB}.
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Example: Uniform [0, 1] Cost in the First Price A-B Model.

We consider an example of uniform opportunity costs, where each Ci has a uniform

distribution on [0, 1], with v ≥ 1. In this uniform [0, 1] cost case, it turns out that Condition

A is satisfied if and only if λ ≥ n/(n+1), and in this case, we obtain the following uniqueness

result.

Theorem 4.10. In the first price A-B model, suppose that sellers’ opportunity costs have

uniform [0, 1] distribution and λ > n/(n+1). Then, there exists a unique continuous strictly

increasing symmetric equilibrium bidding strategy for the auction phase, given by

ψ(c) = min{β0(c), γ(c)} .

The proof of Theorem 4.10 is based on the observation that whenever γ(c) < β0(c), any

βK intersecting with γ at c has the property β ′
K(c) < λ = γ′(c).

We now describe in detail the symmetric equilibrium bidding strategy given in Theorem

4.10. We compute the buyer’s expected profit in the A-B model, and compare it to the

auction-only model and the sequential bargaining model. Since each seller’s cost is uniformly

distributed, we obtain G(c) = (1 − c)n. Thus, the auction phase bidding strategy is given

by ψ(c) = min{β0(c), γ(c)} where

β0(c) =
1

n + 1
+

n

n+ 1
· c and γ(c) = (1 − λ) · v + λ · c.

Since both β0 and γ are linear functions, they intersect at most once depending on the

buyer’s value v and the seller’s bargaining power 1−λ. Let s = inf{c ∈ [0, 1] | β(c) ≤ γ(c)}.

(Since n/(n+ 1) and λ correspond to the slopes of β0 and γ, s represents the intersection of

these two lines if s ∈ (0, 1).) Thus,

ψ(c) = min{β(c), γ(c)} =

{

γ(c) , if c ∈ [0, s) or c = s ∈ (0, 1]
β(c) , if c ∈ (s, 1] or c = s ∈ [0, 1).

Also, from Lemma 4.3 and λ > n/(n+1) = β ′(c), it is easy to verify that ψ satisfies Condition

A.

We comment on the assumption λ > n/(n + 1). It is reasonable to expect that if there

is only one potential seller, the bargaining powers of the seller and the buyer are similar,

i.e., λ ∼ 1/2. The seller’s bargaining power typically decreases as the number of sellers

increases. When there are n + 1 potential sellers, there are a total of n + 2 players in the
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market (including the buyer), and it is reasonable to expect that each seller’s bargaining

power satisfies 1 − λ = 1/(n + 2). In this case, λ = (n + 1)/(n + 2) > n/(n + 1) = β ′(c).

Furthermore, if λ > n/(n + 1) does not hold, then by Lemma 4.6 there exists no strictly

increasing equilibrium bidding strategy in the A-B model with the exception of ψ(c) = β(c).
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(a) λ = 0.75, and n = 2 (i.e., 3 sellers). (b) λ = 0.85, and n = 3 (i.e., 4 sellers).

Figure 1: The symmetric equilibrium bidding strategy of the A-B Model (A-B) compared to
the bidding strategy of the auction-only (A-only) model and the pricing outcome function
of the sequential bargaining model (B-only). v = 1.2.

Figure 1 shows the symmetric equilibrium bidding strategy of the A-B model in compar-

ison to the symmetric equilibrium bidding strategy of the auction-only model as well as the

pricing outcome function of the bargaining model. The expected profit Πψ
AB of the buyer in

the A-B model can be computed in a closed form. (See Appendix H for the detail.) Figure

2 shows that the expected profit of the buyer in the first price A-B model is higher than

in the auction-only model or the sequential bargaining-only model. In addition, while it

can be shown that the buyer’s expected profit in the auction-only model or the sequential

bargaining model can be shown to be concave with respect to the number of the sellers, it

may fail to be concave in the A-B model.

It is interesting to observe from Figure 2 that it is not always more profitable for the

buyer to add one more seller to the auction-only model than to have the second-phase of

bargaining as in the A-B model. Consider, for example, the case where the number of sellers

is 2 in Figure 2(b). This is in contrast to a conclusion of Bulow and Klemperer [8], in which

the benefit of the second-phase ultimatum bargaining is always outweighed by the benefit

of having an extra bidder. Our observation is consistent with a similar finding of Wang [43]

for his auction-bargaining model, where he assumes a one-sided uncertainty of the private
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buyer’s valuation in the bargaining phase. Whereas Bulow and Klemperer [8] do not consider

the presence of an audit, both Wang [43] and our paper allow audit prior to the bargaining

phase, thereby the buyer is equipped with more information to benefit from the auction

phase. Thus, in these two papers, it is quite plausible that the benefit of bargaining may

become preferable to attracting one more bidder.
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(a) λ = (n + 1)/(n + 2) under 2, 3, 4 sellers. (b) λ = 0.85 under 2, . . . , 8 sellers.

Figure 2: The expected profit of the buyer in the A-B model (A-B), compared to the auction-
only model (A-only) and the sequential bargaining model (B-only), as a function of the total
number of sellers, n + 1. v = 1.2.

4.2 A-B Model with Reserve Price

While we have assumed in Section 4.1 that the buyer does not set any reserve price, we now

consider the case where the buyer announces a reserve price, over which she commits not to

purchase the product from any of the sellers. This announcement is made before the bids

are submitted in the first phase. By setting a reserve price, the buyer faces the risk of not

being able to procure, but may increase her expected profit by encouraging sellers to bid

more aggressively.

We use r to denote the reserve set by the buyer. Since the buyer does not want to procure

the product above its value v, we proceed by assuming r ≤ v. Recall that βr represents the

symmetric bidding strategy in the first price auction-only model with reserve price r. Also

recall that γ denotes the pricing outcome function of the bilateral bargaining game. We

assume that these two functions βr and γ intersect finitely many times in [c, r]. Similar to the

first price A-B model without reserve price, we introduce a technical condition that is required

by Theorem 4.11 below. Recall that from the definition of Γ, Γψ
r

= {c| ψr(c) = γ(c)}.
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Condition B. A bidding strategy ψr satisfies the following condition: for any c satisfying

c < c < r in the interior point of Γψ
r

,

λ ≥
g(c)

G(c)
(γ(c) − c) .

Note that Condition B is identical to Condition A except that the above inequality is

required for c ∈ (c,r) only. The following theorem summarizes the main results for the first

price A-B model with a reserve price.

Theorem 4.11. Let ψr be a strictly increasing function defined on [c, r] by

ψr(c) = min{βr(c), γ(c)} .

If ψr satisfies Condition B, then it is a symmetric equilibrium bidding strategy in the first

phase of the first price A-B model with reserve price r.

The proof of Theorem 4.11 is similar to the proof of Theorem 4.2, and is omitted. We

observe from Theorem 4.11 that a seller’s bid in the first phase of the A-B model is more

aggressive than the auction-only model with same reserve price. This observation is analo-

gous to the case without any reserve price (Section 4.1). Furthermore, note that the seller’s

bid ψr(c) becomes more aggressive as r decreases – just as in the auction-only model. We

remark that Condition B is required to guarantee that ψr forms an equilibrium.

The following corollary shows the expected profit of the buyer in the first price A-B model

with reserve price. The result is immediate, and thus we omit the proof of the corollary.

Corollary 4.12. Under the conditions of Theorem 4.11, the buyer’s expected payment and

profit are given by

πrAB = (n+ 1) · E
[

G(Cn+1) ψ
r(Cn+1) · I{Cn+1 ≤ r}

]

,

Πr
AB =

[

1 − (1 − F (r))n+1
]

v − πrAB .

From Lemma 3.2 and Corollary 4.12, it is clear that, for the risk-neutral buyer, the A-B

model with reserve price is preferable to the auction-only model with the same reserve price.

We now consider the optimal reserve price which maximize the buyer’s expected profit. Let

r∗AB denote the optimal reserve price of the buyer in the first price A-B model. The first

order condition for the optimal reserve price in the first price A-B model is derived in the

following lemma.
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Lemma 4.13. Under the condition of Corollary 4.12, the optimal reserve price r = r∗AB

satisfies the following equation:

v − r =

∫ r

c
I{βr(c) ≤ γ(c)} · f(c) dc

f(r)
.

Note that the integral part of the above equation,
∫ r

c
I{βr(c) ≤ γ(c)} ·f(c) dc, represents

the probability that a seller’s ex post cost c satisfies both βr(c) ≤ γ(c) and c ≤ r. Lemma

4.13 states that the optimal reserve price in the auction-only model, r∗A, is not necessarily

the optimal reserve price in the A-B model. In fact, if F (r)/f(r) is weakly increasing, then

the unique optimal reserve price r∗A given in Lemma 3.2 can be shown to be a lower bound

for r∗AB. We obtain this result by comparing the equation in Lemma 3.2 to the equation

in Lemma 4.13. In other words, in the A-B model, the buyer sets a less-aggressive reserve

price than the auction-only model. We attribute this observation to the fact that the seller’s

bid is less important in the A-B model because the buyer learns the seller’s cost before the

second-phase bargaining process.

While Theorem 4.11 shows one equilibrium bidding strategy for the A-B model with

reserve price, we now consider the possibility of other symmetric bidding strategies for ψr

as in the previous section. The following theorem is analogous to Theorem 4.5 and Lemma

4.6, and we omit this proof.

Theorem 4.14. In the first price A-B model with reserve price, suppose that a continuous

increasing function ψr satisfies Condition B. Then, ψr is a symmetric equilibrium bidding

strategy for the first phase if and only if

(i) ψr(r) = r

(ii) ψr(c) ≤ γ(c) for c ∈ [c, r]

(iii) There exists {a0, a1, . . . , am} and Ki ∈ (−∞,∞) for each Ki such that c = a0 ≤ a1 ≤

a2 ≤ · · · ≤ am = r and for each Ii ∈ [ai−1, ai], either

ψr(c) = βKi
(c) for some Ki ∈ (−∞,∞), or ψr(c) = γ(c) .

Furthermore, ψr(c) = min{βr(c), γ(c)} for c ∈ Im.

Also, if a continuous increasing function ψr does not satisfy Condition B, then ψr is not a

symmetric equilibrium bidding strategy in the first phase of the A-B model with reserve price

r.
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Example: Uniform [0, 1] Cost in the A-B Model with Reserve Price.

We return to the example of the uniform [0, 1] opportunity cost. As before, we assume

λ > n/(n+1). We also suppose γ(0) ≤ βr(0); otherwise, it can be shown that ψr(c) = βr(c),

implying that the A-B model becomes the same as the auction-only model. The following

lemma establishes that ψr given in Theorem 4.11, ψr(c) = min{βr(c), γ(c)}, satisfies Condi-

tion B, and is a unique first-phase bidding strategy for the first price A-B model with reserve

price r.

Lemma 4.15. In the first price A-B model with reserve price, suppose that the seller’s

opportunity costs are drawn from uniform [0, 1] distribution. Let r ∈ [0, 1] be the reserve

price, and suppose that both γ(0) ≤ βr(0), and λ > n/(n + 1) hold. Then, the symmetric

equilibrium bidding strategy ψr(c) for the first phase is unique and given by

ψr(c) = min{βr(c), γ(c)} .

The proof of Lemma 4.15 is similar to Theorem 4.10, and is based on the observation that

whenever γ(c) < βr(c), any βK intersecting with γ at c has the property β ′
K(c) < λ = γ′(c).

In the uniform [0, 1] cost case, it follows from Lemma 3.2 that

βr(c) =
nc+ 1

n+ 1
−

(1 − r)n+1

(n+ 1)(1 − c)n
,

and βr is concave with respect to c in [0, r]. Since γ(0) ≤ βr(0) and γ(r) ≥ r = βr(r), there

exists a unique intersection of βr and γ in [0, r]. Let sr ∈ [0, r] such that βr(sr) = γ(sr).

Figure 3 shows the optimal bidding strategy in the auction-only model with reserve price r ∈

{0.5, 0.8} and the pricing outcome function of bargaining. We observe that the intersection

of these two functions is unique for each value of r. From Lemma 4.15, ψr(c) is given by the

minimum of these two functions.

From Corollary 4.12, it is straightforward to verify that the expected payment from the

buyer, πψ
r

AB, and the expected profit of the buyer, Πψr

AB, are

πψ
r

AB = (n + 1)

(
∫ r

0

(1 − c)n · min {βr(c), γ(c)} dc

)

,

Πψr

AB =
(

1 − (1 − r)n+1
)

v − πrAB

From the first order condition and Lemma 4.13, the optimal reserve price r∗AB maximizing

the expected profit of the buyer satisfies

v − r = r − sr ,
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Figure 3: The bidding strategy of a seller in the auction-only model with reserve price (βr)
and the pricing outcome function (B-only γ) with λ = 0.85, v = 1.2, and n = 3, i.e., 4 sellers.

where sr is the unique intersection between βr and γ in [0, r]. Since v − r is nonnegative, it

follows that r ≥ sr. Thus,

r∗AB =
v + sr

∗

AB

2
.

In the auction-only model, the optimal reserve price for the uniform [0, 1] example is given

by r∗A = v/2 (Lemma 3.2). Thus, it follows that r∗AB ≥ r∗A from the above equation. Thus,

the optimal reserve price in the A-B model is less aggressive than in the auction-only model.

This observation is consistent with the remark following Lemma 4.13.

Figure 4 is a numerical example of the expected profit of the buyer in the A-B model as a

function of the reserve price. Clearly, the buyer’s maximum expected profit in the first price

A-B model with a reserve price is higher than in the auction-only model with the same reserve

price. For the auction-only model, the optimal reserve price is given by r∗A = v/2 = 0.6;

for the A-B model, the optimal reserve price is given by r∗AB = (v + s)/2 ∼ 0.95 where s

is numerically calculated to be approximately 0.7 in this case. Thus, we observe that r∗AB

is bigger than r∗A. We also observe that for the low values of r, the expected profit to the

buyers are the same in both models. This occurs since a sufficiently small reserve price r

violates the condition γ(0) ≤ βr(0), implying that both ψr and βr functions coincide; thus,

the A-B model essentially becomes the auction-only model.

4.3 Second Price A-B Model

In the second price A-B model, the seller with the lowest bid in the first phase (auction

phase) is selected for the second phase of bargaining, just as in the first price A-B model.
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Figure 4: The expected profit of the buyer in the auction-only model with reserve price
(A-only) and the first price A-B model (A-B) with reserve price r with λ = 0.85, v = 1.2,
and n = 3 (i.e., 4 sellers).

However, the price at which the buyer can purchase the product from the winning bidder

is not his bid (the lowest bid), but the second lowest bid. The second price A-B model

can easily be implemented if the auction phase is conducted as an open descending-price

auction. In this section, we investigate an equilibrium bidding strategy for the first phase in

the second price A-B model. We also compare the expected profit of the buyer of the first

and second A-B models, and study if a preference ranking between the first and second price

A-B models can be established.

In this section, let ψ(c) be a symmetric equilibrium bidding strategy of the second price

A-B model. A symmetric equilibrium bidding strategy in the second price A-B model is

given in Theorem 4.16.

Theorem 4.16. In the second price A-B model, a dominant bidding strategy for each bidder

in the first phase is

ψ(c) = c .

The proof of Theorem 4.16 is similar to the case of the second price auction-only model,

and is based on an observation that the amount of payment a bidder expects to receive

conditioned on his winning does not depend on his first phase bid. Note that the above

strategy is the same as the second price auction-only model, and does not depend on the

number of competing sellers in the system.
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The celebrated Revenue Equivalence Theorem implies that the expected profit of the

buyer in the first price auction-only model is the same as the corresponding quantity in the

second price auction-only model. This theorem is not applicable in the A-B model which is

not a mechanism. Now, we compare the expected profits of the buyer, and it turns out that

they are generally not identical.

Theorem 4.17. The expected profit of the buyer in the second price A-B model is at least

that of the first price A-B model with ψ(c) = min{β(c), γ(c)}.

The proof of Theorem 4.17 is based on comparing the ex post expected payment received

by each seller in each of the two models. Let us first review an analogous result in the auction-

only model. It is well known that while the mean of the final price is the same in both the

first price auction-only model and the second price auction-only model, the distribution of

the final price in the latter model is a mean-preserving spread of the final price in the former

model (e.g. Krishna [26]). In the A-B model, a similar analysis shows that the ex post final

price in the second price A-B model is a “spread” of the ex post final price in the first-price

A-B model; however, the minimum operator in the definition of ψ introduces concavity in

taking the expectation over the “spread”. Then, by Jensen’s Inequality, the expected final

price is lower in the second price A-B model, as stated in Theorem 4.17.

Example: Uniform [0, 1] Cost in the Second Price A-B Model.

In the second price A-B model, if the opportunity cost is drawn from uniform [0, 1]

distribution, the expected profit of the buyer, denoted by Π2
AB, is

Π2
AB = v −

n+1
∑

i=1

E

[

E
[

G(c) · E[min{Y, γ(c)}|Y > c]|Ci = c
]

]

= v −
2

n + 2
+

[1 − (1 − λ)v]n+2 − [(1 − λ− (1 − λ)v]n+2

(n+ 2)λ
,

where the last equality results from algebraic manipulation. It can be shown from Lemma

3.1 that ΠA = v − 2/(n + 2). Since the last term above is nonnegative, it follows that

Π2
AB ≥ ΠA.

Figure 5 shows the expected profit of the buyer in the auction-only, first price A-B, and

second price A-B models. We observe that the buyer’s expected profit is the highest in the

second price A-B model.
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Figure 5: The expected profit of the buyer as a function of the number of sellers in the
auction-only (A-only), first price A-B (1st A-B), and second price A-B (2nd A-B) models.
v = 1.2.

5. Extensions and Further Discussions

In this section, we consider extensions of the models discussed in Sections 3 and 4. In Section

5.1, we first re-visit the auction-bargaining model of Section 4. While only one seller was

selected in the auction phase for bargaining in the second phase, in Section 5.1, we consider

the case where the buyer can select more than one buyer from the first phase. In Section

5.2, we discuss the impact of positive fixed costs for conducting an auction or bargaining.

In Section 5.3, we consider the sequential bargaining model of Section 3.2 by assuming that

the buyer discovers the seller’s cost one at a time, and is not allowed to resume bargaining

with a seller that she had previously aborted.

5.1 Multiple Sellers in the Bargaining Phase of the A-B Model

In the A-B models studied in Section 4, the buyer selects only one seller in the auction phase

and enters the second phase bargaining with this seller. In this section, suppose that the

buyer selects multiple sellers in the first phase and conducts a sequential bilateral bargaining

with these sellers. At the end of the first phase, the buyer observes all the bids bi submitted

by sellers i, and selects the bidders with the m lowest bids, where m ∈ {2, 3, . . . , n+1}. (For

notational convenience, suppose that bidders i = 1 through m are selected for the second

phase.) For the second phase bargaining process, the buyer decides the order in which she

will sequentially bargain with the m sellers. At the beginning of the second phase, the seller

knows the opportunity costs ci for all sellers i = 1, . . . , m. (The second phase bargaining
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with m sellers follows the sequential bargaining model described in Section 3.2.) We refer to

this model as Model M .

We find an equilibrium bidding strategy of sellers in the first phase, and the bargaining

strategy of the buyer in the second phase. Consider the buyer’s problem. By an argument

similar to the proof of Lemma 3.4, the buyer’s payment is independent of the bargaining

order, and is given by min{min{bi, γ(ci)} | i = 1, . . . , m}. Thus, one of the buyer’s weakly

dominant strategies is to bargain first with the seller with the least min{bi, γ(ci)} (with the

least bid) until an agreement is reached. For the sellers’ problem, the first-phase bidding

strategy can be shown to remain unchanged from Theorem 4.2 of Section 4.

Theorem 5.1. Let ψ be a strictly increasing function defined on [c, c] by ψ(c) = min{β(c), γ(c)} .

If ψ satisfies Condition A, an equilibrium bidding strategy in Model M is as follows: (i) in

the first phase, seller i submits the bid of ψ(ci), (ii) in the second phase, the buyer bargains

with the seller with the least min{bi, γ(ci)}, and reaches an agreement with him.

We consider a variation of Model M . During the second phase, the seller does not know

the ex post cost ci of a seller i until she enters a round of bilateral bargaining with the seller.

Thus, the buyer cannot use {ci | i = 1, . . . , m} in deciding the order of bargaining. This is

similar to the sequential bargaining model of Section 5.3. For this model, we can establish a

result similar to Theorem 5.1, except that the buyer’s strategy is to bargain with the seller

with the least bi until an agreement is reached.

5.2 Fixed Costs of Auction and Bargaining

In our discussion in Section 4, we have assumed that the cost of conducting a bilateral

bargaining or auction is negligible. Such an assumption is valid, for example, when there is

a good infrastructure for conducting auction or bargaining transactions, or when the buyer’s

relationship with the sellers have been well maintained such that the auction or bargaining

outcomes can be reached without much effort.

In this section, we consider the case where there are positive fixed costs for auction and

bargaining, denoted by KA and KB, respectively. Then, in the auction-only model, the buyer

incurs the cost of KA, and in the sequential bargaining model, the buyer incurs the cost of

at least one KB (see the discussion in Section 5.3). In the A-B model, the buyer incurs

the fixed costs associated with the auction and one round of bargaining, i.e., KA +KB. By
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comparing these fixed costs with the expected profits of the buyer in each of these models,

the buyer can select the procurement system that maximizes her expected profit.

5.3 Sequential Bargaining and Optimal Stopping

We consider the sequential bargaining model where the buyer enters a series of bilateral

bargaining with each of n+1 potential sellers in an exogenously determined order. Without

loss of generality, we assume that this order is given by i = 1, 2, . . . , n + 1. In Section 3.2,

we have assumed that the buyer knows the ex post cost ci of each seller i, and it has been

shown that the buyer’s optimal choice is to purchase from the most efficient seller by paying

γ(mini ci). In this section, we assume that the buyer does not know the realized cost ci of

seller i until she starts a bargaining process with this seller. Furthermore, the buyer cannot

resume bargaining with a seller once she starts bargaining with another seller, i.e., the buyer

cannot go back to a previous seller.

We note that this model is an alternative to the A-B model discussed in Sections 3 and

4. In both models, the buyer does not know the seller’s cost, unless she initiates bargaining

with that seller. In the A-B model, the buyer uses an auction to select one seller with whom

she bargains; in the sequential bargaining model discussed here, the buyer does not use any

auction, but uses a series of bargaining rounds. In this subsection, we outline a basic analysis

for the sequential bargaining model.

We assume that a seller’s opportunity cost is independently drawn from a common dis-

tribution F . In this case, we show that the buyer’s profit-maximizing decision strategy of

whether to accept a bargaining outcome with each seller is an optimal stopping problem.

The following lemma for the optimal stopping criterion follows from Ferguson [21].

Lemma 5.2. In the sequential bargaining model without the buyer’s a priori knowledge of

ci’s, the optimal stopping criterion for the buyer is to accept the bargaining outcome with the

j’th seller if cj ≤ Aj where

Aj =

{

∞, j = n + 1
E[min{Cj+1, Aj+1}], j ∈ {n, n− 1, . . . , 1}.

Furthermore, if Ci is uniformly distributed on [0, 1], then An = 1/2 and Aj = Aj+1 −A2
j+1/2

for j = n− 1, . . . , 1.

Given the above decision rule of the buyer, seller j will choose to sell to the buyer at the

price of γ(cj) if cj ≤ Aj . If Aj < cj ≤ γ(Aj), then he will procure and receive γ(Aj) instead

31



since it is still profitable to do so. Otherwise, he will not reach an agreement with the buyer

and the buyer will start bargaining with the next seller j + 1.

We can easily extend the above analysis to the case where the buyer incurs a fixed cost KB

for each round of bargaining. This cost is incurred, for example, when the buyer researches

a seller’s ex post cost at the beginning of bargaining with the seller. Then, it can be shown

that the optimal stopping criterion of Lemma 5.2 remains valid except for the following

modification: for j ∈ {n, n− 1, . . . , 1},

Aj = E[min{Cj+1, Aj+1 −KB/λ}].

(Note that 1 − λ is the bargaining power of the seller.)

In the special case where the buyer knows that the first seller is the most efficient seller,

i.e., c1 = mini ci, then it is optimal for the buyer to reach an agreement with the first seller.

In this case, the buyer pays γ(c1) = mini γ(ci).

6. Conclusion

In this paper, we have examined a combined auction-bargaining model in a procurement

setting, where the buyer procures an indivisible item from one of many competing sellers.

The model consists of two phases: in the auction phase, the buyer selects the seller, and in

the bargaining phase, the final price is determined. The winning bid in the auction phase

serves as an outside option for the buyer in the bargaining phase. As a result, each seller’s

bidding strategy in the auction phase strikes a balance between increasing his probability

of winning, and increasing the final price in case that he wins. In this paper, we take the

perspective of the expected profit maximizing buyer, and allow the buyer to set a reserve

price in the first phase.

For our model, we find a symmetric first-phase bidding strategy for the sellers, which is

simple and intuitive to understand. We show that the combined auction-bargaining model

produces a higher expected profit to the buyer than the standard auction or sequential

bargaining models. The buyer’s expected profit can be improved by setting an appropriate

reserve price in the auction phase, and in many cases, the optimal reserve price can easily

be computed from the first order condition. We also show that the buyer prefers conducting

the auction phase with the first price auction to the second price auction. Our results are

illustrated using a uniform distribution example.
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We believe that there are several interesting extensions that can be addressed in the

framework of the auction-bargaining model proposed above. For example, when the sellers

are asymmetric, both in terms of the distribution of cost and the bargaining power, it would

be interesting to investigate what kind of sellers would benefit from the auction-bargaining

model as opposed to the standard auction or bargaining.
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A. Proof of Lemma 4.1

Proof. We prove ψ(c) ≤ γ(c). Suppose, by way of contradiction, ψ(c) > γ(c). Suppose a

seller has the ex post cost c and places a bid of ψ(c) in the auction phase of the A-B model. If

he becomes the winning bidder, then the final price outcome in the second-phase bargaining

process will be γ(c) since γ(c) < ψ(c). Since the probability density function f is strictly

positive at c ∈ (c, c), by perturbing his bid lower, the seller strictly increases the probability

of his winning without affecting the outcome of the final price in the scenario in which he

wins the auction phase. Thus, bidding more than γ(c) in the auction phase is not optimal

for the seller.

B. Proof of Theorem 4.2

Proof. To show that ψ(c) = min{β(c), γ(c)} is a symmetric equilibrium, we suppose that all

the other sellers except seller i ∈ {1, 2, . . . , n+ 1} follow this strategy, and show that seller i

achieves the maximum expected profit by also following ψ. Suppose c ∈ [c, c] is the ex post

cost of bidder i, and let b be his first-phase bid. By Lemma 4.1, b ≤ γ(c). Also, it is clearly

not optimal for seller i to place a bid lower than ψ(c). Thus, ψ(c) ≤ b ≤ γ(c).

Let z be defined by ψ(z) = b. Since ψ is a strictly increasing and continuous function, z

is well-defined. We refer to z as the implied cost associated with his bid b. From the above

argument, ψ(c) ≤ ψ(z) ≤ γ(c). Then, seller i’s expected profit is given by the probability

of winning multiplied by his expected profit, conditioned on his winning the auction. The

probability of winning the auction phase is G(z). If seller i wins the auction phase, then

the price outcome of the bargaining phase is the minimum of his bid ψ(z) and γ(c), i.e.,

min{ψ(z), γ(c)} which is ψ(z). Thus, seller i’s expected profit is

Πψ
i (z, c) = G (z) (ψ(z) − c) = G (z) (min{β(z), γ(z)} − c) . (2)

We prove that, if ψ satisfies Condition A, Πψ
i (z, c) is maximized at z = c by showing that

Πi(z, c) increases in z if z < c and decreases in z if z > c. We consider the following three

cases.

Case β(z) < γ(z): Since β and γ intersect finitely many times, there exists ǫ > 0

such that β(z′) < γ(z′) for any z′ ∈ (z − ǫ, z + ǫ). Thus, it follows ψ(z′) = β(z′) and

Πi(z
′, c) = G (z′) (β(z′) − c). Differentiating Πψ

i (z, c) with respect to z in (z− ǫ, z + ǫ) when
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ψ(z) = β(z), we obtain

∂

∂z
Πψ
i (z, c) = −g(z)(β(z) − c) +G(z)

∂

∂z
β(z) .

Since β(z) = E[Y |Y > z] follows from Lemma 3.1, it is straightforward to verify

∂

∂z
β(z) =

g(z)

G(z)
(β(z) − z) . (3)

Combining these two equations,

∂

∂z
Πψ
i (z, c) = g(z)(c− z) .

If z < c, then the above expression is positive, and perturbing z higher increases the expected

profit. Otherwise, perturbing z lower increases the expected profit.

Case γ(z) < β(z): As before, there exists ǫ > 0 such that γ(z′) < β(z′) for any z′ ∈

(z − ǫ, z + ǫ). Differentiating the expected profit with respect to z when ψ(z) = γ(z), we

obtain

∂

∂z
Πψ
i (z, c) = − g(z)(γ(z) − c) +G(z)λ . (4)

Note that by Lemma 4.1, we obtain γ(z) = ψ(z) ≤ γ(c), which implies z ≤ c. If z < c, then

ψ(z) = γ(z) and Condition A together imply that (4) is nonnegative since

λ ≥
g(z)

G(z)
(γ(z) − z) ≥

g(z)

G(z)
(γ(z) − c) ,

where the first inequality follows from Condition A and the second inequality follows from

z < c. Thus, perturbing z higher weakly increases the expected profit.

Case γ(z) = β(z): There exists ǫ > 0 such that either β(z′) < γ(z′) or β(z′) > γ(z′) for

either z′ ∈ (z, z + ǫ) or z′ ∈ (z − ǫ, z). Then, apply the argument used in one of the two

cases discussed above accordingly.

If Condition A does not hold, then there exists c such that ψ(c) = γ(c) < β(c) and

∂
∂z

Πψ
i (z, c)

∣

∣

z=c
< 0; thus, bidding lower than γ(c) improves the profit. Thus ψ is not an

equilibrium bidding strategy. (See the proof of Lemma 4.6 for the detail.)
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C. Proof of Lemma 4.3

Proof. To prove the lemma, suppose γ′(c) = λ ≥ β ′(c) for any c ∈ [c, c]. Recall ψ(c) =

min{γ(c), β(c)}. Since ψ(c) = γ(c) implies γ(c) ≤ β(c),

g(c)

G(c)
(γ(c) − c) ≤

g(c)

G(c)
(β(c) − c) =

∂

∂c
β(c) ,

where the equality follows from the definition of β (see (3)). Thus, from β ′(c) ≤ λ, we obtain

(1), completing the proof.

D. Proof of Theorem 4.5

Proof. Let ψ be a continuous increasing function defined on [c, c]. First, if ψ satisfies both (i)

and (ii), then an argument similar to the proof of Theorem 4.2 shows that ψ is an equilibrium.

Suppose now ψ is a symmetric equilibrium function. We show that ψ satisfies (i) and

(ii). By Lemma 4.1, we obtain ψ(c) ≤ γ(c) for each c ∈ [c, c], proving (i). For (ii), let

c◦ ∈ (c, c) such that ψ(c◦) < γ(c◦). Let s = sup{c < c◦|ψ(c) = γ(c) or c = c} and

t = inf{c > c◦|ψ(c) = γ(c) or c = c}. By the continuity of both ψ and γ, it follows c◦ ∈ (s, t).

Let Πi(z, c) be the seller i’s expected profit when seller i submits the bid of ψ(z) when his

cost is c, and all other bidders follow the bidding strategy ψ. Since ψ is an equilibrium,

Πi(z, c) for fixed c is maximized when z = c. Differentiating Πi(z, c) = G (z) (ψ(z) − c) with

respect to z in (s, t), we obtain

∂

∂z
Πi(z, c) = − g(z)(ψ(z) − c) +G(z)

∂

∂z
ψ(z) .

It is straightforward to verify that the family of solutions for ψ satisfying the above differential

equation to be 0 at z = c is

βK(c) = E[Y |Y > c] +
K

G(c)
,

parameterized by K. The choice of K is unique by the boundary condition at c◦, namely

βK(c◦) = ψ(c◦). Thus, ψ(c) = βK(c) for c ∈ [s, t]. Thereby, we verify (ii).

Furthermore, we prove the property of ψ in the neighborhood of c. Recall from Section

2 our assumption v ≥ c, which implies γ(c) ≥ β0(c) = c. By the first part of Theorem

4.5, in the interval [am−1, am] where am = c, we have either ψ(c) = βK(c) for some K, or

ψ(c) = γ(c). In the former case, K cannot be positive since βK(c) should be well-defined
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and finite for all c in the closed interval [am−1, am]. Also, K cannot be negative since βK(c)

should be increasing in the neighborhood of c. Thus, we only need to consider β0 and γ.

If γ(c) = β0(c), then the above result shows that ψ(c) = γ(c) = β0(c) = c. We proceed

with the case γ(c) > β0(c), and will prove ψ(c) = β0(c) in [am−1, am]. Suppose by the way

of contradiction that ψ(c) = γ(c) in this interval. Then, since g(c) = n · (1 − F (c))n−1f(c)

and G(c) = (1 − F (c))n, we have

g(c)

G(c)
(γ(c) − c) = n ·

f(c)

1 − F (c)
(γ(c) − c) .

By the assumption that f(c) > 0 for all c ∈ [c, c] where c <∞ (from Section 2), it follows that

the above expression can be arbitrarily large as c → c. In particular, the above expression

exceeds λ, which violates Condition A. Thus, we conclude ψ(c) = β0(c) in [am−1, am].

E. Proof of Lemma 4.6

Proof. We prove the lemma by contradiction. Suppose there exists c in the interior of Γψ

such that Inequality (1) does not hold, i.e., ψ(c) = γ(c) and

λ <
g(c)

G(c)
(γ(c) − c) . (5)

It follows that there exists ǫ > 0 such that (c − ǫ, c) ⊆ Γψ, and the above inequality still

holds in this interval. Suppose that all the other bidders follow the bidding strategy ψ. We

proceed to show that seller i’s expected profit is higher when he bids ψ(c− ǫ) compared to

ψ(c), which violates the definition of an equilibrium.

Differentiating the expected profit of seller i with respect z ∈ (c− ǫ, c), we obtain from

(4),

∂

∂z
Πψ
i (z, c) = −g(z)(γ(z) − c) +G(z)λ

= G(z) ·

(

−
g(z)

G(z)
(γ(z) − c) + λ

)

.

which is negative by the choice of ǫ above. Thus, Πi(c− ǫ, c) < Πi(c, c), and it follows that

ψ is not an equilibrium strategy.
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F. Proof of Theorem 4.9

Proof. From Lemma 4.1, recall ψ(c) ≤ γ(c) for any c ∈ (c, c). Thus, if we can prove

ψ(c) ≤ β(c) for c ∈ (c, c), then we obtain ψ(c) ≤ min{β(c), γ(c)}, which implies the required

result.

Therefore, for the remainder of the proof, we prove ψ(c) ≤ β(c) for c ∈ (c, c). Consider

the characterization of ψ(c) given in the statement of Theorem 4.5. From the discussion

following Lemma 4.6, we have ψ(c) = β0(c) ≤ γ(c). Let

s1 = min{c̃ ∈ [c, c] | β0(c) ≤ γ(c) for any c ∈ [c̃, c]} .

If s1 = c, then we must have ψ(c) = β(c), which proves the required result. Otherwise,

define

s2 = min{c̃ ∈ [c, s1] | β0(c) ≥ γ(c) for any c ∈ [c̃, s1]} .

Then, from the continuity of ψ and the monotonicity of βK in K, it follows that, for any

c ∈ [s2, s1], we have ψ(c) = γ(c) or ψ(c) = βK(c) for some K ≤ 0. Therefore, if s2 = c, then

the required result holds. However, if s2 > c, then the choice of s2 implies β ′
0(s2) > γ′(s2) = λ,

which is contrary to Condition A (apply the same logic as the proof of Lemma 4.3). Thus,

we conclude that s2 = c.

G. Proof of Theorem 4.10

Proof. From the remarks following Theorem 4.5, we obtain ψ(1) = 1 . Thus, by applying

Theorem 4.5, the right-most segment is the β0 segment; more precisely, let s = inf{c ∈

[0, 1] | β0(c) ≤ γ(c) or c = 0 }. Then, ψ(c) = β0(c) for all c ∈ [s, 1]. Since s = 0 implies that

the statement of the theorem holds, we proceed by assuming s > 0. Then, it is easy to verify

that if K > 0, then βK(c) > β0(c) > γ(c) in [0, s), implying that βK and γ do not intersect

in [0, s); thus, βK does not specify any of the segments. If K < 0, then βK crosses γ at most

once at [0, s], in which case, it crosses from above to below (not from below to above). Then,

because of the constraint ψ(c) ≤ γ(c), we cannot construct a continuous increasing function

ψ satisfying ψ(c̃) = βK(c̃) < γ(c̃) and ψ(ĉ) = βK(ĉ) < γ(ĉ) where 0 ≤ c̃ < ĉ ≤ 1. Thus, βK

does not specify any of the segments.
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H. Uniform[0,1] Cost Example in the First Price A-B

Model: Buyer’s Expected Profit

With the Uniform [0, 1] cost distribution, the unique equilibrium bidding strategy in the A-B

model is given by Theorem 4.10 of Section 4.1. Here, we give a closed-form expression for

the buyer’s expected profit in the A-B model, and compare it to the other models.

Recall that the buyer’s expected profits in the auction-only model and in the sequential

bargaining model are given by the following expressions. These results are straightforward

to verify.

ΠA = v − (n + 1) E
[

G(c)β(c)
]

= v − (n + 1)

∫ 1

0

β(c)G(c)f(c)dc = v −
2

n+ 2
,

ΠB = v − (n + 1) E
[

G(c)γ(c)
]

= v − (n + 1)

∫ 1

0

γ(c)G(c)f(c)dc = λ · v −
λ

n+ 2
.

Note that the ranking between ΠA and ΠB depends on the values of λ and v.

We now compute the expected profit ΠAB of the buyer in the A-B model. Suppose that

the two linear functions β and γ intersect in [0, 1]. The intersection point is given by

s =
1 − (n+ 1)(1 − λ)v

(n+ 1)λ− n
.

An algebraic manipulation shows

ΠAB = v − (n + 1)E[ψ(c)G(c)]

= v − (n + 1)

(
∫ s

0

γ(c)G(c)f(c)dc+

∫ 1

s

β(c)G(c)f(c)dc

)

= v −
2

n + 2
+ [1 − (n + 1)(1 − λ)v]

1 − (1 − s)n+1

n+ 1

+ [(n+ 1)λ− n]

[

s(1 − s)n+1

n+ 1
−

1 − (1 − s)n+2

(n+ 1)(n+ 2)

]

.

I. Proof of Lemma 4.13

Proof. To derive optimal reserve price r∗AB in the first price A-B model, we calculate the

expected profit of the buyer with the reserve price r and maximize her expected profit with
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respect to r. The expected profit of the buyer in the first price A-B model with reserve price

r is

Πψr

AB =
(

1 − (1 − F (r))n+1) · v − (n+ 1) ·

∫ r

c

ψr(c)G(c)f(c) dc .

Differentiating the expected profit with respect to r yields,

∂

∂r
Πψr

AB = (n + 1) ·G(r) · f(r) · (v − r) − (n+ 1) ·

∫ r

c

G(c) · f(c) ·
∂

∂r
ψr(c)dc .

Since ψr(c) = min{βr(c), γ(c)}, differentiating ψr with respect to r gives

∂

∂r
ψr(c) =

{

∂
∂r
βr(c) = G(r)

G(c)
if ψr(c) = βr(c)

∂
∂r
γ(c) = 0 if ψr(c) = γ(c) .

Substituting this into the above differentiation of the expected profit, we have

∂

∂r
Πψr

AB = (n + 1) ·G(r) ·

[

f(r) · (v − r) −

∫ r

c

I{βr(c) ≤ γ(c)} · f(c) dc

]

.

Note that the first order condition implies ∂Πψr

AB/∂r = 0. Since r < c and G(r) is strictly

positive for any r ∈ [c, c), we obtain

f(r) · (v − r) −

∫ r

c

I{βr(c) ≤ γ(c)} · f(c) dc = 0

as required.

J. Proof of Theorem 4.17

Proof. Suppose that seller i’s ex post cost is c. We compare the payment received by seller

i in the first price and the second price A-B models. Since the first phase bidding functions

in Theorems 4.10 and 4.16 are symmetric and increasing, seller i wins the auction phase if

c < Cj for each j 6= i. Otherwise, seller i does not receive any payment from the buyer.

We compare the payments received by seller i given that he wins the auction phase of

the A-B model, i.e., Y > c. Let P 1
i (c, Y ) and P 2

i (c, Y ) denote these quantities in the first

price and the second price A-B models, respectively. (The superscript indicates the first

price or second price auction.) Let ψ1 and ψ2 denote the equilibrium bidding strategy given

in Theorems 4.10 and 4.16, respectively. Then,

P 1
i (c, Y ) = min{γ(c), β(c)}

P 2
i (c, Y ) = min{γ(c), Y } .
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Let m1
i (c) denote the ex post conditional expected revenue received by seller i when his

realized cost is c, i.e., the expected value of P 1
i (c, Y ) where the expectation is taken for all

values of Y satisfying Y > c. Similarly, define m2
i (c). Then,

m1
i (c) = min{γ(c), β(c)} = min{γ(c),E[Y | Y > c]}

m2
i (c) = E[min{γ(c), Y } | Y > c] .

Observe that min{γ(c), y} is a concave function with respect to y. We apply Jensen’s Inequal-

ity to this function for the conditional distribution [Y |Y > c], and obtain m1
i (c) ≥ m2

i (c).

Since the ex post expected revenue received by seller i is higher in the first price A-B model,

the buyer’s expected profit is lower in the A-B model.

K. Proof of Theorem 5.1

Proof. From the discussion preceding the statement of this theorem, it is easy to verify that

the buyer’s strategy is the best response to the sellers’ bidding strategy, which is symmetric

and increasing.

We now consider each seller i’s best response given that the buyer and all the other sellers

follow the strategy given in the statement. Suppose that seller i has the cost of ci and bids bi

in the first phase. Since ψ is an increasing function, by an argument in the proof of Theorem

4.2, there exists z such that ψ(z) = bi and ψ(c) ≤ ψ(z) ≤ γ(ci). Without loss of generality,

suppose that i = n+1, and that the other sellers j ∈ {1, . . . , n} are indexed in an increasing

order of bj . Since bj = ψ(cj) = min{β(cj), γ(cj)} for j ∈ {1, . . . , n}, sellers other than n + 1

are indexed in an increasing order of ψ(cj), and also in an increasing order of cj .

Thus, seller i = n + 1 is one of m sellers selected in the first phase if and only if

min{bi, γ(ci)} < ψ(cm) (assuming no ties). Since bi = ψ(z) ≤ γ(ci), this condition is

equivalent to ψ(z) < ψ(cm). Furthermore, seller i wins in the second phase if and only if

bi = ψ(z) < min{ψ(cj), γ(cj)} = ψ(cj) for each j = 1, . . . , m. In summary, seller i is selected

to procure if and only if z < c1. In the case that seller i wins, the final price is ψ(z) and his

profit is ψ(z) − c. Therefore, we obtain (2), and the remainder of the proof is similar to the

proof of Theorem 4.2.
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