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We consider a discrete-time capacity expansion problem involving multiple product families, multiple machine types, and non-
stationary stochastic demand. Capacity expansion decisions are made to strike an optimal balance between investment costs and
lost sales costs. Motivated by current practices in the semiconductor and other high-tech industries, we assume that only minimal
amounts of finished-goods inventories are held, due to the risk of obsolescence. We assume that when capacity is in short supply,
management desires to ensure that a minimal service level for all product families is obtained. Our approach uses a novel assumption
that demand can be approximated by a distribution whose support is a collection of rays emanating from a point and contained
in real multi-dimensional space. These assumptions allow us to solve the problem as a max-flow, min-cut problem. Computational
experiments show that large problems can be solved efficiently.

1. Introduction

The semiconductor industry has become one of the leading
industries in the US economy. A 1998 study commissioned
by the Semiconductor Industry Association shows that chip
sales increased 15% annually from 1987 to 1996, moving the
industry from twentieth to fourth on the list of top manufac-
turing industries (Anon, 1998). One of the features of the
semiconductor manufacturing process is intensive capital
investment. A modern fabrication facility (fab) being built
today costs more than a billion dollars. More than 60% of
the total cost is solely attributed to the cost of tools. In ad-
dition, in most existing fabs millions of dollars are spent
on tool procurement each year to accommodate changes
in technology. Therefore, making efficient usage of current
tools and carefully planning the purchase of new tools are
of great importance.

However, capacity planning decisions in the semiconduc-
tor industry are very challenging. Some of the main reasons
for this are as follows.

� The consumer electronics market: In the consumer elec-
tronics business, product design cycles and life cycles are
rapidly shrinking. Competition is fierce and the pace of
product innovation is high. Consequently, the demand
for new semiconductor products is becoming increasingly
difficult to predict.
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� Rapid changes in technology: In recent years the semi-
conductor industry has seen line width shrinkages ap-
proximately once every 18 months. Fabs dedicated to
300 millimeter wafers have been recently announced
by most large semiconductor manufacturers. These and
other technological advances require companies to con-
tinually replace many of their tools that are used to man-
ufacture semiconductor products.

� Long procurement lead time: The lead time for procur-
ing a new tool usually ranges from 3 months to a year.
Many of the most expensive tools require 18 months.
As a result, plans for expanding and upgrading capac-
ity must be made based on demand forecasts reaching
2–3 years into the future. These demand forecasts are
subject to a very high degree of uncertainty.

� High cost of tools: It is reported that, in 1996, the industry
reinvested 23% of its total revenue in capacity expenses,
mostly (60–70%) for tool purchases. It is also projected
that the cost of semiconductor manufacturing tools will
be steadily increasing in the future. Thus, a small improve-
ment in the tool purchase plan could lead to huge impact
on the manufacturers.

In this paper, we will propose a discrete-time, finite-
horizon analytical model for optimizing tool purchase
plans under non-stationary stochastic demand. Capacity
expansion decisions strike an optimal balance between lost
sales costs and discounted tool purchase costs. Motivated
by current practices in the semiconductor and other high-
tech industries we assume that backorders are negligible,
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however, when semiconductor companies lack capacity
they often postpone delivery dates to their clients. This is
formally treated like a backorder. However, deferred deliv-
ery dates frequently prompt the client to defer subsequent
orders, so the end result can be closer to lost sales than
to backorders. We also assume that negligible amounts of
finished-goods inventories are held due to the risk of ob-
solescence. This assumption leads to important simplifica-
tions. This assumption closely approximates the practices of
many semiconductor companies, but not all of them. There
are semiconductor companies that hold a substantial semi-
conductor finished-goods inventory in order to smooth out
production.

We aggregate products into the same product family if
they consume identical or nearly proportional amounts of
capacity on each of the key tool groups. For example, two
logic products might have four and five layers of metal re-
spectively. One wafer of the four-layer product might con-
sume nearly the same amount of capacity on key tool groups
as 0.8 wafers of the five-layer product. If so, for long range
capacity planning purposes, they could be aggregated into
a single product family by appropriately adjusting the units
of measure.

We use a novel demand model. If there are K different
product families, then the demand D(t) is a random vector
in K-dimensional real space, with a finite mean. In each time
period t we assume that a collection of rays emanates from
a point. These rays are a subset of the non-negative orthant
of K-dimensional real space. Most of our results depend
on an assumption that the random demand vector D(t)
has support on these rays. Computational results suggest
that our demand model can effectively approximate a multi-
dimensional demand vector with support on all of �K

+.
Whereas capacity decisions are made in period 1, pro-

duction decisions are adaptively made at each period. One
consequence of the no-backorder, no-inventory assumption
is that lost sales can be computed by comparing production
in a period to the demand in the same period. We assume
that when capacity is in short supply, management desires
to ensure a minimal service level for all product families.
Specifically, we assume that if D(t) lies on one of the given
rays as described above, and if there is not enough capacity
to meet the demand in period t , then the point on the ray
that is capacity-feasible and as close to D(t) as possible will
correspond to production in period t . If the rays emanate
from the origin, this strategy will equalize the fill rate of
the different product families. If they emanate from a dif-
ferent point, this policy will equalize a service measure that
is calibrated differently for different product families.1

In a classical approach to stochastic programming mod-
els, a continuous distribution is approximated by a finite
collection of points sampled from the distribution. If we
had taken this approach, it would be easy to formulate our

1See Fig. 2.

problem as a stochastic integer linear programming prob-
lem. However, a large number of points would be necessary
to adequately model the demand. Our approach is different.
By using distributions that are supported on rays instead of
points, the number of rays needed to model a continuous
distribution may be smaller. We prove that our formulation
of this problem may be transformed to a max-flow net-
work problem, which can be efficiently solved by available
software.

The rest of this paper is organized as follows. In Section 2,
related literature is reviewed. Section 3 presents our demand
model, which is used to formulate our problem in Section 4.
In Section 5 we provide details of the numerical tests, and
we conclude in Section 6.

2. Literature review

In this section we present a brief discussion of stochas-
tic capacity expansion problems, especially single-location
models. An extensive survey of early work, capturing ap-
plication areas and multi-location models as well as single-
location models, is provided in Luss (1982). A discussion
of the models that appeared after Luss (1982) is given in
Çakanyıldırım et al. (1999).

A general approach to discrete-time capacity planning
models under uncertainty is stochastic programming (Wets,
1989; Birge and Louveaux, 1997). Generally demand un-
certainty is represented in terms of demand scenarios.
Eppen et al. (1989), Escudero et al. (1993) and Chen
et al. (1998) use scenarios in studying capacity planning
for manufacturing industries. However, in order to make
the scenario-based model solvable, only a limited number
of scenarios can be used. Consequently it is usually im-
possible to accurately model multi-dimensional demand
processes.

Karabuk and Wu (1999) treat both demand and capacity
as uncertain. A multi-stage stochastic program is formu-
lated. Demand and capacity uncertainty is incorporated
through a scenario structure. Then the problem is decom-
posed to reflect a decentralized decision-making process.
For the service industries Berman et al. (1994) provide a
stochastic programming model to expand capacities at mul-
tiple loosely coupled locations.

Another approach for discrete-time models is Markov
Decision Processes (MDPs). Using MDPs, Bhatnagar
et al. (1999) lay out a capacity expansion model cap-
turing machine disposals and inventory holding. Like
stochastic programming, MDP is a general purpose tool.
It can provide great flexibility in modeling; however,
such flexibility makes it extremely difficult (or impossi-
ble) to find solutions to problems of realistic size and
complexity.

If time is a continuous variable rather than a discrete
one, the capacity expansion problem may be formulated as
an optimal control problem. For a single product with a
stochastic demand process, Davis et al. (1987) regulate the
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expansion rate with an investment rate function which is
the control variable. As soon as the cumulative investment
reaches the random price of a discrete capacity unit, that
unit becomes available. For multiple products with deter-
ministic demand rates, Sethi et al. (1995) study machine ca-
pacity expansion when machines can break down randomly.
They propose to plan capacities using the mean available
capacity numbers. When breakdowns and repairs happen
sufficiently fast, they show that the cost of their expansion
plan asymptotically converges to the optimal cost.

In the economics community, the capacity expansion
problem has been recently addressed by Dixit (1997), and
Eberly and Van Mieghem (1997). They established struc-
tural properties for expansion and contraction policies for
multiple factors contributing to capacity. The latter paper
provides a closed-form solution for the optimal policy in
the case of iid stochastic processes and stationary costs.
For certain capacity expansion cases, Rocklin et al. (1984)
establish the optimality of (s, S) policies.

There have been efforts to convert stochastic expansion
problems to equivalent deterministic problems. One of them
is Bean et al. (1992), which provides such a conversion
by modifying the interest rate when demand is either a
Brownian motion or a transformed birth-death process.

Over long horizons, with the introduction of new tech-
nologies, new types of machines become available for pur-
chase. Rajagopalan et al. (1998) study the replacement of
old machines with new ones, under both certain and uncer-
tain technology arrival times, and with deterministic, non-
decreasing demand. They show some structural properties
of the optimal solution and exploit those with a dynamic
program.

We now turn to the capacity expansion studies specif-
ically targeting the semiconductor industry. Although it
is a deterministic rather than a stochastic capacity plan-
ning model, we mention the Capacity optimization Plan-
ning System (CAPS) (Bermon and Hood, 1999) because it
does an excellent job of capturing the capacity relationships
between products and tools. Bard et al. (1999) formulate the
capacity expansion problem as a nonlinear integer mathe-
matical program that finds a tool-set configuration to mini-
mize average cycle time, within a given budget. Their model
is based on the assumption of a small number of products,
and it uses queuing network approximations. Chou and
Everton (1996) use simulation to study tool capacity and
operator availability at development wafer fabs. Angelus
et al. (1997) consider capacity expansion with fixed costs,
and stochastically increasing and correlated demand. They
show that the optimal expansion policy is (s, S) type where
both parameters depend on the most recently observed de-
mand. Swaminathan (2000) captures demand uncertainty
with a two-stage stochastic mixed integer linear program.
Since this problem becomes very large even with a few sce-
narios, he provides Lagrangian-based bounds and heuris-
tics. It is subsequently extended in Swaminathan (2002) to
capture production planning decisions.

Treating tool purchase times as continuous decision vari-
ables, Çakanyıldırım et al. (1999) provide a nonlinear pro-
gram to minimize the expected lost sales costs and capacity
costs, for a fab producing a single product but experiencing
uncertain demand. In the single product case, the analysis is
simplified after observing that the optimal sequence of ma-
chine purchases is independent of demands. However, this
is not true for the multi-product case because the allocation
of capacity to products is not straightforward.

The current paper extends Çakanyıldırım et al. (1999)
to the multi-product discrete-time case by proposing a spe-
cific capacity allocation scheme. It presents a practical so-
lution approach for a problem similar to the one studied
in Swaminathan (2000, 2002). Unlike the other models de-
scribed above, our model is capable of dealing with prob-
lem instances of realistic scale, i.e., large numbers of time
periods, products and tools. It captures the uncertainty in
non-stationary demand using an innovative model. When
combined with our capacity allocation scheme, this demand
model is not only tractable but much more compelling than
using a small number of demand scenarios in order to rep-
resent a multi-dimensional random vector.

3. Notation and demand model

We use the following notation. Note that in the rest of this
paper, uppercase letters are used to represent random vari-
ables. The corresponding lowercase letter is used to rep-
resent a realization of a random variable. Thus d(t) is a
specific realization of D(t). Vectors and matrices are in
boldface.

t = time index; t ∈ {1, . . . , T} where T is the time hori-
zon we need to consider in the model;

m = tool type index; m ∈ {1, . . . , M};
k = product family index; k ∈ {1, . . . , K};
λ(m) = purchase lead time for a type m tool;
D(t) = random demand vector in period t , D(t) ∈ �K ;
u = utilization matrix; the (m, k)th component repre-

sents the units of capacity-time required at a type
m tool if one unit of product family k is produced;

κ(t) = capacity at time period t ; κ(t) ∈ �M . Also, κm(t)
is the capacity on tool type m in period t ;

P(t) = production plan in period t ; P(t) ∈ �K . Specifi-
cally Pk(t) is the production of product family k
in period t .

To evaluate the average lost sale cost, we need to
know the distribution of the random demand vector
D(t) ∈ �K . We use the following novel approach to model
demand.
Assumption 1. (Ray-based demand model) The random
demand D(t) can be expressed as

D(t) = b(t) + �I(t)(t)φI(t)(t)
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where b(t) is a deterministic vector in �K
+, I(t) is a discrete

random variable with finite support such that pi(t) is the
probability that I(t) = i, φi(t) is a deterministic unit-norm
vector in �K

+, and �i(t) is a continuous non-negative ran-
dom scalar, independent of I(t).

In each time period t , a finite number of vectors φi(t)
define a collection of rays that emanate from b(t) and are
contained in �K

+. The support of D(t) is the union of these
rays. (See Fig. 1.) The random variable I(t) determines
the ray on which D(t) lies. After the ray has been selected
(i.e., if we condition on I(t) = i), the continuous random
variable �i(t) determines how far one moves from b(t) in
the direction φi(t) before reaching the demand D(t). Thus
�I(t)(t) = |D(t) − b(t)|. If we set b(t) = 0, then the product
mix in the demand vector is determined by the random vari-
able I(t), because Dk(t)/D1(t) = φki(t)/φ1i(t) for all prod-
uct families k. With b(t) = 0, the magnitude of the demand
vector is |D(t)| = �I(t)(t). The magnitude is correlated with
the product mix because the distribution of �i(t) depends
on i.

In the remainder of this section, we discuss one motiva-
tion for introducing the ray-based demand model (Assump-
tion 1). We also describe a practical approach for obtaining
parameters for the ray-based demand model. Consider a
demand vector D∗ that has a continuous density with sup-
port in �K

+. Suppose we want to compute an approximation
to E[f (D∗)] for some function f . (In the capacity planning
problem presented in this paper, the function f corresponds
to the lost sales in period t .) One common approach is to
approximate E[f (D∗)] with (1/|S|) ∑

s∈S f (s), where S is a
set of points sampled from D∗. The variance of the estimate
is (1/|S|) var f (D∗). This classical approximation is often
embedded in optimization algorithms, usually formally by
assuming that D(t) has support on S.

Our ray-based demand model can be derived from an im-
proved estimate of E[f (D∗)], based on a variance-reduction
technique called conditioning. Define Φ = D∗/|D∗|, and
define �∗

Φ by D = �∗
Φ × Φ. The conditioning approach is

viable because we can analytically evaluate E�∗
φ
[f (�∗

φ × φ)]

Fig. 1. The support of D(t) with b(t) = 0.

for any given unit vector φ (see Section 4). We randomly
sample points s ∈ S from D∗, and we compute φs = s/|S|.
The ray-based estimate of E[f (D∗)] is

1
|S|

∑
s∈S

E�∗
φs

[f (�∗
φs

× φs)]. (1)

This is an unbiased estimator of E[f (D∗)]. The variance of
this estimator is

1
|S| var Φ[E�∗

Φ
[f (�∗

Φ·Φ)]].

The standard conditioning inequality states that (Law and
Kelton, 2000)

var Φ[E�∗
Φ

[f (�∗
Φ × Φ)]],

= var [f (D∗)] − E Φ
[
Var�∗

Φ
[f (�∗

Φ × Φ)]],
≤ var [f (D∗)].

Thus, the ray-based estimate (1) of E[f (D∗)] has a lower vari-
ance than the more traditional estimate (1/|S|) ∑

s∈S f (s).
To see the relationship between the ray-based estimate

of E[f (D∗)] and our ray-based demand model, assume that
we obtain the parameters for D(t) from D∗ in the following
manner.

Step 1. b(t) = 0;
Step 2. P(I(t) = i) = pi = 1

|s| ;
Step 3. { s

|s| : s ∈ S} = {φi(t) : 1 ≤ i ≤ |S|}; and
Step 4. the distribution of �i(t) is equal to that of �∗

φi
(see

Appendix A).

Then

E[f (D(t))] = EI(t){E[f (D(t)) | I(t) = i]},
= 1

|S|
∑

i

E�i(t)[f (�i(t)φi(t))],

which is the ray-based estimate of E[f (D∗(t))]. Thus the ray-
based demand model can arise from the variance reduction
technique called conditioning. In this paper, we formally as-
sume that the demand is ray-based; i.e., that Assumption 1
holds.

In Section 5, we will generate parameters for the ray-
based demand model. We will assume that D∗(t) is a multi-
variate lognormal random variable with known parameters.
We will set b(t) = 0. We will obtain the φi(t)’s by draw-
ing an appropriate number of random samples from D∗(t)
and normalizing them. We will obtain �i(t) from the con-
ditional distribution of D∗(t) given that the demand lies
on the ray corresponding to φi(t) (see Appendix A). We
could set pi(t) = 1/r where r = |supp(I(t))| is the number
of rays. However, the recommended procedure is to adjust
the pi(t)’s so that the mean vector of the ray-based demand
D(t) coincides with the mean vector µ(t) = E[D∗(t)]. This
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can be done, for example, by solving the following quadratic
program:

Minimize
∑

i

(
1
r

− pi(t)
)2

,

such that
µ(t) = b(t) +

∑
i

pi(t)µi(t)φI(t)(t),

where µi(t) is the expected value of �i(t).

4. Optimization model

In this section we provide an integer programming formu-
lation of the capacity expansion problem. We consider the
problem in multiple discrete time periods. Our objective is
to find the optimal tool purchase plan, so as to minimize
the sum of lost sale costs and tool purchase costs.

4.1. Assumptions

We assume that all tool purchase decisions are made at the
beginning of time period 1. Thus, the capacity κ(t) is based
on the distribution of the demand D(t), which is available
at the time of planning, but not on the realization d(t) of
D(t). In practice a dynamic rolling horizon approach would
be utilized; thus new plans would be generated periodically,
and only the earliest portion of the computed plans would
be implemented. We note that both the capacityκ(t) and the
production plan P(t) are intermediate variables that depend
on the tool purchase decisions. The production plan P(t)
in period t also depends on the realization d(t) of demand
D(t) in period t , as shown in the following assumptions.

Assumption 2. In each time period t , the following events
are assumed to happen in the given order

1. observe the state;
2. newly-installed tools become available for production;
3. demand is observed;
4. production decisions are made, and production occurs;
5. costs are incurred.

We have assumed that both inventories and backorders
are negligible. This assumption has an important conse-
quence, namely, that after tool purchase decisions have been
made the problem decomposes by time periods. Thus, after
κ(t) has been selected for all t , the production P(t) in pe-
riod t can be selected independently of P(t − 1), P(t + 1),
etc.

According to Assumption 2, the production plan P(t) is
made after the demand D(t) has been observed. There are
many ways to choose P(t). In our model, we use a service-
based policy called proportional production which, as we
described in the Introduction, achieves an equal fill rate for
all product families if b(t) = 0. Proportional production
is illustrated in Fig. 2. If demand d(t) falls in the shaded

Fig. 2. Proportional production.

region, then production is equal to demand. If the realized
demand is outside of the shaded region, p(t) will be the
production plan and there is a shortfall. Mathematically
we can define our proportional production plan as follows.

Assumption 3. (Proportional Production) We apply propor-
tional production in each time period, i.e.,

P(t) = b(t) min
[
σ ∗

I(t)(t), �I(t)(t)
]
φI(t)(t),

where
σ ∗

i (t) = max{σ : u[b(t) + σφi(t)] ≤ κ(t)}.
Consequently, we observe that

1. If b(t) = 0, the ratio of unsatisfied demand to total de-
mand is the same across all products. Thus, the fill rates
among the different products are equalized. If b(t) �= 0,
then the fill rates are different from product to product.

2. The production plan P(t) always lies on the same ray as
the demand D(t).

3. The maximum production plan coefficient σ ∗
I(t)(t) is

determined by the demand directionφI(t)(t) and the cur-
rent capacity κ(t).

We point out that there are other plausible alternatives to
proportional production. For example, we could select the
production plan that maximizes the revenue obtained.

4.2. Lost sales costs

The demand distribution (Assumption 1) and proportional
production (Assumption 3) allow us to derive a simple ex-
pression for the lost sales. Given a demand d(t) which is a
realization of the random vector D(t), the production plan
p(t) is fixed. Assume that the production plan p(t) is applied
and that the lost sales cost is linear in the quantity of unsat-
isfied demand. Note that we do not produce more than the
demand, so there are no inventory costs. As we mentioned
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earlier, substantial inventories of finished goods constitute
a risk that many companies prefer to avoid. Then the lost
sales cost is c × [d(t) − p(t)]+. The kth component of vector
c is the unit lost sales cost for the kth product. Consequently
the expected lost sales cost in period t will be

ED(t){c × [D(t) − P(t)]+}.
Let n�i(t)(·) be the partial expectation, defined by

n�i(t)(σ ) = E�i(t)(�i(t) − σ )+.

Then the expected lost sales cost in t can be rewritten as∑
i

pi(t) × n�i(t)(σ ∗
i (t))c × φi(t). (2)

A proof of Equation (2) is provided in Appendix B.

4.3. Variables and constraints

Having defined a convenient expression for the lost sales, we
now formulate the variables and constraints of our integer
programming model. We also relate the variables to our
ability to meet the demand. We use (m, n) to index tool
purchases, where (m, n) represents the nth purchase of a
type m tool. We also write j ∼ (m, n) where j (1 ≤ j ≤ J)
indexes purchases of all tools of any type. Define a binary
variable x(j, t) as follows:

x(j, t) =
{

1 if tool j is available for production by time t,
0 otherwise.

(3)

Obviously x(j, t) is non-decreasing with respect to time, i.e.,

x(j, t) ≤ x(j, t + 1) ∀j, t. (4)

We refer to Equation (4) as time monotonicity in the rest of
this paper. Since λ(m) is the purchase lead time for a type
m tool, if t ≤ λ(m) then the value of x(j, t) is fixed because
the purchase decision has already been made.

The most intricate part of the formulation is relating the
lost sales cost, Equation (2), to the variables x(j, t). Intu-
itively, the variable x(j, t) determines whether or not the
purchase of tool j has been made by time period t . How-
ever, the purchase of tool j may not increase the actual
capacity at all. This can happen if the capacity of a type m
tool is currently the tight constraint, and the purchase of
tool j increases the capacity of a type m′(�= m) tool. In order
to understand the actual capacity, we denote the demand
ray that has direction φi(t) as demand ray i. For each time
period t and each demand ray i, we need to understand
which tool is currently limiting the capacity. We let σ (i, j, t)
be the distance along ray i from b(t) to the point where tool
j limits capacity. For j ∼ (m, n), we have

σ (i, j, t) = max{σ : um,:[b(t) + σφi(t)] ≤ κ(j)},
where um,: is the mth row of utilization matrix u and
k(j) is the capacity of the type m tool group just before
j ∼ (m, n) is available. Thus, when tool j becomes available

for production, the capacity of the type m tool group jumps
from k(j) to k(j′), where j′ ∼ (m, n + 1).

Suppose, at time period t , that the realized demand falls
on ray i and is

d(t) = b(t) + δi(t)φi(t). (5)

Lemma 1. Let Equation (5) hold and let σ (i, j, t) < δi(t) ≤
σ (i, j′, t) where j ∼ (m, n) and j′ ∼ (m, n + 1). Then the ca-
pacity of the type m tool group is adequate to meet the demand
d(t) if and only if x(j, t) = 1.

Proof. A direct consequence of the definitions of σ (i, j, t)
and x(j, t). �

Along demand ray i, the actual capacity is determined
by the sequence in which the values {σ (i, j, t) : 1 ≤ j ≤ J}
fall. We sort {σ (i, j, t) : 1 ≤ j ≤ J} in increasing order. We
denote by γ i

t (j) the immediate successor of tool j along ray
i; i.e., we write

γ i
t (j) = j′,

if (i, j′, t) comes immediately after (i, j, t) in the sorted list.
We also define the precedence set π i

t (j) of tool j along de-
mand ray i as follows:

π i
t (j) = {j′ : j′ = j or (i, j′, t) comes before (i, j′, t) in the

sorted list}.
Figure 3 illustrates the definition of γ and π using an
example with two product families, two types of tools
and three demand rays. The definition of π implies that
σ (i, j′, t) ≤ σ (i, j, t) if and only if j′ ∈ π i

t (j).
If Equation (5) holds, then in order to meet the demand,

every type of tool must have adequate capacity. Assume
that

σ (i, j, t) < δi(t) < σ
(
i, γ i

t (j), t
)
. (6)

By Lemma 1, to meet the demand we must have

x(j′, t) = 1 ∀j′ subject toσ (i, j′, t) < δi(t), i.e., ∀j′ ∈ π i
t (j).

Fig. 3. γ i
t (j), π i

t (j) and z(i, j, t) when x(1, t) = x(3, t) = 1 and
x(2, t) = 0.
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To capture this, we define another group of binary indi-
cator variables z(i, j, t) by

z(i, j, t) =
{

1 if x(j′, t) = 1 ∀j′ ∈ π i
j (j),

0 otherwise.

Thus if Equations (5) and (6) hold, we can meet demand if
and only if z(i, j, t) = 1. Figure 3 illustrates z(i, j, t) for the
case when the first and third purchases have been made, i.e.,
x(1, t) = x(3, t) = 1 and x(2, t) = 0. The decision variables
z(i, j, t) satisfy the following two properties:

1. Along demand ray i, the precedence set of j is contained
in the precedence set of γ i

t (j), so

z(i, j, t) ≥ z
(
i, γ i

t (j), t
)
. (7)

2. By definition of the precedence set, j ∈ π i
t (j). Therefore,

z(i, j, t) ≤ x(j, t). (8)

Subsequently we refer to Equation (7) as ray monotonicity
and to Equation (8) as consistency. Note that σ (i, j, t) ≤
σ (i, j′, t) implies z(i, j, t) ≥ z(i, j′, t).

Lemma 2. Let x = (x(j, t), ∀j, t) and z = (z(i, j, t), ∀i, j, t).
Assume that the demand in period t satisfies Equation (5)
where σ (i, j′, t) < δi(t) ≤ σ (i, γ i

t (j′), t).

(i). Suppose that the vectors x and z satisfy Equations (4), (7)
and (8). If z(i, j′, t) = 1, then there is adequate capacity
to meet the demand in period t.

(ii). Conversely, if there is adequate capacity to meet the
demand in period t, then there exist x and z satisfying
Equations (4), (7) and (8), with z(i, j′, t) = 1.

Proof. (i) follows directly from Equations (3), (7), (8), and
Lemma 1. To prove (ii), assume that there is adequate
capacity and that x is given by Equation (3). Note that
Equation (3) implies Equation (4). From Equation (5),
Lemma 1 implies that x(j, t) = 1 if σ (i, j, t) < δi(t). Set
z(i, j, t) = 1 if σ (i, j, t) < δi(t) and z(i, j, t) = 0 otherwise.
It is easy to verify that z satisfies Equations (7) and (8). �

4.4. The objective function

We now relate the expected lost sales cost to the variables z.
Suppose that the demand D(t) lies on demand ray i (i.e., we
condition on I(t) = i). Furthermore, suppose that in period
t , all the tools in the precedence set of tool j′ along demand
ray i are available but the immediate successor jo of j′ is not.
In other words,

z(i, j′, t) = 1 and z(i, jo, t) = 0 where jo = γ i
t (j′).

If we make the purchase of tool jo, we increase x(jo, t) and
z(i, jo, t) from zero to one, and then by Equation (2) and
Lemma 2, the expected lost sales cost will decrease by

ν(i, j, t) = [
n�i(t)(σ (i, j′, t)) − n�i(t)(i, σ

(
γ i

t (j′)
)
, t)

]
c × φi(t).

Therefore, the lost sales cost incurred in period t , given that
the demand ray is i = I(t), is∑

{j:z(i,j,t)=0}
ν(i, j, t) =

∑
j

ν(i, j, t) −
∑

j

ν(i, j, t)z(i, j, t). (9)

We now consider tool purchases costs. Define µ(j, t) to be
the decrease in tool purchase cost by deferring the purchase
of tool j from time period t to t + 1, including the effects of
discounting. Let µ(j, T) include the fixed cost of purchasing
tool j. Under Equation (3), the total cost of the purchase
of tool j is

∑
t µ(j, t)x(j, t).

4.5. Formulation

Our objective function trades off expected lost sales costs
against tool purchase costs. The constraints are time mono-
tonicity, Equation (4), ray monotonicity, Equation (7)
and consistency, Equation (8). Mathematically, using
Equation (9) to formulate our objective, we have the fol-
lowing ILP model:

(ILP1) min
∑

t

{ ∑
j

[µ(j, t)x(j, t)

−
∑

i,j

[pi(t)ν(i, j, t)z(i, j, t)]
}

such that

x(j, t) ≤ x(j, t + 1) ∀ j, t, (4)
z(i, j, t) ≤ x(j, t) ∀ i, j, t, (8)

z
(
i, γ i

t (j), t
) ≤ z(i, j, t) ∀ i, j, t, (7)

x(j, t), z(i, j, t) binary ∀ i, j, t. (10)

Clearly (ILP1) is equivalent to a min-cut problem, which
is a dual to a max-flow problem in the capacity ex-
pansion network (see Fig. 4). For simplicity, T = 3, the
rays are i and i′, and the tool purchases are j and j′.
Also assume no purchase lead time; i.e., λ(j) = λ(j′) = 0.
Along those rays and in all time periods, j and j′ fall
in the same sequence. Thus γ i

t (j′) = (i, j, t) and γ i′
t (j′) =

(i′, j, t) ∀ t . {(i, j′, 1), (i′, j, 1), (i′, j′, 1)}. This network has
four levels of nodes in the network. The first level contains
only one node: SOURCE. The fourth level also contains
only one node: SINK. Every node in the second level cor-
responds to a variable z(i, j, t), and is called a z-node. Every
node in the third level corresponds to a variable x(j, t), and
is called an x-node. We use the variable names as node labels.

The network is constructed to capture the objective func-
tion and the constraints in (ILP1). More precisely, the flow
on the arc leading from SOURCE to a node z(i, j, t) in
the second level is constrained to lie between zero and
pi(t)ν(i, j, t), the corresponding lost sales cost. These arcs
are referred to as Lost Sales Arcs. Similarly, the arc from
a node x(j, t) in the third level to SINK is a Purchase Arc.
The flow on the arc must be between zero and µ(j, t), the
purchase cost. In addition, every constraint of the form
u ≤ v in (ILP1) corresponds to an arc leading from node u
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Fig. 4. Capacity expansion network.

to node v. Thus, for example, a Consistency Arc leads
from z(i, j, t) to x(j, t), a Time Monotonicity Arc leads from
x(j, t) to x(j, t + 1), and a Ray Monotonicity Arc leads from
z(γ i

t (j)) to z(i, j, t). On all of these arcs, the flow is con-
strained to lie between zero and ∞. The infinite-capacity
arcs ensure that every finite capacity cut in the network
corresponds to a feasible tool purchase plan. We have the
following result.

Theorem 1. (ILP1) is equivalent to a minimum-cut problem.

We note that some variables in the formulation of (ILP1)
are fixed because of tool purchase lead times. This results in

Fig. 5. Base case.

the deletion of some nodes and arcs in the Capacity Expan-
sion Network. A full discussion and a proof of Theorem 1
are given in Appendix C.

5. Numerical testing

The primary goal of our numerical experiments is to test the
performance of our algorithm for capacity planning prob-
lems of practical size and complexity. The approach we have
developed to solve the optimal capacity planning problem is
based on Assumption 1. If the demand D(t) is a continuous
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Fig. 6. Double product family case.

random variable, then in accordance with Section 3, we can
approximate D(t) with a distribution which has support on
a finite number of demand rays as discussed in the previ-
ous section. As the number of demand rays increases, we
obtain a more accurate approximation to the true demand.
However, the size of the Capacity Expansion Network also
increases, requiring more computation. We want to deter-
mine how many demand rays are required to approximate
a continuous demand distribution effectively.

We combined data from two industrial data sources. We
obtained a tool data file from the SEMATECH (SEmi-
conductor MAnufacturing TECHnology) database. Tool
data includes purchase prices and capacities for each tool
type. The forecast and demand data files come directly
from a semiconductor manufacturer. We used SeDFAM
(Çakanyıldırım and Roundy, 1999) to analyze this forecast
data and to generate the variance and covariance of future
demands.

Based on the properties of the industrial data, we assume
that the demand D(t) has a multi-variate log-normal dis-
tribution. For each t , we use the distribution of D(t) to
randomly generate a pre-determined number of future de-
mands. After being normalized, these become our demand
rays. Given any demand ray, the distribution and partial
expectation of �i(t) are easy to derive (see Section 3).

Fig. 7. Double machine type case.

We use two steps to compute an optimal expansion plan.
A Capacity Expansion Network is constructed in the first
step. More specifically, tool data and demand data are read
in, and an intermediate network data file is generated using
MATLAB. The network file is of DIMACS format (Nguyen
and Venkateswaran, 1993) and describes the Capacity Ex-
pansion Network. We refer to the first step as NG (Network
Generation) hereafter. In the second step we use HIPR,
software developed by B. Cherkassky and A. Goldberg, to
solve the maximum flow/minimum cut problem (Nguyen
and Venkateswaran, 1993). HIPR is an efficient implemen-
tation of the push-relabel method, and is designed to run
on UNIX/LINUX. It reads the network information from
the DIMACS format data file and writes the results to stan-
dard output. The second step is called HIPR in the rest of
paper.

In our simulation we assume that generation of the pur-
chase plan is done quarterly, and we use a 4-year planning
horizon. Demand approximately doubles over the 4-year
horizon. The lost sale costs vary across the product families.
The average is about $10 000 per wafer and the deviation
is ±10%. Purchase prices for tools range from $100 K to
$15 M. For each tool group the initial capacity is set to be
greater than or equal to the expected demand in the first
time period.
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Table 1. Base case (four product families and 43 tool types)

Demand rays 2 4 8 16 32 64 128

Nodes (in thousands) 33 55 99 187 363 716 1420
Arcs (in thousands) 73 124 227 431 842 1663 3304
Total cost 2416 2416 2414 2404 2409 2420 2416
Lost sale cost 926 978 941 958 975 970 969
Purchase cost 1490 1438 1473 1446 1434 1450 1447
Number of purchases 112 105 108 105 103 105 105
Fill rate 0.666 0.648 0.661 0.655 0.649 0.650 0.651
NG CPU seconds 63.6 121 234 459 907 1816 3629
HIPR CPU seconds 0.32 0.66 1.48 3.03 6.16 13.17 33.07
File size 1.9 3.3 6.2 12.3 24.3 48.3 99

There are three different cases in our simulation. In the
first case, which we call the base case, there are four product
families and 43 tool types. In the second one we double the
number of product families and keep all other parameters
unchanged. Therefore, this case is referred to as the double
product family case. In the last case, the number of product
families is again 43 but the number of tool types is dou-
bled. This case is called the double tool type case. For each
case, we test our algorithm with 2, 4, 8, 16, 32, 64 and 128
demand rays. For each case and for each number of rays,
we randomly generate demand rays and run our algorithm
four times.

Every time when we run through NG and HIPR, we
record the following information: number of rays, number
of nodes and arcs in the Capacity Expansion Network, total
cost, lost sale cost, purchase cost, total number of tools pur-
chased, fill rate, CPU time spent in NG and HIPR and size
of the network files. Some of the above items are easy to un-
derstand and some deserve more explanation. The purchase
cost and the lost sale cost are the first and second terms of
the objective function of (ILP2), respectively. The total cost
is the sum of these two costs. The unit of measure for all costs
is millions of dollars. The fill rate is the expected percentage
of satisfied demand, which is one minus the ratio of the to-
tal lost sales cost to the total demand, measured in dollars.
All times are measured in seconds. The unit of file size is
Megabytes. Our simulations are run on a Sun Microsystems
ULTRA 10 workstation with 256 MB of memory.

Table 2. Double product family case (eight product families and 43 tool types)

Demand rays 2 4 8 16 32 64 128

Nodes (in thousands) 33 55 99 187 363 716 1420
Arcs (in thousands) 73 125 230 438 854 1687 3352
Total cost 3046 3110 3130 3113 3137 3160 3155
Lost sale cost 511 467 553 574 707 857 841
Purchase cost 2535 2643 2577 2539 2430 2303 2314
Number of purchases 210 219 211 210 193 180 180
Fill rate 0.913 0.920 0.906 0.902 0.880 0.854 0.857
NG CPU seconds 72.6 136 262 515 1023 2034 3927
HIPR CPU seconds 0.63 1.1 2.04 4.89 10.08 24.34 49.09
File size (in MB) 2.1 3.5 6.5 13.0 25.7 51.1 100.0

We are interested in the convergence rate of our algo-
rithm as the number of rays increases. For each case and
each number of demand rays we generate and solve four
problem instances. Then we compute the mean and stan-
dard deviation of the total cost and plot them against the
number of rays for each case (see Figs. 5, 6 and 7). The plots
of fill rate, total number of tools purchased and purchase
cost are obtained similarly. It is remarkable that the total
cost and other measures plotted are not more sensitive to
the number of demand rays. When 64 rays are used, the
maximum ratio of standard deviation to mean in all plots
is less than 1/60.

We pay special attention to how fast total cost, fill rate,
total number of tools purchased and the purchase cost con-
verge as we increase the number of demand rays. The stan-
dard deviation indicates that the number of rays required
to achieve convergence is uniformly between 64 and 128.
Surprisingly, the solution of the double product family case
converges as fast as it does in the other two cases. Note
that the demand vector is in �8

+ in this case, but only �4
+

elsewhere. We expected that more demand rays would be
needed to get a satisfactory approximation in the double
product family case. However, that did not happen. The
fact that capacity is added in discrete rather than continu-
ous increments probably helps.

In Tables 1, 2 and 3, we summarize the results of each
case. Since we repeat each case four times, every number in
the tables is the average of four data points. Now consider
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Table 3. Double machine type case (four product families and 86 tool types)

Demand rays 2 4 8 16 32 64 128

Nodes (in thousands) 66 110 198 374 727 1431 2840
Arcs (in thousands) 158 273 502 962 1881 3720 7398
Total cost 6131 6136 6117 6146 6152 6146 6172
Lost sale cost 1569 1657 1602 1648 1721 1861 1885
Purchase cost 4562 4479 4515 4498 4431 4285 4287
Number of purchases 261 257 259 259 246 234 232
Fill rate 0.812 0.801 0.808 0.802 0.793 0.777 0.774
NG CPU seconds 205 395 773 1537 3047 6162 12109
HIPR CPU seconds 1.96 3.20 7.42 15.70 27.19 82.04 169.70
File size (in MB) 4.2 7.3 13.9 26.9 53.4 107.8 218

the running time of both NG and HIPR. The size of the
network, both in the number of nodes and the number of
arcs, is O(η), where η = TRMN, where T is the number
of time periods, R is the number of demand rays, M is
the number of tool types and N is the average number of
potential tool purchases per tool type. Thus, the number
J of tools is O(MN). The running time of NG is O(η).
Recalling that the time-complexity of max-cut problem with
V nodes and O(V ) arcs is O(V2 log V ), (Gallo et al., 1989)
the running time of HIPR is at most O(η2 log η). Tables 1, 2
and 3 fully support this time-complexity with respect to R,
M, and the lack of dependence on the number of product
families.

Also note that the CPU time for running HIPR is much
shorter than the CPU time for running NG, especially when
the number of rays is large. The MATLAB code used to gen-
erate the Capacity Expansion Network is not designed for
efficiency. Re-coding NG in C or another suitable program-
ming languages would make it much more efficient than it
currently is, and asymptotically more efficient than HIPR.
In this paper, we did not implement NG in C for two rea-
sons: (i) this code is intended to be a research prototype;
and (ii) after re-coding, the asymptotic running time of the
algorithm would be bounded by HIPR, not by NG. The
reported CPU times for our capacity planning algorithm
are viable.

6. Conclusions

In this paper, we develop a capacity expansion model for
multi-product, multi-machine manufacturing systems with
stochastic demand. We assume that the demand can be ap-
proximated by a distribution whose support is a collection
of a finite number of rays. We also make an assumption
that capacity is allocated proportionally if it is not suffi-
cient. Those two assumptions are essential in our model
formulation. We prove that the optimal capacity planning
problem is equivalent to a maximum flow/minimum cut
problem. We construct the Capacity Expansion Network
and do numerical simulation on industrial data. Our exper-

iment shows that a reasonable number of rays (<128) are
sufficient to get a stable plan, and that the CPU times are
very predictable and very reasonable for a planning prob-
lem of this type.
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Appendices

Appendix A: Derivation of the distribution of �i(t)

Given any demand rayφi(t), the density function of �i(t)
can be expressed as follows:

f�i (r ) = fD(t)(rφi(t))rK−1∫ ∞
0 fD(t)(sφi(t))sK−1dr

,

where fD(t) (x) is the density function of D(t) ∈ �K . The fac-
tor rK−1 is required because the demand rays spread apart

as one moves away from the origin, as is the case in polar
coordinates. For example, assume that D(t) ∈ �4, which
has a log-normal multi-variate distribution with parame-
ters (µ,Σ). Then

fD(t)(x) =
4∏

j=1

x−1
j (2π )−2[Det(�)]−

1
2

× exp
[

− 1
2

(log x − µ)′�−1(log x − µ)
]
.

Therefore,

f�i (r ) =
√

b√
2πr

exp
[

− 1
2

((log r )e + a)′�−1((log r )e + a)

+ d − (c2/4b)
2

]
,

where

a = logφi(t) − µ,

b =
∑

i,j

(�−1)i,j,

c =
∑

i,j

(ai + aj)(�−1)i,j,

d =
∑

i,j

(aiaj)(�−1)i,j,

and e is a vector consisting solely of ones. In other words,
the random variable �i(t) has log-normal distribution with
parameters (−c/2b, 1/b). Now we are able to compute the
partial expectation.

n�i(t)(r ) =
∫ ∞

r
(x − r )f (x)dx

= exp
(

− c
2b

+ 1
2b

)
[1 − P1(log r )] − r [1 − P2(r )],

where P1 is the cumulative density function for the normal
distribution with parameters ((−c/2b) + 1/b, 1/b) and P2
is the cumulative density function of the log-normal distri-
bution with parameters (−c/2b, 1/b).

Appendix B: Proof of Equation (2)

ED(t){c × [D(t) − P(t)]+}
= EI(t)

{
ED(t){c × [D(t) − P(t)]+ | I(t)}},

= EI(t)
{
E�i(t){[�i − σ ∗

i (t)]+c × φi(t) | I(t) = i}},
= EI(t)

{
E�i

[
n�i(t)(σ ∗

i (t))c × φi(t) | I(t) = i
]}

,

=
∑

i

pi
{
n�i(t)(σ ∗

i (t))c × φi(t)
}
.

Appendix C: Detailed proof of Theorem 1

The formulation (ILP1) is simple in appearance. We can
eliminate some variables and constraints by considering
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lead times. Recall that λ(m) is the purchase lead time for
a type m tool, and that x(j, t) has already been fixed if
t ≤ λ(m). These dependencies can be made explicit. We de-
note by λj the lead time of the purchase of tool j, and assume
that the lead time depends on the type of tool; i.e.,

λj = λ(m) where j ∼ (m, n).

Then, x(j, t) is input data if t ≤ λj, and it is a variable for
t > λj.

As a basis for re-formulating (ILP1), we define subsets of
indices which will correspond to variables in the reformu-
lation. Let

J = {(j, t) : t > λi and x(j, λj) = 0},
index tools j that do not become available by lead time λj
in the periods after λj. Let

I = {
(i, j, t) : either t > λj′ or x(j′, t) = 1 ∀ j′ ∈ π i

t (j)
}
,

index (i, j, t) such that every tool in the precedence set π i
t (j)

of tool j along demand ray i is or may be available for
purchase in period t . For (i, j, t) ∈ I, depending on when
other tools are purchased, the purchase j of in period t can
increase capacity along ray i. We re-formulate (ILP1) as
follows.

(ILP2) min
∑

t

{ ∑
j

[µ(j, t)x(j, t)]

−
∑

i,j

[pi(t)ν(i, j, t)z(i, j, t)]

}
,

such that

x(j, t) ≤ x(j, t + 1) ∀(j, t) ∈ J , (A1)
z(i, j, t) ≤ x(j, t) ∀(i, j, t) ∈ I, ∀(j, t) ∈ J , (A2)

z
(
i, γ i

t (j), t
) ≤ z(i, j, t) ∀(i, j, t) ∈ I, (A3)

x(j, t) binary ∀(j, t) ∈ J , (A4)
z(i, j, t) binary ∀(i, j, t) ∈ I, (A5)

Lemma 1. (ILP1) and (ILP2) are equivalent.

Proof. Note that if (j, t) /∈ J or (i, j, t) /∈ I, then the value
of x(j, t) or z(i, j, t) is determined by the input data and
by Equations (7) and (8). Furthermore, feasible solutions
to (ILP1) are also feasible to (ILP2). We claim that every
feasible solution to (ILP2) can be augmented by the input
data to yield a solution feasible to (ILP1). From the input
data, we impute values of x(j, t) for (j, t) /∈ J , and also of
z(i, j, t) for (i, j, t) /∈ I.

We note that the complement of J is the disjoint union
of

J c
0 = {(j, t)t ≤ λj and x(j, t) = 0}, and

J c
1 = {(j, t)x(j, min(t, λj)) = 1}.

If (j, t) ∈ J c
0 , then x(j, t) = 0 is input data and Equation (4)

holds trivially. If (j, t) ∈ J c
1 , then by Equation (A1), we get

x(j, t) = 1. Since (j, t) ∈ J c
1 implies (j, t + 1) ∈ J c

1 , we ob-
tain Equation (4) for (j, t) ∈ J c

1 . Let

Ic = {
(i, j, t) : ∃j′ ∈ π i

j (t) s.t. x(j′, t ′) = 0 and t ≤ λj′
}
,

be the complement of I . We set z(i, j, t) = 0 for all (i, j, t) ∈
Ic, and show that Equation (8) holds if either (i, j, t) ∈ Ic

or (j, t) /∈ J .
If (i, j, t) ∈ Ic, then we have z(i, j, t) = 0; if (j, t) ∈ J c

1 ,
then we have x(j, t) = 1. In either case, Equation (8) holds.
The only remaining case is (j, t) ∈ J c

0 , which actually im-
plies (i, j, t) ∈ Ic (set j′ = j in the definition of Ic). Thus,
Equation (8) holds. Furthermore if (i, j, t) ∈ Ic, then the
immediate successor γ i

t (j) of j is also in Ic, satisfying Equa-
tion (7). Thus every feasible solution for (ILP2) with the
input data and the imputed values of x(j, t) and z(i, j, t)
corresponds to a feasible solution to (ILP1).

Note that x(j, t) = 1 if (j, t) ∈ J c
1 . Since z(i, j, t) = 0 for

(i, j, t) ∈ Ic in a feasible solution to (ILP1), the objective of
(ILP1) is equal to

∑
J

[µ(j, t)x(j, t)] +
∑
J c

1

µ(j, t) −
∑
I

[pi(t)ν(i, j, t)z(i, j, t)],

which differs from the objective of (ILP2) by a constant. �

Theorem 1. (ILP1) is equivalent to a minimum-cut problem
in the Capacity Expansion Network.

Proof. By the previous lemma, it suffices to show that
(ILP2) is equivalent to a minimum-cut problem. Suppose
there is a cut of the Capacity Expansion Network which
separates SOURCE and SINK. Use R to represent the set
of z-nodes which are on the same side of the cut as SINK.
Obviously, R can be decomposed by time period into T
disjoint subsets Rt , one for each time period. Similarly, S
represents the set of x-nodes which are on the same side of
the cut as SINK, and S = ∪T

t=1St .
The correspondence between the cut and the original

variables is that all the x-nodes and z-nodes on the same
side as SOURCE assume one; i.e.,

� j /∈ St iff x(j, t) = 1, and
� (i, j) /∈ Rt iff z(i, j, t) = 1.

Since the capacity of some arcs is infinite, the capacity of
the cut could be infinite. The cut capacity is finite if and
only if the following three conditions are satisfied:

1. If node z(i, j, t) /∈ Rt , then node x(j, t) /∈ St . Equiva-
lently, x(j, t) ≥ z(i, j, t).

2. If node z(λi
t (j)) /∈ Rt then z(i, j, t) /∈ Rt . Equivalently,

z(γ i
t (j)) ≤ z(i, j, t).

3. If node x(j, t) /∈ St then node x(j, t + 1) /∈ St+1. Equiv-
alently, x(j, t) ≤ x(j, t + 1).
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Thus the capacity of the cut is finite if and only if x and
z are feasible for (ILP2). If the cut capacity is finite, then
it is equal to

∑
t

[ ∑
j/∈St

µ(j, t) +
∑

(i,j)∈Rt

pi(t)ν(i, j, t)

]

=
∑

t

∑
j/∈St

µ(j, t) +
∑
I

pi(t)ν(i, j, t)

−
∑

t

∑
(i,j)/∈Rt

pi(t)ν(i, j, t).

Note that the middle term is constant, and is independent of
x(j, t) and z(i, j, t). Therefore, minimizing the cut capacity
is equivalent to minimizing∑

t

∑
j/∈St

µ(j, t) −
∑

t

∑
(i,j)/∈Rt

pi(t) × ν(i, j, t)

=
∑
J

µ(j, t)x(j, t) −
∑
I

pi(t)ν(i, j, t)z(i, j, t).

�
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