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1. Introduction

We consider the problem of price equilibrium in markets where multiple firms produce dif-

ferentiated products. Many firms face the problem of determining pricing and inventory

policies in markets where demand depends not only of their own price but also on the prices

of competing products. Section 3 lists several examples of operations management problems

that fit this framework. Key questions include the existence, uniqueness, and stability of

equilibrium when firms are individually setting optimal prices. We present a set of condi-

tions under which a unique and stable pure-strategy equilibrium is guaranteed to exist in

a Bertrand oligopoly price competition model when demand is determined by an attrac-

tion model and cost functions are convex. We also show that if individual firms follow a

“best response approach,” to current prices set by other players, then prices converge to the

1Corresponding author.
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Table 1: Common Demand Models.

Demand Model di(p) Restriction

Linear (ai − bipi + ci

∑
j 6=i pj)

+ ai > 0, bi > 0, ci ≥ 0

Constant
p

1/(β−1)
i /

(∑
j p

β/(β−1)
j

)(1−θ)/(1−βθ)
θ, β ∈ (0, 1)

Elasticity
Constant

pi
−1 · g(pi)/

∑
j g(pj)

Positive, smooth, and
Expenditure strictly decreasing g †

Logit ki exp(λpi)/
∑

j kj exp(λpj) λ < 0, kj > 0

Attraction ai(pi)/
(∑

j aj(pj) + κ
)

κ ≥ 0, Assumption A

† Examples include the CES function g(p) = p−r where r > 0, and the exponential function
g(p) = exp(−βp) where β > 0.

unique and stable pure-strategy equilibrium. Finally, we provide the convergence rate of this

tatônnement scheme.

Demand and Cost Models

In the Bertrand oligopoly price competition model for differentiated products, a variety

of demand and cost models have been used. Table 1 illustrates commonly used demand

models. We let n be the number of firms, which are indexed by i = 1, . . . , n. The demand

for each firm is specified as a function of prices. Let pi denote the price of firm i, and define

the price vector of competing firms by p−i = (p1, . . . , pi−1, pi+1, . . . , pn). Also denote the

vector of all prices by p = (p1, . . . , pn) = (pi,p−i). The demand for each firm i is given by

di = di(p). Demand functions are deterministic, but can be interpreted as expected demands

in many applications. We assume that firm i’s demand is strictly decreasing in its price (i.e.,

∂di/∂pi < 0), and that products are gross substitutes (i.e., ∂di/∂pj ≥ 0 whenever j 6= i).

In this paper we consider a generalization of the logit demand model called the attraction

demand model:

di(p) :=
ai(pi)∑

j aj(pj) + κ
(1)

where κ is either 0 or strictly positive.

The attraction function ai(·) of firm i is a positive and strictly decreasing function of its

price. Without any loss of generality, we normalize demand such that the total demand does
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not exceed 1. If κ = 0, the total demand of n firms equals exactly 1; if κ is strictly positive,

it is less than 1, possibly accounting for lost demand to an outside alternative.

Luce (1959) has shown that the attraction demand model (1) can be derived axiomatically

based on simple assumptions about consumer behavior.2 As discussed in Anderson et al.

(1996) and Mahajan and Van Ryzin (1998), the attraction demand model has successfully

been used in estimating demand in econometric studies, and is increasingly accepted in

marketing, e.g., Besanko et al. (1998). See So (2000), Bernstein and Federgruen (2004b) and

references therein for its applications in the operations management community.

We now consider the cost model. We assume that cost is a function of demand alone.

We denote firm i’s cost function by Ci(di) defined on di ∈ [0, 1] and assume Ci is increasing

and convex.

The profit of firm i is the difference between its revenue and cost, given by

πi := πi(p) := pi · di(p)− Ci(di(p)). (2)

Each firm’s objective is to maximize πi.

In this paper, we impose mild technical conditions on the attraction demand and cost

models as outlined in Section 2. We then verify that these conditions are satisfied by com-

monly used attraction functions and cost models.

Literature Review

The study of oligopolistic interaction is a classical problem in economics. In the model

proposed by Cournot (1838), firms compete on production output quantities, which in turn

determine the market price. In Bertrand (1883)’s model, competition is based on prices

instead of production quantities. In the price competition models by Edgeworth (1922) and

Edgeworth (1925), each firm decides how much of its demand is satisfied, in which case a

pure strategy equilibrium may or may not exist. In addition, price competition with product

differentiation has been studied by Hotelling (1929), Robinson (1933) and Chamberlin (1933).

An extensive treatment of the subject is found in Vives (1999). We provide a summary of

results regarding the existence, uniqueness and stability of equilibrium, followed by their

application in the operations management literature.

2Interested readers are referred to Debreu (1960) and Mahajan and Van Ryzin (1998) for discussions on
a paradox resulting from Luce (1959)’s axioms. To avoid this paradox, the alternatives in the attraction
model should be “equally dissimilar”.
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Existence. There are two common methods to show existence of an equilibrium in price

competition games. The first method is to obtain existence through the quasi-concavity

and continuity of πi in pi. Assuming a linear cost model, Caplin and Nalebuff (1991) show

that a sufficient condition for πi to be quasi-concave is the concavity of log di(p) in log pi,

which is equivalent to (pi/di)(∂di/∂pi) decreasing in pi. Another sufficient condition is the

convexity of 1/di(p) in pi. From these conditions, the quasi-concavity of πi in pi holds in the

logit demand model and the constant expenditure demand model with CES or exponential

functions.

The second method shows existence through supermodular games. The price competi-

tion game is supermodular provided that for each i, πi is upper semicontinuous in pi, and

πi(pi,p
1
−i) − πi(pi,p

2
−i) is increasing in pi whenever p1

−i ≥ p2
−i. Topkis (1979) shows the

existence of an equilibrium in supermodular games, and Milgrom and Roberts (1990), for

monotone transformation of supermodular games. Thus, if the price competition game is

supermodular, it has at least one equilibrium. Similarly, Milgrom and Shannon (1994) show

the existence of a Nash equilibrium for a generalization of supermodular games, called games

with strategic complementarities. Such games include instances of price competition.

Vives (1999) summarizes two additional methods of showing existence in some special

cases: (i) two-player games with decreasing best response functions; (ii) symmetric games in

which the best response function of a player depends only on the aggregate actions of others

and the action sets are single-dimensional. Dubey et al. (2003) use yet another approach

of pseudo-potential games, and show existence and the convergence of a method based on

fictitious plays3. Yet, they show neither the uniqueness of an equilibrium nor the convergence

rate.

Uniqueness. The most common method to show uniqueness is the following contraction

condition (see, for example, Milgrom and Roberts (1990)):

∂2πi

∂p2
i

+
∑

j 6=i

∣∣∣∣
∂2πi

∂pi∂pj

∣∣∣∣ < 0, (3)

or a similar condition in which πi is replaced by log πi. In general, it is not easy to verify this

condition on the entire action space unless the demand model is symmetric. An exception

is Bernstein and Federgruen (2004b), who show the uniqueness using the attraction demand

model and linear cost model under certain conditions. In supermodular price competition

3A fictitious play refers to the strategy in which each player uses best responses to the historical averages
of opponents.
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games, the contraction condition (3) is satisfied by (i) the linear demand model with convex

costs, or (ii) the linear cost model and the constant elasticity, logit or constant expenditure

demand models. Thus, these sufficient conditions require either the demand model or the

cost model to be linear. In fact, when the action space is unbounded, the above contraction

condition (3) is always violated for some large pi.
4

Stability. By definition, a set of actions at equilibrium is a fixed point of the best response

mapping. A simultaneous discrete tatônnement is a sequence of actions in which the current

action of each firm is the best response to the previous actions of other firms. An equilibrium

is globally stable if the tatônnement converges to this equilibrium starting from any initial set

of actions. Vives (1990) shows that if a supermodular game with continuous payoffs has a

unique equilibrium, it is globally stable. Little is known regarding the provable convergence

rate of the tatônnement in the price competition game.

Operations Management Applications. There is a growing interest in oligopolistic price

competition in the operations literature. To predict and study market outcomes, the exis-

tence and the uniqueness of equilibrium are often required. Stability and convergence rate

indicate both the robustness of equilibrium and the efficiency of computational algorithms.

Bernstein and Federgruen (2004b) study a multiple-period inventory model with linear

costs where competition is based on both price and service level. They also consider the

single-period price-only competition, where the vector of service levels is given exogenously,

and the price vector is simultaneously determined by all sellers. This single-period competi-

tion is further described in Example 3, of Section 3, where demand uncertainty is multiplica-

tive and there is neither a minimum stocking level nor a capacity constraint(i.e., ζi = −∞
and υi = ∞). For a variety of demand models, including the attraction model and the

linear model, an equilibrium exists and is unique. Bernstein and Federgruen (2004a) study

comparative statics in pricing competition. Bernstein and Federgruen (2003) and Bernstein

et al. (2002) study a supply chain in which multiple competing retailers are replenished from

the single firm. In particular, Bernstein et al. (2002) show that the Vendor Managed Inven-

tory arrangement can coordinate the retailers’ pricing decision. All of the above models use

supermodular games. Price competition in the queueing-based service systems is studied

in Allon and Federgruen (2004). In their model, firms compete on price and waiting time.

Their paper employs the results of this paper for the attraction demand model with convex

4For any fixed p−i, consider πi as we increase pi. Since πi is strictly decreasing for large pi (see Proposition
2), and is bounded below (from (2)), the second derivative of πi must be positive at some point.
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costs.

Cachon and Harker (2002) study duopoly price competition with cost function Ci(di) =

c1
i di + c2

i d
γi

i , where c1
i > 0, c2

i ≥ 0 and γi ∈ [0, 1). Note that the cost function is concave

in demand. Using the linear demand model or truncated logit demand, they show the

existence of equilibrium under certain technical conditions. Uniqueness is shown only for

the symmetric case.

Supermodular Games and Price Competition. The existence, uniqueness and stability of

equilibrium results are easily obtained in the case of supermodular games. Yet, Bernstein

and Federgruen (2004b) suggest that when the game fails to be supermodular, “little can

be said ... in general, about the structure or cardinality of the set of Nash equilibria.”

Vives (1999) shows that with nonsupermodular oligopoly games, “in general, a wide array of

outcomes between the monopoly and the competitive solution are possible.” Consequently,

it is not surprising to note that nearly all uniqueness proofs in price competition rely on

the supermodularity of games and an imposed contraction assumption. Yet, Vives (1999)

remarks that oligopoly price competition games need not be supermodular, and points out

examples by Roberts and Sonnenschein (1977) and Friedman (1983). In the price competition

literature, if a supermodular game has an explicit demand model and cost model, it typically

assumes either the linear demand model or the linear cost model. The only exceptions are

Cachon and Harker (2002), Milgrom and Shannon (1994), and Mizuno (2003). The first is

restricted to symmetric duopoly. The second shows the existence but not the uniqueness.

It does not require a convex action space, but requires a compact action space. The third

shows the uniqueness under a strong assumption on demand: namely, the demand vector

remains the same if the price vector is increased uniformly or multiplied by a scalar.

Contribution and Organization

We show the uniqueness of equilibrium in Bertrand oligopoly price competition using an

attraction demand model with convex costs. We illustrate the applicability of our general-

ization by illustrating convex cost models that arise in inventory and service systems.

Second, the action space of most previous Bertrand oligopoly models is assumed to be

compact. Thus, even if existence can be shown for the compact space, an equilibrium is pos-

sibly a boundary solution, and no interior equilibrium may exist within the compact action

space. Consequently, to identify an interior equilibrium solution, an additional assumption

needs to be introduced as in Benassy (1989) and Vives (1985). In this paper, we identify
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sufficient conditions for the unique equilibrium to be in the interior of the set. In particular,

we allow unbounded action spaces.

Finally, we show that the unique equilibrium is globally stable and guarantee a linear

convergence rate of tatônnement regardless of the initial actions. This is the first paper that

identifies the convergence rate of simultaneous discrete tatônnement in a Bertrand oligopoly

price competition game. Since the unique equilibrium generally does not have an analytic

solution, this result is useful in the numerical computation of the equilibrium.

The organization of the rest of this paper is as follows. Section 2 outlines our modeling

assumptions on the attraction functions and the cost functions. This section also shows

that many common attraction functions satisfy these assumptions. Section 3 lists convex

cost examples in operations management, to which our model becomes applicable. Section

4 proves the existence of unique equilibrium, also shown to be globally stable in Section

5. Section 5 also proves the linear convergence of the tatônnement scheme. Computational

results follow in Section 6.

2. Assumptions

This section lists our assumptions on the attraction function ai(·) in (1), the profit function πi

and the cost function Ci(·) in (2). We show that these assumptions are satisfied by common

attraction functions.

We let ρi := inf{p : ai(p) = 0} be the upper bound on price pi, where ρi may be infinite.

Firm i’s action space for price is an open interval (0, ρi). Let P := (0, ρ1)× · · ·× (0, ρn). Let

ηi(p) := −p · a′i(p)/ai(p)

be the elasticity of firm i’s attraction function. We adopt the following simplifying notation:

f(x+) := limh↓x f(h), f(x−) := limh↑x f(h), inf ∅ = ∞, and y
y+k

= 1 if y = ∞ and k is finite.

Condition A. For each firm i,

(A1) ai(·) is positive, strictly decreasing and continuously differentiable, i.e., ai(p) > 0 and

a′i(p) < 0 for all p ∈ (0, ρi). It follows that the elasticity of attraction, ηi(·), is positive

for p ∈ (0, ρi).

(A2) The elasticity ηi(·) is nondecreasing. In other words, when the price is higher, the

percentage decrease in the attraction function per percentage change in price is also
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higher. This assumption is central to the existence and uniqueness proofs. It is used,

for example, to show that the first order condition (4) has a unique solution pi for any

p−i.

(A3) If ai(0+) < ∞, then a′i(0+) > −∞. It follows that when the price is low enough,

the elasticity of attraction is close to 0, i.e., ηi(0+) = 0. This is needed to prove the

interiority of equilibria (Proposition 3); in any equilibrium, firm i would never set its

price pi = 0. We remark that (A3) holds vacuously if ai(0+) = ∞.

Condition B. For each firm i,

(B1) Ci(·) is strictly increasing, continuously differentiable, and convex on [0, 1] (i.e., ci(·) :=

C ′
i(·) is positive and increasing), and satisfies ci(0+) > 0.

Condition C. For each firm i,

(C1) ci(0) < ρi · (1− 1/ηi(ρi)), i.e., the Lerner index [pi − ci(di)]/pi at price pi = ρi and

demand di = 0 is strictly larger than 1/ηi(ρi). It means that no firm would set the

maximum price in equilibrium because its profits are decreasing at this price. It is

needed for the interiority of equilibria.

(C2) If κ = 0, then ci(1) < ρi. It means that firm i could profitably serve all demand.

(C3) If κ = 0, the following technical condition holds:

n∑
i=1

(
1− 1

ηi(ρi) · (1− ci(1)/ρi)

)
> 1 .

This inequality holds when there are at least two distinct firms i satisfying ηi(ρi) = ∞.

Note ρi < ∞ implies ηi(ρi) = ∞.

We note that both (C2) and (C3) are used for the uniqueness proof only (Proposition 6).

Proposition 1 shows that these conditions are satisfied for arbitrary cost functions satis-

fying Conditions (B1) and (C2):

• Generalized Logit Attraction Function: ai(p) = exp(−λip) with λi > 0

8



• Cobb-Douglas Attraction Function: ai(p) = p−γi with γi > 1

• Linear Attraction Function: ai(p) = αi − βip with αi, βi > 0.

Proposition 1 Suppose n ≥ 2, and cost function Ci(·) satisfies Conditions (B1) and (C2)

for each i. Then, Conditions A, B and C are satisfied provided that each firm i’s attraction

function is either (i) generalized logit, (ii) Cobb-Douglas with an additional assumption γi > 2

in case of κ = 0, or (iii) linear where αi/βi > ci(1).

Proof: (i) We get ρi = ∞ and a′i(p) = −λi exp(−λip). Thus, ηi(p) = λip, ηi(ρi) = ∞,

ai(0+) = 1, and a′i(0+) = −λi, satisfying Condition A. In addition, since ci(0) is finite,

ρi · (1− 1/ηi(ρi)) = ∞ implies (C1). Furthermore, 1− (ηi(ρi) · (1− ci(1)/ρi))
−1 = 1.

(ii) We have ρi = ∞ and a′i(p) = −γip
−γi−1. Thus, the elasticity ηi(p) = γi is constant

for all p ∈ (0, ρi), and ai(0+) = ∞, satisfying Condition A. Also, (C1) follows from ρi ·
(1− 1/ηi(ρi)) = ρi · (1− 1/γi) = ∞. If κ = 0, then we assume γi > 2 and get 1 −
(ηi(ρi) · (1− ci(1)/ρi))

−1 = 1− 1/γi > 1/2.

(iii) We have ρi = αi/βi and a′i(p) = −βi. Thus, ηi(p) = βip/(αi−βip), and ai(0+) = αi,

satisfying Condition A. In addition, we obtain ηi(ρi) = ∞, and thus ρi · (1− 1/ηi(ρi)) =

ρi = αi/βi > ci(1) ≥ ci(0), implying (C1). Since 1 − ci(1)/ρi > 0, we obtain 1 −
(ηi(ρi) · (1− ci(1)/ρi))

−1 = 1.

Now, (C3) follows easily since in each of the above three cases, since 1−(ηi(ρi) · (1− ci(1)/ρi))
−1

is strictly greater than 1/2.

Condition (B1) essentially means that Ci(·) is a smooth convex function in di. Examples

of Ci(·) include the linear function and exponential function. More examples are provided

in Section 3. We remark that attraction functions do not need to be identical. Furthermore,

even the form of the attraction function may not be same among firms. Analogously, the

cost functions need not have the same form either.

For the rest of this paper, we assume Conditions A, B and C hold. In Section 5, we

introduce as an additional assumption that both Ci(·) and ai(·) are twice continuously dif-

ferentiable.
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3. Examples

In this section, we list price competition models for which the convex cost model is applicable.

With the attraction demand model, the results of this paper show the existence and unique-

ness of equilibrium in these models. We present some examples from inventory-capacity

systems, followed by those from service systems based on queues.

Inventory-Capacity Systems

Example 1. Consider the pricing problem in the stochastic inventory system with exoge-

nously determined stocking levels. We denote stochastic demand of firm i by Di(p), and

its expected demand by di(p). Demand is a function of the price vector p = (p1, . . . , pn).

We represent firm i’s stochastic demand by Di(p1, . . . , pn) = ϕ(di(p), εi), where εi is a ran-

dom variable. (We can allow ϕ to be dependent on i). We suppose the continuous density

function fi(·) for εi exists, and let Fi(·) denote its cumulative density function.

Let yi be the exogenously fixed stocking level of firm i. For the first yi units, the per-unit

materials cost is wi. If realized demand is at most yi, the per-unit salvage value of wi−hi > 0

is obtained. Otherwise, the excess demand is met through an emergency supply at the cost

of wi + bi per unit, where bi ≥ 0. The profit of firm i is the difference between its revenue

and costs, and the expected profit is πi(p|yi) = pi · di(p)− Ci(di(p), yi), where

Ci(di, yi) = widi + hiE[yi − ϕ(di, εi)]
+ + biE[ϕ(di, εi)− yi]

+ ,

and hi and bi are the per-unit inventory overage and underage costs, respectively.

Our goal is to show that for fixed yi, this function satisfies condition (B1). We achieve

this goal with two common demand uncertainty models.

• Additive Demand Uncertainty Model: ϕ(di, εi) = di + εi where E[εi] = 0. Then,

∂Ci(di, yi)

∂di

= wi − hiP [yi ≥ di + εi] + biP [yi ≤ di + εi]

= wi − hiFi(yi − di) + bi(1− Fi(yi − di)).

• Multiplicative Demand Uncertainty Model: ϕ(di, εi) = di · εi where εi is positive and

E[εi] = 1. Then,

∂Ci(di, yi)

∂di

= wi − hi

∫ yi/di

0

εdFi(ε) + bi

∫ ∞

yi/di

εdFi(ε)

= wi − hi + (hi + bi)

∫ ∞

yi/di

εdFi(ε).
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In both cases, ∂Ci(di, yi)/∂di is positive since wi > hi and nondecreasing in di. We conclude

that for fixed yi, Ci(di, yi) is strictly increasing, twice continuously differentiable, and convex

in di. Furthermore, ∂Ci(di, yi)/∂di > 0 at di = 0.

Example 2. We modify Example 1 to allow the stocking decision to exist as an operational

decision, where the stocking level is constrained. The sequence of events occurs as follows.

(1) Firms decide prices simultaneously. (2) The price vector p = (p1, . . . , pn) is announced.

(3) Each firm i decides on the stocking level yi, subject to the minimum stocking level and

capacity constraint ζi ≤ yi ≤ υi. (4) For each firm i, demand is realized, and the appropriate

overage and underage cost is incurred.

For any given p, firm i’s expected demand is given by di = di(p), and its optimal

stocking level can be computed. Let yNV
i (di) be the solution to the newsvendor problem,

i.e., P [ϕ(di, εi) ≤ yNV
i (di)] = bi

bi+hi
where bi and hi are defined in Example 1. Let y∗i (di)

be the optimal stocking level, which is yi maximizing πi(p|yi) subject to ζi ≤ yi ≤ υi.

Then, y∗i (di) is the point in the interval [ζi, υi] that is the closest to yNV
i (di), i.e., y∗i (di) =

max{ζi, min{yNV
i (di), υi}}.

In the additive demand uncertainty model, we get y∗i (di) = max{ζi, min{di + zi, υi}},
where zi = F−1

i (bi/(bi + hi)). Then,

Ci(di, y
∗
i (di)) = widi + hiE[y∗i (di)− ϕ(di, εi)]

+ + biE[ϕ(di, εi)− y∗i (di)]
+

=





widi + hiE[ζi − di − εi]
+ + biE[di + εi − ζi]

+, if ζi > di + zi or ζi > υi

widi + hiE[zi − εi]
+ + biE[εi − zi]

+, if ζi ≤ di + zi ≤ υi

widi + hiE[υi − di − εi]
+ + biE[di + εi − υi]

+, if di + zi > υi and ζi ≤ υi.

We can easily show that Ci(di, y
∗
i (di)) is strictly increasing, twice differentiable and con-

vex in di. Similarly, we obtain the analogous result for the multiplicative demand uncer-

tainty model, in which y∗i (di) = min{dizi, υi}. Furthermore, if ζi = −∞ and υi = ∞, then

Ci(di, y
∗
i (di)) is linear in di.

Example 3. We modify Example 2 to model the minimum service level requirement. Sup-

pose that a vector (f1, · · · , fn) is exogenously specified such that firm i’s stock-out probability

should be at most 1− fi. We remove the capacity constraint (i.e., υi = ∞ for all i) to avoid

infeasibility. Then, all the results in Example 2 continue to hold, with the redefinition of

zi = F−1
i (max{fi, bi/(bi + hi)}).

Consider a special case of this example in which the stocking levels are determined solely
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by the (f1, · · · , fn) vector (i.e., zi = F−1
i (fi)), and the minimum stocking levels do not exist

(i.e., ζi = −∞). Then, Ci is linear. In this case, the uniqueness and existence are first proven

by Bernstein and Federgruen (2004b) using supermodular games.

We remark that in Examples 2 and 3, the second derivative of Ci with respect to di may

not be continuous. In such cases, the existence and uniqueness still hold; yet, our results

regarding stability and convergence rate in Section 5 do not apply.

Service Systems

Example 4. We model each firm as a single server queue with finite buffer, where the firms’

buffer sizes are given exogenously. Let κi denote the size of firm i’s buffer; no more than κi

customers are allowed to the system. We assume exponential service times and the Poisson

arrival process. The rate µi of service times are exogenously determined, and the rate di of

Poisson arrival is an output of the price competition. In the queueing theory notation, each

firm i is a M/M/1/κi system.

We assume that the materials cost is wi > 0 per served customer, and the diverted

customers’ demand due to buffer overflow is met by an emergence supply at the cost of

wi + bi unit per customer, where bi > 0. The demand arrival rate di = di(p) is determined as

a function of the price vector p. It follows that firm i’s time-average revenue is pi ·di−Ci(di),

where Ci(di) is the sum of wi ·di and the time-average number of customers diverted from the

system is multiplied by bi. Thus, according to elementary queueing theory (see, for example,

Medhi (2003)),

Ci(di) = wi · di + bi · di · (1− di/µi)(di/µi)
κi

1− (di/µi)κi+1
, if di 6= µi

= wi · di + bi · di

κi + 1
, if di = µi.

Algebraic manipulation shows that Ci(·) is convex and continuously twice differentiable, sat-

isfying ci(0) = wi > 0.

Example 5. Consider price competition among M/D/1 queueing systems in which the

service level θi of each firm i is exogenously specified. The following sequence of events

occurs. (1) Firms decide their prices simultaneously. (2) The price vector p = (p1, . . . , pn)

is announced. (3) Each firm i decides on its capacity µi, which is the service rate. It
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takes exactly 1/µi time units to serve a customer. We assume that firm i’s capacity cost is

proportional to its capacity. The service level is defined as the reciprocal of the expected

amount of time spent in the system, and capacity should be sufficient enough to satisfy

the minimum service level. (4) For each firm, customers arrive at each queueing system

according to a Poisson process with rate di. We assume zero marginal cost of production.

The expected amount of time spent by a customer in firm i’s queueing system is given

by

1

θi

=
1

µi

+
di

2(µi − di)µi

.

Thus, using the quadratic formula, firm i’s capacity should be

µi =
di

2
+

θi

2
+

√
d2

i + θ2
i

2
,

which is convex in di. Recall that firm i’s expected profit pi · di − Ci(di), where Ci(di) is

proportional to µi. The cost function Ci is convex and continuously twice differentiable.

Furthermore C ′
i(0) > 0.

We remark that this simple example is a special case of a general model presented in Allon

and Federgruen (2004). They provide extensive treatment of G/G/1 queueing systems.

4. Existence and Uniqueness of Equilibrium

In this section, we show that the oligopoly price competition has a unique equilibrium. Given

the price vector, each firm’s profit function is given by expression (2), where its demand is

determined by (1). We first show that the first order condition ∂πi/∂pi = 0 is sufficient

for the Nash equilibrium (Proposition 2). For each value of a suitably defined aggregate

attraction δ, we show that there is at most one candidate for the solution of the first order

condition (Proposition 3). Then, we demonstrate that there exists a unique value δ of the

aggregator such that this candidate indeed solves the first order condition (Propositions 5

and 6). We proceed by assuming both Conditions A, B and C.

Let ςi(p) := ηi(pi) · (1− di(p)).

Proposition 2 Firm i’s profit function πi is strictly quasi-concave in pi ∈ (0, ρi). A vector

of prices p∗ = (p∗1, . . . , p
∗
n) ∈ P satisfies ∂πi(p

∗)/∂pi = 0 for all i if and only if p∗ is a Nash

equilibrium in P. Also, p∗i > ci(0) for each i. Furthermore, the condition ∂πi/∂pi = 0 is

13



equivalent to

ci(di(p))

pi

= 1− 1

ςi(p)
. (4)

Note that the condition in (4) is analogous to the inverse elasticity condition for optimal

monopoly pricing.

Proof: Compute the partial derivative of πi with respect to pi ∈ (0, ρi). We abuse the

prime notation and use it for the partial differentiation with respect to pi.

∂πi

∂pi

= d′ipi + di − C ′
i(di)d

′
i

=

(
ai∑
aj + κ

)′
(pi − ci(di)) +

ai∑
aj + κ

=
ai
′(
∑

aj + κ)− aiai
′

(
∑

aj + κ)2
(pi − ci(di)) +

ai∑
aj + κ

=
ai
′(1− di)∑
aj + κ

(pi − ci(di)) +
ai∑
aj + κ

=

(
(1− di)piai

′
∑

aj + κ

)(
pi − ci(di)

pi

+
ai

piai
′

1

1− di

)
. (5)

Note that the first factor is negative. Thus, ∂πi/∂pi = 0 is equivalent to setting the second

factor to zero, which yields (4).

Let li(pi) and ri(pi) be the left and right sides of (4) respectively, i.e.,

li(pi) :=
ci(di(p))

pi

and ri(pi) := 1− 1

ςi(p)
.

We claim that ri(pi)− li(pi) is a strictly increasing function of pi. To see this, since di(p) is

strictly decreasing in pi, by (B1), li(·) is strictly decreasing. Also, since 1− di(p) is positive

and strictly increasing in pi, (A2) implies that ςi(p) is positive and strictly increasing in pi.

Hence, ri(·) is strictly increasing. Thus, the claim follows.

The first factor in (5) is negative, and the second factor is ri(pi)− li(pi), which increases

strictly. Thus, ∂πi/∂pi has at most one sign change (from positive to negative), and the

change occurs when li(pi) = ri(pi), or ∂πi/∂pi = 0. It follows that πi is strictly quasi-

concave in pi. By quasi-concavity, p∗ = (p∗1, . . . , p
∗
n) ∈ P is a Nash equilibrium if it satisfies

∂
∂pi

πi(p
∗) = 0 for all i. Since p∗ is an interior solution, ∂

∂pi
πi(p

∗) 6= 0 for some i implies that

p∗ is not a Nash equilibrium.

Furthermore, since ςi(p
∗) is positive, (ci(di(p

∗))− p∗i )/p
∗
i is negative by (4). Thus, p∗i >

ci(di(p
∗)) ≥ ci(0), where the second inequality follows from (B1).
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Given a price vector, let δ :=
∑n

j=1 aj(pj) be the aggregate attraction. The support of

δ is ∆ :=
(
0,

∑n
j=1 aj(0+)

)
. From (A1), it follows that δ ∈ ∆. Then, di = ai(pi)/(δ + κ).

Since a−1
i is well-defined by (A1), we get pi = ai

−1((δ + κ)di). Thus, (4) is equivalent to

ci(di)

ai
−1((δ + κ)di)

= 1− 1

ηi ◦ ai
−1((δ + κ)di) · (1− di)

. (6)

Observe that there is one-to-one correspondence between p = (p1, . . . , pn) and d = (d1, . . . , dn),

given δ (and of course, κ). Let Di(δ) be the solution to (6) given δ (and κ). The existence

and uniqueness of Di(δ) are guaranteed by Proposition 3 below. The Di(δ)’s may not sum

up to the “correct” value of δ/(δ + κ) unless a set of conditions is satisfied (Propositions 5).

Proposition 6 shows the existence of a unique δ such that the Di(δ)’s sum up to δ/(δ + κ).

Let di(δ) := min
{

ai(0+)
δ+κ

, 1
}

be an upper bound on the market share of firm i. For each

fixed δ ∈ ∆, we define the following real-valued functions on
(
0, di(δ)

)
:

Li(xi|δ) :=
ci(xi)

ai
−1((δ + κ)xi)

and Ri(xi|δ) := 1− 1

ηi ◦ ai
−1((δ + κ)xi) (1− xi)

. (7)

We remark that both Li(xi|δ) and Ri(xi|δ) are continuous in xi in
(
0, di(δ)

)
.

Proposition 3 For each i and each δ ∈ ∆, Li(·|δ) is positive and strictly increasing, and

Ri(·|δ) is strictly decreasing. Furthermore, Li(xi|δ) = Ri(xi|δ) has a unique solution in
(
0, di(δ)

)
, i.e., Di(δ) is a well-defined function of δ.

Proof: Fix δ. Since ai
−1((δ +κ)xi) is a strictly decreasing function of xi, (B1) implies that

Li(xi|δ) is positive and strictly increasing in xi. Furthermore, since ηi ◦ ai
−1(·) is positive

and decreasing on (0, ai(0+)), Ri(xi|δ) is strictly decreasing in xi. Thus, Li(xi|δ) = Ri(xi|δ)
has at most one solution.

¿From (C1), ci(0) < ρi · (1− 1/ηi(ρi)) implies

Li(0 + |δ) =
ci(0)

ρi

< 1− 1

ηi(ρi)
= Ri(0 + |δ) .

Now, as xi → di(δ) = min
{

ai(0+)
δ+κ

, 1
}

, we claim that Ri(xi|δ) → −∞. To see this,

consider the following two cases:

• Case ai(0+)
δ+κ

> 1: We have 0 < ai
−1(δ +κ) < ρi, which implies 0 < ηi ◦ai

−1(δ +κ) < ∞.

Thus, as xi → 1, we have 1/(1− xi) →∞, and Ri(xi|δ) → −∞
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• Case ai(0+)
δ+κ

≤ 1: Suppose xi → ai(0+)
δ+κ

. Since ai(0+) is finite, (A3) implies that ηi ◦
ai
−1((δ+κ)xi) approaches 0 from above. Furthermore, 1−xi approaches a nonnegative

number from above. Thus, Ri(xi|δ) → −∞.

Recall that Li(xi|δ) is positive. Thus, from the above claim, there exists at least one solution

satisfying Li(xi|δ) = Ri(xi|δ) by the Intermediate Value Theorem.

For any aggregate attraction δ ∈ ∆, Proposition 3 shows that there is a unique solution

xi satisfying Li(xi|δ) = Ri(xi|δ), and this solution is Di(δ). It represents demand that

maximizes firm i’s profit provided that the aggregate attraction remains at δ. Also, define

D(δ) := D1(δ) + · · ·+ Dn(δ).

Proposition 4 All Di(δ)’s and D(δ) are strictly decreasing functions. Furthermore, each

Di(δ) is a continuous function of δ.

Proof: For each i, Di(δ) is a strictly decreasing function since any increase in δ lifts the

graph of Li(xi|δ) and drops that of Ri(xi|δ). For the continuity of Di, see Appendix A.1.

Proposition 5 For fixed δ ∈ ∆, D(δ) = δ
δ+κ

holds if and only if there exist p = (p1, . . . , pn)

and d = (d1, . . . , dn) such that the following set of conditions hold:

(i) δ =
∑n

j=1 aj(pj),

(ii) di = ai(pi)/(δ + κ) for each i, and

(iii) Li(di|δ) = Ri(di|δ) for each i.

In this case, furthermore, the price vector corresponding to any δ satisfying D(δ) = δ
δ+κ

is

unique.

Proof: Suppose there exist p ∈ P and d satisfying (i), (ii) and (iii). Then, by definition

of Di(δ) and (iii), we obtain di = Di(δ), and

D(δ) =
n∑

i=1

Di(δ) =
n∑

i=1

di =
n∑

i=1

ai(pi)

δ + κ
=

δ

δ + κ
.

Conversely, suppose δ satisfies D(δ) = δ
δ+κ

. Set di = Di(δ). Then, by definition of Di(δ),

(iii) holds. Let pi = ai
−1((δ + κ)di) for each i, and (ii) holds. Also, (i) follows from

n∑
j=1

aj(pj) =
n∑

j=1

(δ + κ)dj =
n∑

j=1

(δ + κ)Dj(δ) = (δ + κ)D(δ) = δ.
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We have established the if and only if portion, and now consider the uniqueness portion.

For any given δ, the Li(di|δ) = Ri(di|δ) equation has only one solution by Proposition 3.

Hence, from the one-to-one correspondence between p and (δ;d) given δ, the uniqueness of

di implies the uniqueness of the price vector p.

If there is δ ∈ ∆ satisfying D(δ) = δ
δ+κ

, then by Proposition 5, the corresponding price

vector satisfies ∂πi/∂pi = 0 for all i. By Proposition 2, this price vector is a Nash equilibrium.

For the unique existence of the equilibrium, it suffices to show the result of the following

proposition.

Proposition 6 There exists a unique δ ∈ ∆ such that D(δ) = δ/(δ + κ).

Proof: There is at most one δ ∈ ∆ such that D(δ) = δ/(δ + κ) since D(δ) − δ/(δ + κ) is

a strictly decreasing function by Proposition 4. Since each Di is monotone and bounded in

[0, 1], limδ↓0 D(δ) in [0, 1] and limδ↑∑i ai(0+) D(δ)−δ/(δ + κ) exist. We claim (i) limδ↓0 D(δ)−
δ/(δ + κ) > 0 and (ii) limδ↑∑i ai(0+) D(δ) − δ/(δ + κ) < 0. From the continuity D(δ) −
δ/(δ + κ), these two claims are sufficient for the result.

First we show (i). Suppose κ = 0. We note that the domain of both Li and Ri functions

is
(
0, di(δ)

)
, and

Di(0+) ≤ lim
δ↓0

di(δ) = lim
δ↓0

min{ai(0+)

δ
, 1} = 1,

where the last equality comes from limδ↓0 ai(δ) > 0. By rewriting equation (6) and the

continuity of all involved functions,

Di(0+) = lim
δ↓0

Di(δ)

= 1− lim
δ↓0

1

ηi(ai
−1(δDi(δ)))

· 1

1− ci(Di(δ))/ai
−1(δDi(δ))

= 1− 1

ηi(ai
−1(0+))

· 1

1− ci(Di(0+))/ai
−1(0+)

= 1− 1

ηi(ρi)
· 1

1− ci(Di(0+))/ρi

≥ 1− 1

ηi(ρi)
· 1

(1− ci(1)/ρi)

where the last inequality follows from (B1) and (C2). Then,

D(0+)− lim
δ↓0

δ

δ + κ
=

∑
i

Di(0+)− 1 ≥
∑

i

(
1− 1

ηi(ρi)(1− ci(1)/ρi)

)
− 1
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which is greater than 0 by (C3).

Suppose κ > 0. We temporarily denote Li(·|δ) and Ri(·|δ) by Li(·|δ, κ) and Ri(·|δ, κ),

respectively. Let α := min{κ/2,
∑

i ai(0+)/2} > 0. Then,

Li(di|0+, κ) =
ci(di)

ai
−1(κdi)

= Li(di|α, κ− α)

Ri(di|0+, κ) = 1− 1

ηi ◦ ai
−1(κdi)(1− di)

= Ri(di|α, κ− α).

By definition of Di(0+), we get Li(Di(0+)|α, κ−α) = Ri(Di(0+)|α, κ−α). By Proposition

3, this condition implies Di(0+) > 0. Furthermore, δ/(δ + κ) → 0 as δ ↓ 0. Thus, we

complete the proof of claim (i).

Now we show (ii). From the equation (6) and definition (7),

(δ + κ)Di(δ) = ai

(
ci(Di(δ))

Ri(Di(δ)|δ)
)

< ai

(
ci(0)

Ri(0|δ)
)

= ai

(
ci(0)

1− 1/ηi(ρi)

)
,

where the inequality follows from (B1), Di(δ) > 0, and Proposition 3. Since ci(0) is positive

from (B1), (C1) implies 1 − 1/ηi(ρi) > 0 and 0 < ci(0)
1−1/ηi(ρi)

< ρi. Since ai(·) is strictly

decreasing by (A1), we get

δ :=
∑

i

ai

(
ci(0)

1− 1/ηi(ρi)

)
<

∑
i

ai(0+).

Combining the above two inequalities, we have D(δ) =
∑

i Di(δ) < δ/(δ + κ). Thus,

lim
δ↑∑i ai(0+)

D (δ) ≤ δ∑
i ai(0+) + κ

<

∑
i ai(0+)∑

i ai(0+) + κ
= lim

δ↑∑i ai(0+)

δ

δ + κ
,

regardless of whether
∑

i ai(0+) is finite or infinite.5 We complete the proof of claim (ii).

Theorem 1 There exists a unique positive pure strategy Nash equilibrium price vector p∗ ∈
P. Furthermore, p∗ satisfies p∗i > ci(0) for all i = 1, · · · , n.

Proof: The result follows immediately from Propositions 5 and 6. Proposition 2 implies

p∗i > ci(0).

5If
∑

i ai(0+) = ∞, then the strict inequality still holds since δ is always finite.
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5. Convergence of Tatônnement Scheme

In this section, we show that the unique equilibrium is globally stable under the tatônnement

scheme. Suppose each firm i chooses a best-response pricing strategy: choose pi maximizing

his profit πi(p1, . . . , pn) while pj’s are fixed for all j 6= i. This section shows that the sequence

of prices obtained by iterative application of this best-response strategy globally converges to

the unique Nash equilibrium price vector (Theorem 2). The tatônnement convergence result

not only shows the stability of the equilibrium, but also provides a computational method

of finding it. We show the convergence rate is linear (Theorem 3), guaranteeing a certain

degree of stability and computational efficiency.

In the tatônnement scheme we propose, a firm does not need to know the attraction

functions of other firms. For the best response pricing strategy, he only needs to observe

the aggregate attraction quantity of the other firms in each iteration, which can easily be

deduced from its own demand and attraction value as well as κ.

In this section, we introduce additional assumptions on Ci(·) and ai(·). We restrict them

to be continuously twice differentiable to ensure the application of the implicit function

theorem. This guarantees the existence of the derivatives of best-response functions. These

additional assumptions are satisfied by most common cost and attraction functions.

By Theorem 1, there exists a unique equilibrium vector, which is denoted by p∗ =

(p∗1, · · · , p∗n) ∈ P . Define Q := (0, a1(0+)) × · · · × (0, an(0+)). Let q∗ = (q∗1, · · · , q∗n) ∈ Q
be the corresponding attraction vector where q∗i := ai(p

∗
i ). Let q̂i :=

∑
j 6=i qj be the sum of

attraction quantities of firms other than i. Set θ∗i := q∗i /(q̂
∗
i + κ) and d∗i := q∗i /(q

∗
i + q̂∗i + κ),

which are both positive. Suppose we fix the price pj for all j 6= i, and let qi := ai(pi) be the

corresponding attraction.

Since ai is one-to-one and δ = qi + q̂i, condition (6) is equivalent to

ci

(
qi

qi+q̂i+κ

)

ai
−1(qi)

= 1− 1

ηi ◦ ai
−1(qi)

(
1 +

qi

q̂i + κ

)
. (8)

Using an argument similar to Proposition 3 and ensuing discussion, it can be shown that there

is a unique solution qi to (8) for each q̂i given by any positive number less than
∑

j 6=i ai(0+).

(See Appendix A.2.) We call this solution qi the best response function ψi(q̂i) for firm i. The

unique equilibrium satisfies ψi(q̂
∗
i ) = q∗i where q̂∗i =

∑
j 6=i q

∗
j . Furthermore, it is easy to show

that ψi(·) is strictly increasing. (See Appendix A.2 for the sketch of proof.)
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Proposition 7 ψi(·) is a strictly increasing function.

¿From the definition of θ∗i and ψi(q̂
∗
i ) = q∗i , we know ψi(q̂i)/(q̂i + κ) = θ∗i at q̂i = q̂∗i . The

following proposition characterizes the relationship between ψi(q̂i)/(q̂i + κ) and θ∗i .

Proposition 8 ψi(q̂i)/(q̂i + κ) is strictly decreasing in q̂i, and satisfies ψi(q̂
∗
i )/(q̂

∗
i +κ) = θ∗i .

Thus,

ψi(q̂i)

q̂i + κ





> θ∗i , for q̂i < q̂∗i
= θ∗i , for q̂i = q̂∗i
< θ∗i , for q̂i > q̂∗i .

Furthermore, ψ′i(q̂i) is continuous, and satisfies 0 < ψ′i(q̂
∗
i ) < θ∗i .

Proof: From the definition ψi(q̂i) and (8), we get

ci

(
ψi(q̂i)

ψi(q̂i)+q̂i+κ

)

ai
−1(ψi(q̂i))

= 1− 1

ηi ◦ a−1
i ◦ ψi(q̂i)

(
1 +

ψi(q̂i)

q̂i + κ

)
. (9)

To see the existence of ψ′i(·), we apply the implicit function theorem to

F (x, y) =
ci

(
x

x+y+κ

)

ai
−1(x)

− 1 +
1

ηi ◦ a−1
i (x)

(
1 +

x

y + κ

)
= 0

with open domain, (x, y) ∈ (0, ai(0+))× (0,
∑

j 6=i ai(0+)). The Jacobian with respect to x is

Fx(x, y) = −(K1(x, y) + J1(x, y) + K2(x, y) + J2(x, y))

where

K1(x, y) := −
c′i

(
x

x+y+κ

)
(y + κ)

ai
−1 (x) · (x + y + κ)2 ,

K2(x, y) := − 1

ηi ◦ a−1
i (x) · (y + κ)

,

J1(x, y) :=
ci

(
x

x+y+κ

)

(ai
−1(x))2 ·

(
ai
−1

)′
(x) ,

J2(x, y) :=

(
1 +

x

y + κ

)
·
(
ηi ◦ a−1

i

)′
(x)(

ηi ◦ a−1
i (x)

)2 .

By Conditions A and (B1), ci is positive and increasing, a−1
i is positive and strictly decreasing,

and ηi ◦a−1
i is positive and decreasing. Thus, both K1(x, y)+K2(x, y) and J1(x, y)+J2(x, y)
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are strictly negative. Hence Fx(x, y) > 0 and the implicit function theorem confirms the

existence of the continuous derivative, ψ′(·), locally. Differentiating equation (9) with respect

to q̂i yields

−K1(ψi(q̂i), q̂i) ·
(

ψ′i(q̂i)− ψi(q̂i)

q̂i + κ

)
− J1(ψi(q̂i), q̂i) · ψ′i(q̂i)

= K2(ψi(q̂i), q̂i) ·
(

ψ′i(q̂i)− ψi(q̂i)

q̂i + κ

)
+ J2(ψi(q̂i), q̂i) · ψ′i(q̂i) .

Thus,

ψ′i(q̂i) =
K1(ψi(q̂i), q̂i) + K2(ψi(q̂i), q̂i)

J1(ψi(q̂i), q̂i) + J2(ψi(q̂i), q̂i) + K1(ψi(q̂i), q̂i) + K2(ψi(q̂i), q̂i)
· ψi(q̂i)

q̂i + κ

<
ψi(q̂i)

q̂i + κ
, (10)

and it follows

d

dq̂i

(
ψi(q̂i)

q̂i + κ

)
=

ψ′i(q̂i)(q̂i + κ)− ψi(q̂i)

(q̂i + κ)2
< 0. (11)

Furthermore, (10) implies ψ′i(q̂i) is continuous, and θ∗i > ψ′i(q̂
∗
i ) follows from the definition

of θ∗i and ψi(q̂
∗
i ) = q∗i . Proposition 7 implies θ∗i > 0.

Let q = (q1, . . . , qn). We denote the vector of best response functions by Ψ(q) =

(ψ1(q̂1), · · · , ψn(q̂n)) ∈ Q, where q̂i =
∑

j 6=i qj. Note that q∗ = (q∗1, · · · , q∗n) is a fixed point of

Ψ, i.e., Ψ(q∗) = q∗. By Proposition 7, we have Ψ(q1) < Ψ(q2) whenever two vectors q1 and

q2 satisfy q1 < q2. (The inequalities are component-wise.) We now show that best-response

pricing converges to the unique equilibrium. We define the sequence {q(0),q(1),q(2), · · · } ⊂ Q
by q(k+1) := Ψ(q(k)) for k ≥ 0.

Theorem 2 If each firm employs the best response strategy based on the prices of other firms

in the previous iteration, the sequence of price vectors converges to the unique equilibrium

price vector.

Proof: Let q(0) ∈ Q denote the attraction vector associated with the initial price vector.

Choose q(0),q(0) ∈ Q such that q(0) < q(0) < q(0) and q(0) < q∗ < q(0). Such q(0) and q(0)

exist since Q is a box-shaped open set.

For each k ≥ 0, we define q(k+1) := Ψ(q(k)) and q(k+1) := Ψ(q(k)). From the monotonicity

of Ψ(·) (Proposition 7) and Ψ(q∗) = q∗, we get

q(k) < q(k) < q(k) and q(k) < q∗ < q(k). (12)
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Let u(k) := maxi

{
q̂
(k)

i / q̂∗i
}

. Clearly, u(k) > 1 for all k by (12). We show that the sequence
{
u(k)

}∞
k=0

is strictly decreasing. For each i,

q
(k+1)
i = ψi(q̂

(k)

i ) <
(
q̂
(k)

i + κ
)
· θ∗i =

(
q̂
(k)

i + κ
)
· q∗i
q̂∗i + κ

≤ q̂
(k)

i

q̂∗i
· q∗i ≤ u(k)q∗i ,

where the first inequality comes from Proposition 8, the second one from (12), and the last

one from the definition of u(k). Thus

q̂
(k+1)

i =
∑

j 6=i

q
(k+1)
j <

∑

j 6=i

u(k)q∗j = u(k)q̂∗i , (13)

and u(k+1) = maxi{q̂(k+1)

i /q̂∗i } < u(k).

Since
{
u(k)

}∞
k=0

is a monotone and bounded sequence, it converges. Let u∞ := limk→∞ u(k).

We claim u∞ = 1. Suppose, by way of contradiction, u∞ > 1. By Proposition 8, ψi(q̂i)/(q̂i +

κ) is strictly decreasing in q̂i. Thus, for any q̂i ≥ 1
2
(1 + u∞) · q̂∗i , there exists ε ∈ (0, 1) such

that for each i, we have

ψi(q̂i)

(q̂i + κ)
≤ (1− ε) · ψi(q̂

∗
i )

q̂∗i + κ
= (1− ε) · q∗i

q̂∗i + κ
.

For any k, if q̂
(k)

i ≥ 1
2
(1 + u∞) · q̂∗i , then

q
(k+1)
i = ψi

(
q̂
(k)

i

)
≤

(
q̂
(k)

i + κ
)
· (1− ε) · q∗i

q̂∗i + κ

≤ q̂
(k)

i

q̂∗i
· q∗i · (1− ε) ≤ (1− ε) · u(k) · q∗i .

Otherwise, we have q̂∗i < q̂
(k)

i < 1
2
(1 + u∞) · q̂∗i . By Proposition 8,

q
(k+1)
i = ψi

(
q̂
(k)

i

)
<

(
q̂
(k)

i + κ
)
· q∗i
q̂∗i + κ

≤ q̂
(k)

i

q̂∗i
· q∗i ≤ 1

2
(1 + u∞) · q∗i .

Therefore, we conclude, using an argument similar to (13),

u(k+1) ≤ max
{
(1− ε) · u(k), (1 + u∞)/2

}
.

¿From u(k+1) > u∞ > (1 + u∞)/2, we obtain u(k+1) ≤ (1 − ε) · u(k), implying u(k) → 1 as

k →∞. This is a contradiction.
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Similarly, we can show that l(k) := mini

{
q̂(k)

i
/ q̂∗i

}
is a strictly increasing sequence

converging to 1.

The following Corollary identifies a sufficient condition for the monotonicity of the se-

quence of attraction vectors (and also for price vectors).

Corollary 1 If q(0) > Ψ(q(0)) or q(0) < Ψ(q(0)), then {q(k)}k≥0 is monotone.

Proof: Suppose q(0) > Ψ(q(0)) = q(1). We proceed by induction. Assume that q(j) > q(j+1)

for all j < k. Then, q(k) − q(k+1) = Ψ(q(k−1))−Ψ(q(k)) > 0 since Ψ(·) is strictly increasing

and q(k−1) > q(k).

The following proposition shows the linear convergence of tatônnement in the space of

attraction values.

Proposition 9 The sequence {q(k)}k≥0 converges linearly.

Proof: Consider
{
q(k)

}∞
k=0

and
{
q(k)

}∞
k=0

in the proof of Theorem 2. Recall q(k) < q(k) <

q(k) and q(k) < q∗ < q(k). We will show that q(k) and q(k) converges to q∗ linearly. Since Q
is a box-shaped open set, there exists a convex compact set B ⊂ Q containing all elements

of
{
q(k)

}∞
k=0

and
{
q(k)

}∞
k=0

. From (11) in the proof of Proposition 8, there exists δ > 0 such

that for any q ∈ B, we have

d

dq̂i

(
ψ(q̂i)

q̂i + κ

)
≤ −δ.

¿From integrating both sides of the above expression from q̂∗i to q̂
(k)

i ,

ψi(q̂
(k)

i )

q̂
(k)

i + κ
− ψ(q̂∗i )

q̂∗i + κ
≤ −δ

(
q̂
(k)

i − q̂∗i
)

since the line segment connecting q∗ and q(k) lies within B.

Define δ1 := δ ·mini minq∈B {(q̂i + κ) · q̂∗i /q∗i } > 0. We choose δ > 0 is sufficiently small

such that δ1 < 1. Recall q
(k+1)
i = ψi(q̂

(k)

i ) and q∗i = ψ(q̂∗i ). Rearranging the above inequality

and multiplying it by (q̂
(k)

i + κ)/q∗i ,

q
(k+1)
i /q∗i ≤ (q̂

(k)

i + κ)/(q̂∗i + κ) − δ · (q̂(k)

i − q̂∗i ) · (q̂
(k)

i + κ)/q∗i

≤ q̂
(k)

i /q̂∗i − δ1 · (q̂(k)

i /q̂∗i − 1)

= (1− δ1) · q̂(k)

i /q̂∗i + δ1.
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where the second inequality comes from q̂
(k)

i > q̂∗i and the definition of δ1.

Let ρ(k) := maxi{q(k)
i /q∗i }. Thus, q

(k)
j ≤ ρ(k) · q∗j holds for all j, and summing this

inequality for all j 6= i, we get q̂
(k)

i ≤ ρ(k) · q̂∗i . Thus, q
(k+1)
i /q∗i is bounded above by (1− δ1) ·

ρ(k) + δ1 for each i, and we obtain

ρ(k + 1) ≤ (1− δ1) · ρ(k) + δ1 .

Using induction, it is easy to show

ρ(k) ≤ (1− δ1)
k · (ρ(0)− 1) + 1

Therefore, we obtain

max
i

{
(q

(k)
i − q∗i )/q

∗
i

}
= ρ(k)− 1 ≤ (1− δ1)

k · (ρ(0)− 1)

= (1− δ1)
k ·max

i

{
(q

(0)
i − q∗i )/q

∗
i

}
and

max
i

{
q
(k)
i − q∗i

}
≤ (1− δ1)

k ·max
i
{q∗i } ·max

i

{
(q

(0)
i − q∗i )/q

∗
i

}
,

showing the linear convergence of the upper bound sequence q(k). (See Bertsekas (1995).) A

similar argument shows the linear convergence of q(k).

The linear convergence in the above proposition is not with respect to the price vector

but with respect to the attraction vector, i.e. not in p but in q. Yet, the following theorem

also shows the linear convergence with respect to the price vector. Let {p(k)}k≥0 be the

sequence defined by p
(k)
i := a−1

i (q
(k)
i ).

Theorem 3 The sequence {p(k)}k≥0 converges linearly.

Proof: Consider
{
q(k)

}∞
k=0

and
{
q(k)

}∞
k=0

in the proof of Proposition 9. Let
{
p(k)

}∞
k=0

and
{
p(k)

}∞
k=0

be the corresponding sequences of price vectors. Within the compact interval

[p
(0)
i , p(0)

i
], the derivative of ai is continuous and its infimum is strictly negative. By the

Inverse Function Theorem, the derivative of a−1
i (·) is continuous in the compact domain of

[q(0)
i

, q
(0)
i ]. Recall p∗i = a−1

i (q∗i ). There exists some bound M > 0 such that

|pi − p∗i | = |a−1
i (qi)− a−1

i (q∗i )| ≤ M · |qi − q∗i |

whenever ai(pi) = qi ∈ [q(0)
i

, q
(0)
i ] for all i. From the proof of Proposition 9, we get q

(k)
i ∈

(q(k)
i

, q
(k)
i ) ⊂ [q(0)

i
, q

(0)
i ]. Therefore, the linear convergence of {q(k)}k≥0 implies the linear

convergence of {p(k)}k≥0.
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6. Numerical Results

In this section, we perform the computation of the tatônnement scheme using Example 1,

and report on its convergence behavior.

We first consider the price competition among n = 5 firms. We use generalized logit

attraction functions. Thus,

di(p) =
exp(−λipi)∑n

j=1 exp(−λjpj) + κ

where the parameter λi > 0 depends on each firm i. We used κ = 0, 0.01, 0.05, 0.1, 0.5

values. For stochastic demand, we use the additive demand uncertainty model δ(di, ε) =

di + εi, where εi has a Gaussian distribution with mean 0 and variance 0.2. The cost

function in Example 1 is given by

C ′
i(di) = wi − hiP (yi ≥ di + εi) + biP (yi ≤ di + εi), (14)

where wi = 1.0, hi = 0.2, and bi = 2.0 for each firm i. The value of yi depends on firm i. We

initialize the algorithm with p(0) = (C ′
1(0), . . . , C ′

n(0)). The algorithm is terminated when

the Euclidean distance between two successive p(k) vectors is less than tolerance 10−8. We

use Matlab 5.3 on a PC notebook with 900 megahertz processor speed and 384 megabytes

of memory. A typical iteration takes about several seconds, most of which is spent invoking

the Gaussian cumulative density function in (14).

Table 2 shows the equilibrium price vector p∗ and expected demand vector d∗ provided

(λ1, . . . , λ5) = (0.5, 0.75, 1, 1.25, 1.5) and (y1, . . . , y5) = (0.5, 0.6, 0.7, 0.8, 0.9). The column

marked by
∑

i d
∗
i is the total expected demand as a function of κ. The last column shows

the number of iterations until termination. We repeat computation with (λ1, . . . , λ5) =

(1.5, 1.25, 1, 0.75, 0.5), and report results in Table 3.

Using the same λ vector and y vector as in Table 2, Figure 1 plots ‖q(k) − q∗‖ as a

function of iteration count, for each value of κ. It shows linear convergence as predicted

by Proposition 9. The convergence rate of the price vector is also linear as illustrated by

Figure 1. This figure indicates that the number of required iterations is smaller when there

are more competing firms.

We now vary the number of firms in competition, and use n = 2, 5, 10. For each n, the

set of λi values and yi values is given in Table 4. We fix κ at 0.01. We obtain similar linear

convergence results, shown in Figure 2.
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Table 2: Tatônnement Computation Output. Generalized logit attraction model.
(λ1, . . . , λ5) = (0.5, 0.75, 1, 1.25, 1.5). (y1, . . . , y5) = (0.5, 0.6, 0.7, 0.8, 0.9).

κ p∗ d∗
∑

i d
∗
i Iter

0 (3.6987, 2.5936, 2.0659, 1.7702, 1.5826) (0.2499, 0.2271, 0.2013, 0.1738, 0.1479) 1 14
0.01 (3.6807, 2.5837, 2.0602, 1.7666, 1.5801) (0.2467, 0.2238, 0.1980, 0.1708, 0.1452) 0.9844 14
0.05 (3.6170, 2.5490, 2.0401, 1.7538, 1.5714) (0.2348, 0.2118, 0.1862, 0.1600, 0.1356) 0.9283 13
0.1 (3.5512, 2.5137, 2.0198, 1.7409, 1.5626) (0.2219, 0.1989, 0.1738, 0.1487, 0.1257) 0.8689 12
0.5 (3.2722, 2.3687, 1.9366, 1.6879, 1.5265) (0.1582, 0.1375, 0.1172, 0.0985, 0.0823) 0.5937 9

Table 3: Tatônnement Computation Output. Generalized logit attraction model.
(λ1, . . . , λ5) = (1.5, 1.25, 1, 0.75, 0.5). (y1, . . . , y5) = (0.5, 0.6, 0.7, 0.8, 0.9).

κ p∗ d∗
∑

i d
∗
i Iter

0 (1.6427, 1.7932, 2.0625, 2.5429, 3.5335) (0.1334, 0.1666, 0.1993, 0.2328, 0.2679) 1 14
0.01 (1.6391, 1.7890, 2.0569, 2.5347, 3.5192) (0.1313, 0.1639, 0.1961, 0.2292, 0.2641) 0.9846 14
0.05 (1.6264, 1.7743, 2.0376, 2.5055, 3.4686) (0.1236, 0.1542, 0.1847, 0.2164, 0.2502) 0.9291 13
0.1 (1.6136, 1.7594, 2.0179, 2.4757, 3.4164) (0.1154, 0.1440, 0.1726, 0.2028, 0.2353) 0.8701 12
0.5 (1.5613, 1.6989, 1.9362, 2.3498, 3.1930) (0.0779, 0.0969, 0.1169, 0.1391, 0.1642) 0.5948 9

Table 4: Tatônnement Computation. Generalized logit attraction model. Input Data for
Figure 2

.
n (λ1, . . . , λn) (y1, . . . , yn)
2 (0.5, 1.5) (0.5, 0.9)
5 (0.5, 0.75, 1, 1.25, 1.5) (0.5, 0.6, 0.7, 0.8, 0.9)
10 (0.5, 0.6, 0.7, 0.8, 0.9, 1.1, 1.2, 1.3, 1.4, 1.5) (0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9)
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Figure 1: Generalized logit attraction model. Initialization p(0) = (C ′
1(0), . . . , C ′

n(0)). n = 5.
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Figure 2: Generalized logit attraction model. Initialization p(0) = (C ′
1(0), . . . , C ′

n(0)). κ =
0.01.
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Figure 3: Cobb-Douglas attraction model, i.e., di(p) = (p−γi

i )/(
∑n

j=1 p
−γj

j + κ), where γ =

(1.1, 1.6, 2.1, 2.6, 3.1). Initialization p(0) = (C ′
1(0), . . . , C ′

n(0)). n = 5.
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Figure 4: Linear attraction model, i.e., di(p) = (αi − βipi)/(
∑n

j=1(αj − βjpj) + κ)
where β = (0.1, 0.3, 0.5, 0.7, 0.9) and the ratios αi/(βi · ci(1))’s are given by
(1.01, 1.02, 1.03, 1.04, 1.05). Initialization p(0) = (C ′

1(0), . . . , C ′
n(0)). n = 5.
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Additional tests have been carried out for the Cobb-Douglas and Linear attraction func-

tions. See Figures 3 and 4.

A. Appendix

A.1 Continuity of Di(δ)

By the continuity assumptions on all involved functions, fi(xi, δ) := Li(xi|δ) − Ri(xi|δ) is

continuous in (xi, δ). For each δ ∈ ∆, there is a unique Di(δ) satisfying fi(Di(δ), δ) = 0 by

Proposition 3. Furthermore, the argument following Proposition 3 shows Di(δ) is strictly

increasing in δ.

Consider any sequence δk → δ0. If limk→∞ Di(δk) exists, then by the continuity of f , we

have

0 = lim
k→∞

f(Di(δk), δk) = f( lim
k→∞

Di(δk), lim
k→∞

δk) = f( lim
k→∞

Di(δk) , δ0) ,

implying limk→∞ Di(δk) = Di(δ0). Assuming limk→∞ Di(δk) does not exist, apply the above

argument to subsequences converging to lim supk→∞ Di(δk) and lim infk→∞ Di(δk), respec-

tively. Then, their limits should be the same. Thus, Di(δ) is continuous in δ.

A.2 Existence and Monotonicity of ψi

Since ai(·) is one-to-one and δ = qi + q̂i, condition (6) is equivalent to (8). Since ci(·) is

nondecreasing, and a−1
i (·) is strictly increasing, the left side of (6) increases strictly. Since

ηi ◦ a−1
i (·) is nonincreasing and 1 + ·

q̂i+κ
is strictly increasing, the right side of (6) decreases

strictly. As qi approaches 0 and ai(0), both limits are the same as those in the proof of

Proposition 3. Thus ψi(·) is well-defined.

Now the lifting-and-dropping argument following Proposition 3 can be applied to prove

Proposition 7, which shows the monotonicity of ψi(·).
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