
A Continuous-Time Strategic Capacity Planning Model*

Woonghee Tim Huh,1 Robin O. Roundy2

1 Department of Industrial Engineering and Operations Research, Columbia University, New York, New York 10027

2 School of Operations Research and Industrial Engineering, Cornell University, Ithaca, New York 14853

Received 29 October 2003; revised 22 October 2004; accepted 23 January 2005
DOI 10.1002/nav.20081

Published online 15 March 2005 in Wiley InterScience (www.interscience.wiley.com).

Abstract: Capacity planning decisions affect a significant portion of future revenue. In the semiconductor industry, they need
to be made in the presence of both highly volatile demand and long capacity installation lead-times. In contrast to traditional
discrete-time models, we present a continuous-time stochastic programming model for multiple resource types and product
families. We show how this approach can solve capacity planning problems of reasonable size and complexity with provable
efficiency. This is achieved by an application of the divide-and-conquer algorithm, convexity, submodularity, and the open-pit
mining problem. © 2005 Wiley Periodicals, Inc. Naval Research Logistics 52: 329–343, 2005.

Keywords: capacity planning; stochastic demand; submodularity; semiconductor industry

1. INTRODUCTION

The semiconductor industry has been one of the driving
forces of the “new” economy; in the United States, it creates
more value than any other manufacturing industry. The
exponentially growing performance of semiconductor de-
vices, coupled with rapidly decreasing chip prices, has
fueled incentives for innovation and progress across many
sectors. The semiconductor industry, however, continues to
face challenges even as it sets the pace of technological
advancement. It faces highly volatile demands, and copes
with astronomical fab costs, up to two-thirds of which are
attributed to tool costs. The lead-time for purchasing tools is
between 6 months and 18 months, upon which tools will
start becoming obsolete. Thus, semiconductor companies
need to recover capital investment in the tools over a short
period of time.

We develop models and algorithms for strategic capacity
planning, which is to determine the sequence and timing of
acquiring tools. A poorly planned sequence of tool pur-

chases results that expensive tools idle due to the lack of
complementary critical machines. Premature tool purchases
incur unnecessary high purchase costs because of rapidly
decreasing tool prices and result in overcapacity, whereas
tardy purchase decisions lose customer demands (especially
at the early stage of a product’s life cycle when the margin
is highest).

Strategic capacity planning is contrasted with tactical
planning, which allocates the usage of a predetermined
capacity to a group of operations and products. In strategic
capacity planning, decisions need to be made well in ad-
vance of capacity utilization, and its planning horizon
ranges from 6 months to 4 years. Strategic planning deci-
sions are made in the presence of high uncertainty. Uncer-
tainty comes from factors such as technology, the market
and its products, and becomes amplified by long lead-times.
We consider strategic capacity planning under demand un-
certainty.

An extensive review of literature can be found in Luss
[26], Çakanyıldırım, Roundy, and Wood [10], and Roundy
et al. [29]. Most models are unable to handle problems of
both realistic size and complexity arising from the semicon-
ductor industry. The first set of papers, including Benavides,
Duley, and Johnson [4], Berman, Ganz, and Wagner [5], Li,
and Tirupati [11], and Li and Tirupati [24], uses simple
(such as one-to-one) relationships between product families
and tool types. Capacity planning with a single product and

* An earlier version of this paper has received the First Prize in
the Open Category of the Canadian Operational Research Society
2002 Student Paper Competition as well as the Second Prize in the
2002 INFORMS Manufacturing & Service Operations Manage-
ment Section Student Paper Competition. Its extended abstract
appeared in Huh [20].

Correspondence to: W.T. Huh (huh@ieor.columbia.edu)

© 2005 Wiley Periodicals, Inc.

single resource type is relatively easy to solve. However,
they fail to model the complexity of semiconductor manu-
facturing production. The second set of papers, including
Escudero et al. [17], Bhatnagar [8], Swaminathan [30], and
Ahmed and Sahinidis [1], present complex models, which
are challenging to provably solve with problems of realistic
size. For these problems, stochastic programming with full
recourse is beyond today’s computational ability.

An example of the current practice in capacity planning
has been documented by Bermon and Hood [6] at IBM. Its
Capacity Optimization Planning System (CAPS) is an ex-
pansion model for multiple products and multiple resource
types, and are based on linear programming. It assumes
deterministic demand forecast. A stochastic version of
CAPS, called SCAPS (Barahona et al. [3]), has been sub-
sequently developed, and models demand with several sce-
narios. SCAPS applies traditional integer programming
techniques. Both CAPS and SCAPS, like a majority of
capacity planning models, is based on discrete-time mod-
els—the planning period is divided into a finite number of
time periods, and the decision variables are indexed by
them. These decision variables are often binary indicators
for whether a particular tool should be purchased in a given
period under a demand scenario. As a result, the resulting
formulation has a large number of decision variables, and
becomes difficult to solve.

A notably exceptional discrete-time stochastic model for
multiple resource types and multiple product families is due
to Roundy et al. [29]. It exhibits a fast algorithm exploiting
the maximum-flow and minimum-cut structure. However,
because of its structural rigidity, this model cannot be gen-
eralized to cope with additional constraints or requirements.

As in Çakanyıldırım and Roundy [9] and Çakanyıldırım,
Roundy, and Wood [10], we continue to explore alternative
approaches based on continuous-time models. The time at
which a machine is purchased becomes a continuous deci-
sion variable. Davis et al. [15] and Khmelnitsky and Kogan
[23] have used continuous-time models in the context of
optimal control theory. These models are more compact
than traditional stochastic programming methods based on
discrete-time models. For example, for 50 tools and 20 time
periods, these discrete-time models require 1000 binary
variables, whereas our model uses 50 continuous variables
that can take values between 0 and 20. It is hoped that the
small dimensionality of continuous time models will make
the strategic capacity planning problem computationally
tractable. The model in Çakanyıldırım et al. [10] assumes
multiple resource types and a single product family with
nondecreasing demand. Because there is only one product
family, one can define a sequence of tools in the order they
become bottleneck machines. The resulting formulation is
minimization of a separable convex function with a chain
constraint. This model is extended in Çakanyıldırım and

Roundy [9] to allow decreasing demand over time and tool
retirement.

In this paper, we present a capacity expansion model for
multiple resource types and multiple product families under
demand uncertainty. We allow decreasing demand. As in
Bermon and Hood [6], Barahona et al. [3], Roundy et al.
[29], Çakanyıldırım, Roundy, and Wood [10], and Çakany-
ıldırım and Roundy [9], we assume no backorders and
negligible amount of inventory. When capacity is insuffi-
cient to meet all realized demand, then we use a capacity
allocation policy that equalizes the fill rates of product
families. It is a multiple product family version of Çakany-
ıldırım et al. [10] and Çakanyıldırım and Roundy [9]. Since
these models consider a single product, it is possible to
deduce a linear order on resource types depending on when
the corresponding purchases become bottleneck constraints.
Since multiple products require varying amounts and ratios
of capacities, we cannot deduce the sequence of tool pur-
chases from preprocessing. Our model is also a continuous-
time version of the discrete-time model in Roundy et al.
[29]. The continuous-time model is likely to allow more
modeling extensions than the discrete-time model as dem-
onstrated in a follow-up paper (Huh, Roundy, and Çakany-
ıldırım [21]).

We show that the objective function of the formulation is
not separable, but quasiseparable—the objective function is
separable within each subset of the domain where the or-
dering of decision variables is fixed. We present an efficient
divide-and-conquer algorithm which finds a local optimal
solution of this problem. A subroutine to this algorithm is
the submodular function minimization problem. We also
identify certain conditions under which the planning algo-
rithm finds a global optimal solution; the continuous-time
model under some assumptions becomes a convex program,
a provably tractable instance of nonlinear programming.

In Section 2, we describe our model of planning capacity
for the multiple-product and multiple-machine manufactur-
ing system, and derive basic properties including quasisepa-
rability. In Section 3, we present a policy by which we
allocate capacity across multiple product families, and show
how this policy is related to submodularity. A divide-and-
conquer algorithm for finding a solution with the first-order
optimality condition is described in Section 4. This algo-
rithm finds a globally optimal solution under the demand
model given in Section 5, which includes computational
results. Section 6 concludes this paper.

2. MODEL

In this section, we provide a mathematical formulation of
the strategic capacity planning problem. Due to the high rate
of obsolescence, industries such as the semiconductor in-
dustry have low finished-goods inventory. This model as-

330 Naval Research Logistics, Vol. 52 (2005)

sumes that negligible amounts of finished-goods inventories
are held. Motivated by current industry practices, it also
assumes that backorders are negligible. These assumptions
imply that in the capacity allocation stochastic program-
ming recourse, the production quantities at a given time
instant are decided as a function of the capacity and demand
at that time instant only, and not of those at other time
instants. At time 0, all the capacity acquisition plans are
made whereas production decisions are made at each time
instant after instantaneous demands have been observed.
We use this model as a part of a rolling-horizon implemen-
tation.

Section 2 assumes a general capacity allocation policy
and a general demand model. (For a specific capacity allo-
cation policy and demand model, see Sections 3.1 and 5.1.)
Section 2.1 presents constraints and the objective function
of our formulation. Section 2.2 elaborates on how the in-
stantaneous lost sales cost is computed. Section 2.3 explores
separability properties of the objective function. Section 2.4
characterizes local optimality.

2.1. Formulation

Let t � [0, T], where T is the planning horizon. We use
p � � and m � � to index product families and tool types,
respectively. For each tool of type m � �, we let n be its
index in the ordered set �m of tools of type m in the order
that purchases will be made. There are partially ordered
(acyclic) precedence relations between tools indicating cer-
tain tools should be purchased no earlier than other tools.
They include the sequence of tool purchases of type m
defined by the ordered �m. Let � � �m�� �m be the
(unordered) set of all tools of all types that we contemplate
purchasing over the planning horizon. For easier referenc-
ing, we use j as well as (m, n) to index �.

The price of purchasing tool j at time t is assumed to be
a decreasing differentiable convex function Pj(t) of t. This
assumption holds, for example, when the discounting factor
is constant over time. Such a function includes a linearly
decreasing function and an exponentially decreasing func-
tion. The instantaneous lost sales cost is cpt per unit of
product family p at time t. Let umn be the capacity of the
n’th tool of the tool type m. For any given subset Q � � of
tools, the associated tool capacity �m(Q) of type m is

�m�Q� � �
n:�m,n��Q�

umn

where Q� � Q consists of all the tools that obey the
precedence relations; i.e., Q� is the maximal initial set of Q.
[The definition of �m ensures that tools purchases should be
consistent with the precedence relations because any tool
(m, n) purchased out of order does not contribute to the tool

capacity of type m.] To produce one unit of product family
p, we utilize U(m, p) units of capacity from each tool
type m.

The decision variables we are interested in are the pur-
chase times � � (�j�j � �) of the tools. Our objective is to
minimize the sum of tool purchase costs and expected lost
sales costs. The tool purchase cost is

�P��� � �
j��

Pj��j�,

which is separable in the �j’s. Let �(Q, t) be the expected
instantaneous lost sales cost provided that Q � � is the
subset of tools available at time t. The value of �(Q, t)
depends on Q through the �m(Q)’s, and is discussed in
Section 2.2 (see also Section 3.1). We denote by Qt

� � { j
: �j � t} the set of tools available at time t given purchase
times �. We can write the expected lost sales cost �LS as an
integral of instantaneous lost sales cost

�LS��� � �
t�0

T

��Qt
�, t� dt. (1)

The problem we want to solve is the following:

�P� min
�

���� � �P��� � �LS���

s.t. 0 � �j � T for all j � �.

We do not explicitly write the precedence relations as
constraints because the definition of �m(Q) incorporates
them into the objective function �.

2.2. Instantaneous Lost Sales Cost

This section explains how we determine the expected
value � of the instantaneous lost sales cost given a specific
capacity allocation policy. Further discussion on various
capacity allocation policies is provided in Section 3.1.

The lost sales at time t depend on demands for product
families at time t, capacities of tool types at time t, and the
allocation of tool capacities to product families. Given a set
Qt

� of tools which are available at time t (which is deter-
mined by �), tool type m’s capacity is given by �m(Qt

�).
Whereas the tool purchase times � are all determined at the
beginning of the horizon, we allow for the dynamic alloca-
tion of tools. Given the capacity �(Qt) � (�m(Qt)�m �
�) of all tool types and the realized demand dt � (dpt�p �
�) � 0 of all product families at time t, we determine both
the instantaneous production quantity vt � (vpt�p � �) of

331Huh and Roundy: A Continuous-Time Strategic Capacity Planning Model

product family p and the allocation xt � (xmpt�m � �,
p � �), where xmpt is the amount of tool type m’s capacity
allocated to p. A capacity allocation policy is a way of
selecting xt and vt, given Qt and dt.

As in many papers in the capacity planning literature
(e.g., Çakanyıldırım and Roundy [9] and Roundy et al. [29])
and the current capacity planning practice in the semicon-
ductor industry (e.g., Bermon and Hood [5]), assume no
finished goods inventory, and no backorders. In other
words, demand at time t can be satisfied by what is pro-
duced at time t only. We remark that there are a number of
papers that model joint capacity and inventory decisions
(e.g., Rajagopalan and Swaminathan [28]; Atamturk and
Hochbaum [2]). Under our modeling assumption, in any
capacity allocation policy, production does not exceed de-
mand, i.e.,

vpt � dpt for all p � �. (2)

There need not be a demand shortfall if the capacity �m(Qt
�)

is sufficient to meet the demand dt, i.e.,

�
p�1

P

U�m, p�dpt � �m�Qt
�� for all m � 1, . . . , M.

Otherwise, we are unable to meet all demands. A capacity
allocation policy determines how we allocate insufficient
capacity to product families. Under any allocation policy,
production v and allocation x must obey the capacity limit
of each tool type:

�
p�1

P

xmpt � �m�Qt� for all m � � and t � �0, T�,

(3)

U�m, p�vpt � xmpt for all p � � and t � �0, T�.

(4)

It is noted that these constraints are necessary conditions,
and a capacity allocation policy may impose further con-
straints on x and v. Any capacity allocation policy defines a
production function vt � 	(dt, Qt) � (p(dt, Qt)�p � �)
in terms of dt and Qt (which depends on �). This function,
in general, is neither simple nor algebraic, which make
analysis difficult. In Section 3.1, we present a capacity
allocation policy which makes this dependency tractable.

The lost sales are the difference between demand and
production. At time t, the lost sales of product family p are

(dpt � vpt)
�. Let demand Dt � (Dpt�p � �) � 0 be

random vector corresponding to dt. Then we can write

��Qt, t� � EDt� �
p��

cpt�Dpt
 	p�Dt, Qt��
�� . (5)

We remark that lost sales (Dpt � 	p(Dt, Qt))� depend on
the capacity allocation policy 	�, on demand Dt, and also
on tool availability Qt.

2.3. Quasiseparability

In this section, we derive another expression for the
expected lost sales cost �LS(�) within a subset of the fea-
sible region, and develop separability properties of � and
additive properties of its directional derivatives.

Let Q0 � � and j � ��Q0. Let t � [0, T]. We denote
by gj

Q0

(t) the amount of reduction in the expected instanta-
neous lost sales cost � at time t by adding the tool j to the
set Qo of available tools. Formally we define

gj
Qo

�t� � ��Qo, t�
 ��Qo � j, t�, (6)

where we write Qo � j for Qo � { j}. Note that gj
Qo

(t) is
the difference, in lost sales cost, of having the tool set Qo

and that of having Qo � j at time t. It is reasonable to
expect that the more tools we have, the less expected lost
sales cost we incur. We assume, throughout this paper, that
�(Q1, t) � �(Q2, t) for any t whenever Q1 � Q2 � �. It
follows that gj

Qo

(t) � 0.
We generalize the definition (6) of g: For any disjoint sets

Qo, Q � � of tools, we define

gQ
Qo

�t� � ��Qo, t�
 ��Qo � Q, t�. (7)

This quantity corresponds to the marginal benefit of adding
the tool set Q to the existing set Qo at time t. A direct
consequence of (7) is

gQ1
Qo

�t� � gQ2
Qo�Q1

�t� � gQ1�Q2
Qo

�t� (8)

provided that Qo, Q1, Q2 � � are disjoint.
Let 	 be the set of all permutations on �, or bijective

maps from {1, . . . , ���} to �. Each � � 	 corresponds to
a sequence of tool purchases, and the permutation simplex
defined by � is

PS��� �
� � �0, T������1� � ���2� � · · · � ��������,

which corresponds to the set of valid �’s for that sequence.
For each R � {1, . . . , ���}, let �(R) � {�(r)�r � R}.

332 Naval Research Logistics, Vol. 52 (2005)

PROPOSITION 1: For any � � 	 and r � {1, . . . ,
���}, the expected lost sales cost �LS(�) is continuous and
separable within the permutation simplex PS(�). If j �
�(r), then in the interior of PS(�), we have

�j
�LS��� � gj

Qo
��j�, (9)

where Qo � �({1, . . . , r � 1}).

PROOF: Suppose � � PS(�); i.e., � follows the se-
quence given by �. Then, for fixed t, Qt

� � { j � ���j �
t} can be expressed as �({1, 2, . . . , r0 � 1, r0}) for some
r0 � {1, . . . , ���}. Thus, the telescoping sum of (6)
implies

��Qt
�, t� � ���, t� � �

r:���r��t

g��r�
��
1,...,r�1���t�.

From (1), we obtain

�LS��� � �
t�0

T

���, t� dt � �
r�1

��� �
t�0

���r�

g��r�
��
1,...,r�1��

� �t� dt, � � PS���. (10)

We note that the first term is a constant. Within the permu-
tation simplex PS(�), the expected lost sales cost �LS is
continuous and separable in ��(r), the upper limit of the
second integral. Differentiating �LS(�) with respect to
��(r) � �j results in (9). �

Furthermore, �LS(�) is continuously differentiable in the
interior of PS(�) if each g�(r)

�(1,...,r�1), r � {1, . . . , ���}, is
continuous with respect to �. We observe that the right-hand
side expression of (9) is common across many permutation
simplices.

COROLLARY 2: The partial derivative of �LS(�) with
respect to �j is also given by (9) in the interior of {� � [0,
T]� : �j1

� �j � �j2
for all j1 � Qo and j2 � ��(Qo � j)}.

A differentiable function is separable if its partial derivative
with respective to one variable is independent of the values of
the other variables. We say a function f(�) is quasiseparable if
its partial derivative with respective to one variable �j depends
on the other variables only through the set { j� � � : �j� �j}.
The function �P(�) is separable, and thus we can define,
without ambiguity, hj(t) � (/�j)�

P(�), where �j � t for j � �.
We also define hQ(t) � ¥j�Q hj(t) for Q � �. The function
�LS(�) is not separable, but it is quasiseparable by Corollary 2.
From the separability of �P(�), �(�) � �P(�) � �LS(�) is
quasiseparable.

Even though �(�) is separable inside each permutation
simplex, in general it is neither separable nor continuously
differentiable across permutation simplices. The following
definition of the directional derivative of � at � with respect
to a feasible direction y is conventional:

����; y� � lim
�30�

��x � �y�
 ��x�

�
.

We say a feasible direction y is a descent direction provided
that ��(�; y) 0.

We define a cluster Jt(�) of � at t as the set { j : �j � t}
of tools whose corresponding � values are t. The following
proposition shows that the directional derivatives of � are
separable “by cluster.”

PROPOSITION 3: Suppose � is quasiseparable, and y �
�� is a feasible direction at �. Let y1, . . . , yK � ��

satisfying

(i) y � ¥k�1
K yk,

(ii) the supports of yk, k � 1, . . . , K, are mutually
exclusive, and

(iii) for j1, j2 � �, we have �j1
� �j2

whenever there
exists k � 1, . . . , K such that both yj1

k and yj2

k are
nonzero.

Then,

����; y� � �
k�1

K

����; yk�.

PROOF: We show the proof for the case when the sup-
ports of yk’s partition �.

Let tk � �j, where yj
k � 0. Without loss of generality,

assume t1 t2 . . . tK. Then Jtk
(�) is the support of

yk. Choose � � 	 such that, for sufficiently small � � 0,
� � �y is in the permutation simplex PS(�) defined by �.
For k1 � k2, j1 � Jtk1

��� precedes j2 � Jtk2
��� in the order

defined by �. Since � is separable and differentiable within
PS(�), Proposition 1 and the ensuing discussion imply

����; y� � �
r�1

���

y��r��h��r�����r�� � g��r�
��
1,...,r�1������r���

� �
k�1

K �
��r��Jtk���

y��r��h��r�����r�� � g��r�
��
1,...,r�1������r���

� �
k�1

K

����; yk�. �

As a result, to find a descent direction y, it suffices to look
for a descent direction in one cluster at a time.

333Huh and Roundy: A Continuous-Time Strategic Capacity Planning Model

2.4. Characterization of Local Optimality

The previous section indicates that the function � be-
haves well within a permutation simplex. For example, � is
separable, and it is easy to find a descent direction at an
interior point of a permutation simplex. When the current
solution lies along the boundary of a permutation simplex,
some of the inequalities defining the permutation simplex
are tight, and the solution belongs to more than one permu-
tation simplex simultaneously. The major result of this
section is Theorem 4, which characterizes local optimality.

Suppose at time t0, we have a partition QL, Q0, and QU

of �, where QL is the set of tools we have purchased prior
to t0, and QU is the set of tools we will purchase after t0.
Currently, we purchase tools in Qo at to. If we split Qo, and
uniformly slide Q � Qo earlier and Qo�Q later, then �
changes at the rate of

�to
�Q�QL, Qo, QU�

� �
��hQ�to� � gQ

QL�to�� � �hQo�Q�to� � gQo�Q
QL�Q�to��,

if to � �0, T�,
��hQo�Q�to� � gQo�Q

QL�Q�to��, if to � 0,
��hQ�to� � gQ

QL�to��, if to � T.

(11)

From (8), for to � (0, T), the above expression can be
rewritten as

�to�Q�QL, Qo, QU� � �2�hQ�to� � gQ
QL�to��

� �hQo
�to� � gQo

QL�to��, (12)

or, equivalently, as

�to�Q�QL, Qo, QU� � ��hQo
�to� � gQo

QL�to��

� 2�hQo�Q�to� � gQo�Q
QL�Q�to��. (13)

We also write �to
(Q) � �to

(Q�A, �, A).
We say a function � has a descent direction y at � if ��(�;

y) 0 for some feasible direction y � ��. If a current
solution � satisfies �j � to for each j � �, computing (11)
for all Q � � corresponds to the evaluation of the direc-
tional derivative of the objective function � in 2��� direc-
tions. It may be plausible that while splitting a cluster into
two clusters finds no descent direction in �, splitting it into
three or more clusters may find one. The next theorem,
however, shows that this is not the case.

THEOREM 4: Suppose � � [0, T]�. The quasiseparable
function � has a descent direction at � if and only if there
exist to � [0, T] and Q � Jto

(�) such that �to
(Q��tto

Jt(�), Jto
(�), �t�to

Jt(�)) 0.

PROOF: Let �Q, Q � �, be the characteristic vector of
Q, i.e., the jth component of �Q is 1 if j � Q, and 0
otherwise.

Without loss of generality, assume �j � to � (0, T) for
all j � � (see Proposition 3). It is easy to see that if to �
[0, T] and Q � � satisfy �to

(Q) � �to
(Q�A, �, A) 0,

then ��Q � ���Q is a descent direction of � at �.
Suppose �to

(Q) � 0 for all Q � �. Then, in particular,
we have �to

(A) � 0 and �to
(�) � 0, so (11) implies that

h�(to) � g�
A(to) � 0. Consequently, for Q � �, it follows

from the expression (13) for �to
(��Q) that

0 �
1
2

�to���Q� � �1
2
�h��to� � g�

A�to��

� �hQ�to� � gQ
��Q�to�� � ����; �Q�. (14)

Now we prove ��(�; y) � 0 for general y � ��. Let
� � 	 be such that y satisfies y�(1) � . . . � y�(���). Then
there exist multipliers �r � �, r � {1, . . . , ���}, such
that y � ¥r�1

��� �r�Qr, and all �r’s are nonnegative except
possibly for �1. Since � � ��r�Qr belongs to the same
permutation simplex PS(�) for all r � 1, . . . , ���,

����; y� � ����; �
r�1

���

�r�Qr� � �
r�1

���

�r����; �Qr�.

The nonnegativity of ��(�; �Qr), r � 1, . . . , ���, follows
from (14). Furthermore, ��(�; �Q1) � 0. Thus, we con-
clude that ��(�; y) is nonnegative. �

Selecting Q to minimize function � in (11) is called the
cluster splitting problem. Theorem 4 shows that there is a
descent direction from a cluster if and only if the corre-
sponding cluster splitting problem has a negative optimal
value.

3. UNIFORM FILL RATE PRODUCTION

In Section 3.1, we introduce a specific capacity allocation
policy, called the uniform fill rate production policy, that
assigns capacity to product families in the case of demand
shortfall. Under this policy, Section 3.2 shows the sub-
modularity of the objective function in the cluster-splitting
problem. Submodularity is related to global convexity and
polynomial provability of splitting. With an alternative lin-
ear program based allocation, the objective function in the
splitting problem is not submodular.

3.1. Description

This section explains the uniform fill rate production
policy, and the computation of instantaneous lost sales cost.

334 Naval Research Logistics, Vol. 52 (2005)

When the capacity is insufficient to meet realized demand
dt � (dpt�p � �), we need a capacity allocation policy in
order to determine the production quantities vt � (vpt�p �
�), which in turn determine the lost sales ((dpt �
vpt)

��p � �). One plausible way of determining the lost
sales at t is to minimize the total instantaneous lost sales
cost by solving an allocation linear program: to minimize
¥p�� cpt(dpt � vpt)

� subject to constraints (2)–(4). IBM
uses a similar linear program to reflect the available man-
ufacturing capacity (see Bermon and Hood [6]). However,
this approach suffers from two consequences: One is a
modeling issue, and the other is an analytical and algorith-
mic issue. The first consequence is that the production
quantities of certain product families, especially those with
low profitability, are much more sensitive to the total ca-
pacity availability than those with high profitability. One
possible way to avoid this problem is to add more con-
straints or a penalty function in the objective to ensure that
products with low profitability are treated reasonably well.
The second consequence is that the objective function �
does not admit a structure that enables an efficient solution
method.

For the rest of this paper, we use an alternative allocation
policy that equalizes the instantaneous fill rates of stochastic
portion of demand at time t across all products. It approx-
imates the current practice of at least one major U.S. semi-
conductor manufacturer. Computational results in Huh,
Roundy, and Çakanyıldırım [21] suggest that the choice
between these two allocation policies does not significantly
affect the output of the capacity planning algorithm.

We conceptually divide the demand Dt into a determin-
istic portion bt � 0 and a stochastic portion Dt � bt. We
assume that there is enough capacity to meet the determin-
istic part bt of the demand. We may ensure this assumption
by imposing upper bounds on purchase times �. Since Dt �
bt, our allocation policy meets the deterministic part bt of
demand before allocating resources to the stochastic part.
The demand at time t can be written as a vector dt � bt �
��, where � � (�p�p � �) � �� is a directional unit
vector with ��� � 1, and � � � is the magnitude of dt � bt

along �. In the recourse at time t, after the demand dt is
realized, we select production quantities such that

	�dt, Qt
�� � bt � �� for some � � �0, ��, (15)

where Qt
� � { j : �j � t} is the set of tools available at time

t. Thus, the production vector 	(dt, Qt
�) also lies on the ray

defined by the starting point bt, and the direction �. The
value � indicates the magnitude of production along this ray.
It is easy to see that the fill rate of the stochastic part of the
demand for product p is (p(dt, Qt

�) � bt)/(dpt � bt) �
�/�, which is independent of the product family p. If bt �

0, then this corresponds to the classical fill rate. To simplify
our notation, we proceed by assuming bt � 0. Thus, Eq.
(15) becomes

	�dt, Qt
�� � �� for some � � �0, ��. (16)

We choose � as to maximize production along the ray
without exceeding the capacity of Qt

�. Thus, from (2)–(4), it

can be shown that � � min
��

Qt
�

, ��, where ��
Q for Q � �

and unit vector � is defined as

��
Q � min

m��

�m�Q�

¥p�� U�m, p��p
� min

m��

¥n:�m,n��Q� umn

¥p�� U�m, p��p
,

(17)

where Q� � Q is the maximal initial set of Q given the
precedence relations between tools. The last equality comes
from the definition of �m(Q) in Section 2.1. We remark that
��

Q represents the maximum demand magnitude along � that
tool set Q can support. This capacity allocation policy is
called the uniform fill rate production policy. While this
policy may not maximize the expected profit, it ensures that
no product family has a fill rate lower than other product
families. Having established the capacity allocation policy,
we want to find the instantaneous lost sales cost � intro-
duced in Section 2.2. Suppose we fix the demand direction
�; i.e., we condition on the event that demand falls along the
ray defined by �. Let �t be the random scalar corresponding
to the magnitude of Dt conditioned on Dt/�Dt� � �. Equa-
tions (5) and (16) show that the lost sales cost at time t given
Dt/�Dt� � � is

��Qt
�, t	 Dt

�Dt�
� ��

� E�t� �
p��

cpt�Dpt
 	p�dt, Qt
����	 Dt

�Dt�
� ��

� � �
p��

cpt�pt�E�t
��t
 ��

Qt
�

��. (18)

The expression E�t
[�t � K]� for any fixed scalar K, is a

common function in inventory theory. It is typically easy to
evaluate (18). If f�t

(�) is the probability density of Dt/�Dt�
� �, then

��Qt
�, t� � �

�

��Qt
tau, t	 Dt

�Dt�
� �� � f�t

��� d�,

335Huh and Roundy: A Continuous-Time Strategic Capacity Planning Model

or otherwise if p�t
(�) is the probability mass function of

Dt/�Dt� � �, then

��Qt
�, t� � �

�

��Qt
�, t	 Dt

�Dt�
� �� � p�t

���.

3.2. Cluster Splitting and Submodularity

This section shows that the cluster splitting problem is a
submodular function minimization problem under the uni-
form fill rate production policy. It also proves that the
directional derivatives are nondecreasing across the bound-
aries of permutation simplices.

For simplicity of argument, in this section, we assume
without loss of generality that there is only one cluster and
it is located at t0; i.e., �j � to for each j � �, or Jto

(�) �
�. We assume that to is in the interior of [0, T]. We recall
from Section 2.4 that the splitting problem is to choose Q �
� as to minimize �, which becomes by (12)

�to�Q� � �to�Q�A, �, A� � �2�hQ�to� � gQ
A�to��

� �h��to� � g�
A�to��.

We recall Q is the set of tools whose purchase times are
perturbed to the left (earlier) and ��Q is the set of tools
whose purchase times are perturbed to the right (later).
Since h�(to) � g�

A(to) is independent of Q, our problem is
equivalent to finding Q � � minimizing �hQ(to) �
gQ

A(to).
Thus, in order to find a descent direction, we want to

solve the cluster splitting problem. We present an efficient
way of solving the cluster splitting problem under uniform
the fill rate production policy (Section 3.1). We achieve this
by reducing the cluster splitting problem to a submodular
function minimization problem.

For any set �, a real valued function � on 2� is sub-
modular provided �(Q1) � �(Q2) � �(Q1 � Q2) � �(Q1

� Q2) for all Q1, Q2 � �. It can be easily shown that �
is submodular if and only for any Qo � � and w1, w2 �
�, we have �(Qo � w1) � �(Qo � w2) � �(Qo � w1 �
w2) � �(Qo) (see, for example, Nemhauser and Wolsey
[27]). We also say that � is modular if the above inequality
is replaced with an equality, and that � is supermodular if
�� is submodular. The following proposition is used in
Theorem 6 to show that the splitting problem is a submodu-
lar function minimization problem.

PROPOSITION 5: For any unit vector � � ��, let ��
Q, Q

� �, be defined as in (17). Then, ��
Q is supermodular in Q.

PROOF: Suppose Qo � � and j1, j2 � ��Qo such that
j1 � j2. From (17), ��

Q is monotone nondecreasing in Q,
and it follows ��

Qo�j1, ��
Qo�j2 � ��

Qo�j1�j2.

We claim that either ��
Qo � ��

Qo�j1 or ��
Qo � ��

Qo�j2

holds. Assume, by way of contradiction, that both ��
Qo

��
Qo�j1 and ��

Qo ��
Qo�j2 hold. Let mo � � minimize the

right-side expression of ��
Qo in (17). Then,

¥n:�mo,n���Qo�� umon

¥p�� U�mo, p��p
� ��

Qo � ��
Qo�j1 �

¥n:�mo,n���Qo�j1�� umon

¥p�� U�mo, p��p
,

where �� indicates the initial set. Thus,

�
n:�mo,n���Qo��

umon � �
n:�mo,n���Qo�j1��

umon.

Let n1 be the smallest index of tool group mo such that n1

� (Qo)�. It follows (mo, n1) � (Qo � j1)��(Qo)�, which
indicates that (mo, n1) and all of its preceding tools are in
Qo � j1, but not in Qo. Thus, it follows that j1 � (mo, n1).
Similarly we can show j2 � (mo, n1), which however
contradicts j1 � j2.

Thus, we conclude ��
Qo � ��

Qo�j1�j2 � ��
Qo�j1 �

��
Qo�j2. �

THEOREM 6: Under the uniform fill rate production
policy, the cluster splitting function �to

� is submodular.

PROOF: Since hQ(to) is modular in Q and (7) holds, it
suffices to show that �(Q, to) is submodular in Q. We
condition on Dt/�Dt� � �. Defining ��

Q as in (17), Propo-
sition 5 shows that ��

Q is supermodular in Q. The sum of
submodular functions is also submodular. Thus, from (18),
we obtain �(Q) � �(Q � i � j) � �(Q � i) � �(Q �
j) as desired. �

Two directional unit vectors are called antiparallel if their
sum is a zero vector. Since � is differentiable in each
permutation simplex, the sum of any pair of antiparallel
directional derivatives results in a zero vector at an interior
point of a permutation simplex. The following proposition
examines the behavior of the directional derivative as it
crosses the boundary of permutation simplices, and shows
that it does not decrease across the boundary.

PROPOSITION 7: Under the uniform fill rate production
policy, for any � � [0, T]� and y � ��, we have

����; y� � ����; �y� � 0,

whenever the first two terms are defined.

PROOF: Without loss of generality, assume �j � to for
all j � �. (See Proposition 3). Let �Q � {0, 1}� be the

336 Naval Research Logistics, Vol. 52 (2005)

binary indicator vector of Q. For the set function �to
on 2�,

we define a linear extension �̂to
: [0, 1]� 3 � such that:

i. �̂to
(�Q) � �to

(Q) for any Q � �.
ii. For any z in the permutation simplex PS(�) defined

by some � � 	, let �̂to
(z) be the value at z of the

hyperplane defined by N � 1 points in
{��({1,2,...,r})�r � 0, 1, . . . , N}, i.e. �̂to

(z) � Ht0
(z)

for some matrix H satisfying i.

Lovász [25] shows that any set function is submodular if
and only if its linear extension is convex. By Theorem 6,
�to

� is submodular, and it follows �̂to
� is convex. Thus,

for any Q � �,

�to���Q� � �to�Q� � �̂to�
1
2

�Q �
1
2

���Q� � �̂to�
1
2

���.

By the definition of linear extension and (11), the right-most
expression of the above becomes

�̂to�
1
2

��� �
1
2

�to���� �
1
2

�to��A� � 0.

However, from the expression (12) applied to �to
(Q), and

the expression (13) applied to �to
(��Q),

�to�Q� � �to���Q� � �2�hQ�to� � gQ
A�to��

� 2�hQ�to� � gQ
��Q�to�� � 2�����; ��Q� � ����; �Q��.

Thus, ��(�; ��Q) � ��(�; �Q) � 0, and it holds with
equality if Q � �. Now, apply the argument in the proof of
Theorem 4 to extend this to an arbitrary direction y. �

4. DIVIDE-AND-CONQUER ALGORITHM

In Section 4.1, we outline an efficient divide-and-conquer
algorithm for the problem of minimizing the total cost �.
Our algorithm resembles that of Hochbaum and Queyranne
[19] for the convex cost closure problem. This algorithm
finds a solution that satisfies the first-order necessary and
sufficient condition for the local optimality of (P) in Section
2.1—namely, this solution has no feasible descent direction.
Section 4.2 describes the correctness and computational
complexity for our algorithm.

4.1. Description

The algorithm in Hochbaum and Queyranne [19] finds a
global minimizer of a separable convex function subject to
precedence constraints as in our formulation. We relax the
separability assumption to quasiseparability. Our algorithm

finds a local minimizer of a quasiseparable, nonconvex
objective function. Section 5.1 shows that the same algo-
rithm finds a global minimizer of a quasiseparable, convex
function.

Our algorithm tracks and modifies clusters C that have
the following properties: (1) C is a subset of the set � of all
tools; and (2) there exists a lower bound lb(C) and an upper
bound ub(C) such that we know there exists a solution �*,
where lb(C) � �*j � ub(C) for all j � C such that �*
satisfies the first-order necessary condition of (P). We re-
quire that if lb(C) � ub(C), then we have found the desired
purchase times �*j for all j � C. At the start of each iteration
of the algorithm, we maintain an ordered collection � of
clusters, each of which has the above two properties. We
note that � is a partition of the set � of all tools, and the
intervals [lb(C), ub(C)] defined for these clusters are mu-
tually disjoint except possibly at endpoints. If C1 and C2 are
two members of � such that C1 precedes C2, then we have
ub(C1) � lb(C2).

Here are the steps of the divide-and-conquer algorithm:

0. Initially, set � � {�}, lb(�) � 0 and ub(�) � T.
1. Choose some �C � [lb(C), ub(C)], for each C �

�.
2. Choose some C � � such that lb(C) ub(C).

Perform cluster splitting of C at �C and let Q � C
be its optimal solution; i.e., let Q minimize
��C

(��QL, C, QU)), where QL(QU) is the union of
all clusters preceding (succeeding) C in � and Q �
C. If the optimal value is nonnegative, set lb(C) �
ub(C) � �C. Otherwise, replace C with Q and
C�Q in �, where Q precedes C�Q. Let lb(Q) �
lb(C), ub(Q) � �C, lb(C�Q) � �C(C) and
ub(C�Q) � ub(C).

3. Go to Step 1 unless lb(C) � ub(C) for all C � �.

Step 1 of the algorithm does not completely specify the
choice of C and �C. In the bisection-based method, we pick
C � � with the maximum value of ub(C) � lb(C). We
choose �C to be the midpoint between lb(C) and ub(C).
This method traverses the divide-and-conquer tree in a
breadth-first search manner (one depth at a time). Alterna-
tively, we can pick C � � arbitrarily, and choose �C to be
a local minimizer of �t�lb(C)

�C gC
QL(t) � hC(t) dt as we vary

the value �C � �j, j � C over the interval [lb(C), ub(C)]
[see (10)]. We call this the optimization-based method. The
choice of �C, in general, determines the output of the
algorithm when there are multiple solutions satisfying the
first-order necessary conditions.

4.2. Correctness and Complexity

In this section, Theorem 9 shows that the lower bound
and the upper bound used in the above algorithm are valid,

337Huh and Roundy: A Continuous-Time Strategic Capacity Planning Model

justifying the correctness of our algorithm. We also present
results regarding the time complexity of our algorithm.

PROPOSITION 8: For fixed t, let Q* be a local mini-
mizer of the cluster splitting function �t(��QL, Qo, QU).
Then we have

hB�t� � gB
QL�Q*�B�t� � 0 for B � Q*

and

hB�t� � gB
QL�Q*�t� � 0 for B � Qo�Q*.

PROOF: For simplicity of exposition, we show only the
first result, and that result only for Qo � � and QL � QU �
A. Let B � Q* and B� � Q*�B. By the optimality of Q*
and (8),

0 � �t�Q*�A, �, A�
 �t�B� �A, �, A� � ��hQ*�t�

 gQ*
A �t� � h��Q*�t� � g��Q*

Q* �t��
 ��hB� �t�
 g�B
A�t� � h�� �B�t�

� g�� �B

�B �t�� � ��gQ*
A �t�
 g�B

A�t��
 �g�� �B

�B �t�
 g��Q*
Q* �t��

 �hQ*�t�
 h�B�t��
 �h�� �B�t�
 h��Q*�t��

� 2��gB
Q*�B�t�
 hB�t��,

indicating that hB(t) � gB
Q*�B(t) � 0. �

THEOREM 9: At each iteration of the divide-and-con-
quer algorithm, there exists some solution �* with no de-
scent direction in (P) such that �*j � [lb(C), ub(C)] for all
j � C and C � �. If the algorithm terminates, we have
found such a solution.

PROOF: We consider one step of the divide-and-conquer
method, in which the algorithm splits cluster C at time t,
where QL is the union of the clusters preceding cluster C.
Let Q* minimize �t(��QL, C, ��(QL � C)), and let Q� * �
C�Q*. Let lb0 and ubo (lb� and ub�) be the lower bound lb
and upper bound ub before (after) splitting C. Let �* be the
output of the algorithm if it terminates. Otherwise, it can be
shown that the algorithm is bisection-based, and the maxi-
mum gap between ub and lb converges to 0; let �* be the
limit. We continue this proof assuming the optimization-
based method is used; the other case is similar.

We use the backward induction to show the nonexistence
of a descent direction at �* subject to bounds lb and ub. We
assume that the result holds for lb� and ub�. (Clearly, it
holds for the final lb and ub.) During the iteration, the
interval defined by [lbo(C), ubo(C)] is subdivided into
[lbo(C), t] and [t, ubo(C)]. Thus, it suffices to show that

there is no descent direction y � �� such that the support
of y is included in B � Jt(�*). Furthermore, by Theorem 4,
it suffices to show �t(S�QL � (Q*�B), B, (��(QL � C))
� (Q� *�B)) � 0 for all S � B. We let B1 � Q* � B and
B2 � Q� * � B.

For simplicity of argument, we assume (QL, C, ��(QL �
C)) � (A, �, A) (see Proposition 3). Applying the KKT
condition associated with the bounds lb� and ub�, B1 and
B2 satisfy

hB1�t� � gB1

Q*�B1�t� � 0 and hB2�t� � gB2

Q*�t� � 0.

The above inequalities hold with equality by Proposition 8.
It follows that �t(B1�B� 1, B, B� 2) � 0, where B� 1 � Q*�B1

and B� 2 � Q� *�B2. Let S � B. By (8), (11), and the choice
of Q*,

��h�B1�t� � g�B1

A �t�� � �t�B1�B� 1, B, B� 2� � �h�B2�t� � gB� 2

Q*� �B2�t��

� �t�B� 1 � B1�A, �, A� � �t�B� 1 � S�A, �, A� � ��h�B1�t�

� g�B1

A �t�� � �t�S�B� 1, B, B� 2� � �h�B2�t� � gB� 2

Q*� �B2�t��.

Therefore, we obtain �t(S�B� 1, B, B� 2) � �t(B1�B� 1, B,
B� 2) � 0, which concludes this proof. �

In the analysis of the complexity of the algorithm, we use
the fact that the running time of a submodular function mini-
mization on ��� variables is O(���7) as shown in Iwata [22].
[This assumes the evaluation of a function is at most O(���).]

In the optimization-based method, the algorithm termi-
nates in at most ��� iterations. The number of subsets of �
ever included in � during the course of running this algo-
rithm is bounded by 2���. Thus, it performs at most 2���
optimization and ��� submodular function minimization
computations. Let � be the time required to find a local
minimizer of a real-valued one-dimensional function of the
form �t�lb(C)

� gC
QL(t) � hC(t) dt, where � ranges in an

interval [lb(C), ub(C)]. Then, the running time of the
algorithm is bounded by O(���� � ���8).

In the bisection-based method, the size of the interval
defined by ub and lb of each cluster in � is reduced by half
at each depth of the divide-and-conquer tree. We note that
the total running time of all the submodular function min-
imization computations of a given depth of the divide-and-
conquer tree is bounded by that of one submodular function
minimization on ��� variables. We say � is an �-close
solution if there exists a solution �* satisfying the first order
necessary condition and ��* � ��� �. The bisection-based
method obtains an �-close solution in time complexity of
O(���7log T��1).

These running times can be reduced significantly if we
employ the demand model as given in Section 5.

338 Naval Research Logistics, Vol. 52 (2005)

5. THE DEMAND MODEL AND
COMPUTATIONAL RESULTS

In Section 5.1, we present a specific demand model which
enables our algorithm to find a global minimum solution.
Section 5.2 presents a sufficient condition for demand,
under which the splitting problem eventually reduces to a
variation of the max-flow min-cut problem, a special case of
a submodular function minimization problem. Given this
condition and demand model, some computational results
are reported in Section 5.3.

5.1. Stationary Product Mix Assumption
and Global Convexity

In this section, we introduce some assumptions on the
demand distribution which enable us to show the global
convexity of �. Global convexity is desirable because any
local minimizer globally minimizes a convex function.
Without the convexity of the objective function, finding a
global minimizer of �(�) is very difficult.

The following proposition presents a sufficient condition
for convexity in each permutation simplex.

PROPOSITION 10: Within any permutation simplex
PS(�), � � 	, �� is convex if for all r � {1, . . . , ���},
the instantaneous benefit g�(r)

�({1,2,...,r�1}) of having tool
�(r) � � at time t is nondecreasing with respect to t.

PROOF: Since the price Pj(t) of tool j is a convex
function in t, the tool purchase cost �P(�) � ¥j�� Pj(�j) is
convex and separable in the � � [0, T]�. If g�(r)

�({1,2,...,r�1})

is nondecreasing in t for any r � {1, . . . , ���}, then the
convexity of �LS(�) follows from Proposition 1. �

We say that the demand Dt satisfies the stationary prod-
uct mix assumption provided that:

1. The probability density of �t � Dt/�Dt� is indepen-
dent of t.

2. The demand magnitude �t � �Dt�, given that �t �
�t is stochastically nondecreasing in t.

3. The lost sales cost cpt per unit is nondecreasing
in t.

Note that, under this assumption, the distribution of the
product mix �t � Dt/�Dt� is stationary. However, �t is not
stationary, so E(Dt)/�E(Dt)� is not necessarily stationary.
We model demand at the product family level, where a
product family is a group of products which require the
same or proportional utilization of tool groups, so the sec-
ond assumption is plausible. These three assumptions are
quite strong, but seem needed to show theoretical results.

We will show, in fact, that the above assumptions are
sufficient not only for convexity in each permutation sim-
plex, but also for global convexity.

PROPOSITION 11: Under the uniform fill rate produc-
tion and the stationary product mix assumption, the ex-
pected lost sales cost �LS(�) is convex with respect to �j’s
in the interior of each permutation simplex.

PROOF: Suppose a permutation simplex PS(�) is de-
fined by � � 	. Proposition 1 implies that the partial
derivative of �LS with respect to ��(r), r � {1, . . . , ���},
is g�(r)

�({1,...,r�1})(t), and it suffices to show that this function
is nondecreasing.

We condition on �t � � � (�p�p � �). By the
stationary product mix assumption, the probability density
of such an event is independent of t. Let Qr � �({1, . . . ,
r}) and Qr�1 � �({1, . . . , r � 1}). From (18),

��Qr�1, t	 Dt

�Dt�
� ��
 ��Qr, t	 Dt

�Dt�
� ��

� �
p��

cpt�pE�t
���t
 ��

Qr�1
���
 ��t
 ��

Qr
�)�	 Dt

�Dt�
� �

is nondecreasing in t since ��
Qr�1

� ��
Qr

, both ��
Qr�1

and ��
Qr

are independent of t, and �t is stochastically nondecreasing.
It follows from (5) and (6) that g�(r)

�({1,...,r�1})(t) is nonde-
creasing in t. �

Since �P is convex, the previous proposition shows that
� is convex in any permutation simplex PS(�), � � 	. A
continuous function that is convex in each permutation
simplex may in general not be globally convex. This fol-
lowing proposition shows the global convexity of �.

PROPOSITION 12: With the uniform fill rate production
and the stationary product mix assumption, if � is convex in
each permutation simplex, then � is globally convex.

PROOF: Let �L(s) be the function � restricted to some
line segment L � ��, parametrized by s � [0, 1]. It
suffices to show that �L is convex. In each permutation
simplex, � is convex, and thus ��L is nondecreasing. When
L intersects with the boundaries of permutation cones, the
left derivative of �L is no more than the right derivative �L

by Proposition 7. Therefore, by Proposition B.2 in Bertse-
kas [7] or alternatively by the monotonicity of the “presub-
differential” in Correa, Jofré, and Thibault [14], we con-
clude that �L is convex. �

From Propositions 11 and 12, we have the following
theorem:

339Huh and Roundy: A Continuous-Time Strategic Capacity Planning Model

THEOREM 13: Under the uniform fill rate production
and the stationary product mix assumption, the objective
cost function � is globally convex.

Consequently, the divide-and-conquer algorithm pro-
duces globally optimal purchase times. Without the uniform
fill rate production and the stationary product mix assump-
tion, one can show that � is not globally convex. Thus, we
make a progress towards defining the dividing point be-
tween polynomial solvability and hard versions of the ca-
pacity planning problem.

5.2. Faster Cluster Splitting Based on the Minimum
Cut Problem

In this section, we assume a finite support for the direc-
tional vector �t � (Dt � bt)/�Dt � bt� (but not for Dt),
and show that the cluster splitting problem can be reduced
to the classical minimum cut problem. We also improve the
running time of the divide-and-conquer algorithm by apply-
ing a parametric optimization result.

The demand model with a finite number of rays can be
written as

Dt � bt � �It,t�It,t, (19)

where It is a discrete random variable whose support is a
finite set �t such that P[It � i] � wit for each i � �t;
�it � (�ipt�p � �) is a deterministic nonnegative unit-
norm directional vector in ��; and �it is a continuous
nonnegative random variable representing the magnitude of
Dt � bt along �it. The support of Dt consists of a finite
number of rays indexed by It and emanating from bt. This
demand model was first introduced in Roundy et al. [29].
For simplicity of exposition, assume bt � 0 as before.

Currently, most models of high-dimensional random vectors
are either continuous (e.g., multivariable normal) or discrete
(e.g., multinomial). This demand model is a hybrid of both: No
point in �� has any nonzero probability mass. The support of
Dt is a finite collection of rays emanating from bt in the
direction of �it, and has measure zero. Note �It,t

� �Dt � bt�.
Thus �it is the conditional magnitude of Dt � bt, conditioned
on ray i being chosen. It is shown in Roundy et al. [29] that by
a variance-reduction technique called conditioning, our de-
mand model can approximate a continuous distribution in ℜ�

more accurately than the conventional method of sampling
points, provided that the number of vectors is the same as the
number of points. As we shall see, useful theoretical and
algorithmic properties follow. As the number of rays increases,
we have a better approximation of a continuous distribution.
Numerical results in Roundy et al. [29] indicate that in a
4-dimensional space, 64 rays provided an approximation to a

multivariable log normal distribution that was sufficiently ac-
curate for a capacity planning problem.

We show how this demand model enables us to solve the
cluster splitting problem faster by reducing it to a classical
open-pit mining problem (see, for example, Chvátal [13]).
The open-pit mining problem is to find a subset of blocks to
be excavated as to minimize the sum of costs associated
with each excavated block. The subset should obey a set of
precedence relationships.

THEOREM 14: Under the uniform fill rate production,
the cluster splitting problem is reduced to the open-pit
mining problem.

PROOF: Without loss of generality, assume that there is
only one cluster Jto

(�) � � at to. The cluster splitting
problem is to minimize �to

(Q) where Q � �. From (12),
we want to purchase a subset Q � � of tools earlier by �
� 0 from to to to � �. The instantaneous rate of increase in
the purchase cost �P is �¥j�Q dPj(t)/dt�t�to

� �hQ(to),
and the rate of decrease in the expected lost sales cost �LS

is gQ
A(to) � �(A, to) � �(Q, to) [see (7)].

Suppose Itp
� i. Along the fixed demand ray �ito

, any
tool set that does not contain tool j cannot support a pro-
duction vector vto

whose magnitude �vto
� is greater than ��ito

��j

by Definition (17). We use �ito
: {1, . . . , ���} 3 � to

define a permutation sequence of tools in the order in which
they constrain capacity along demand ray �ito

; thus
��ito

���ito�1� � ��ito

���ito�2� � · · · � ��ito

���ito�����. Purchasing tool
�ito

(r) before �ito
(r � 1) does not contribute to the max-

imum magnitude along �ito
that a tool set can support.

The blocks of the open-pit mining problem consist of
both the tool set �, and the set {(i, r)�i � Ito

, r � {1, . . . ,
���}} of pairs. The pair (i, r) represents the subset
{�ito

(1), . . . , �ito
(r)} of tools of size r along the demand

ray i. (We use the subscript i to represent values associated
with the corresponding demand ray.) The cost associated
with block j � � is �dPj(t)/dt�t�to

� �hj(to) � 0. The
cost associated with block (i, r) is the negative of the
marginal benefit of the last tool of the effective tool set for
demand ray i, which is, by (18),

wito �
p��

cpt�iptoE�ito
���ito
 �ito

�ito�1�,...,�ito�r����

 ��ito
 �ito

�ito�1�,...,�ito�r�1����� � 0.

The precedence arcs specify that the benefit of a tool cannot
be obtained before it is purchased; i.e., we have the arc j 3
(i, r), where �ito

(r) � j. They also specify that the order of
effective tools should be maintained; i.e., we have the arc (i,
r � 1) 3 (i, r) for r � 2, 3, . . . , ���.

The objective function becomes C(Q) � �hQ(to) �
gQ

A(to), for Q � �. Any feasible solution of this open-pit

340 Naval Research Logistics, Vol. 52 (2005)

mining problem corresponds to a feasible solution of the
cluster-splitting problem. An optimal solution of either
problem optimizes both problems. If the optimal value of
the open-pit mining problem is at least �(1/ 2)[h�(to) �
g�

A(to)], then by (12), there is no way to split the cluster that
corresponds to a descent direction. �

We remark that in the maximum-flow minimum-cut flow
network to which the open-pit mining problem eventually is
reduced, the number of nodes and the number of arcs are
proportional to the product of the number of tools in the
cluster and the maximum number ��� of rays used in mod-
eling demand. Thus, using that the running time of finding
a minimum-cut of a network (V, A) is O(�V� �A�log(�V�2/
�A�)) the running time of our divide-and-conquer algorithm
becomes O(���� � ���3���2(log��� � log���)) for the op-
timization-based method, and O(���2���2(log��� �
log���)log T��1) for the bisection-based method.

However, we can achieve better bounds on time com-
plexity. The divide-and-conquer algorithm can be also be
stated in terms of the parametric minimum-cut network for
cluster splitting. In either the bisection-based or the optimi-
zation-based method, an iteration can be described as fol-
lows. We have Q1 � Q2 � . . . � Qk and t1 t2 . . .

 tk. They are related to the clusters in � and the corre-
sponding lower and upper bounds. We select � � [tr,
tr�1], and we find a minimum cut Qo of the parametric
minimum-cut network at � subject to Qr � Qo � Qr�1.
Then we add � to {t1, t2, . . . , tk}, and Qo to {Q1 � Q2

� . . . � Qk}, and relabel elements in both sets. This
description of the divide-and-conquer algorithm resembles
the algorithm of Gusfield and Martel [18] for monotone
parametric minimum-cut networks. The correctness proof
for their algorithm can be extended to build a version of our
divide-and-conquer algorithm with better time complexity
bounds: O(���� � ���2���2(log��� � log���)) for the opti-

mization-based method, and O(��� ���(log��� �
log���)(��� ��� � log T��1) for the bisection-based method.
For a fixed � and �, these bounds are asymptotically the
same as the time complexity of one max-flow computation
on a graph with O(��� ���) nodes and O(��� ���) arcs.

Furthermore, if the stationary product mix assumption
holds, it can be seen that our problem (P) reduces to the
minimization of the sum of separable convex functions
where the variables xb are times associated with each block
b of the open-pit mining formulation. It is subject to pre-
cedence arc set constraints; i.e., arc b13 b2 specifies xb1

�
xb2

. The resulting problem is a convex cost closure problem,
which can be solved in the same asymptotic running time as
our divide-and-conquer algorithm with monotonic paramet-
ric min-cut (see Hochbaum and Queyranne [19]).

5.3. Numerical Testing

This section compares the performance of the divide-and-
conquer algorithm with that of the discrete-time model
presented in Roundy et al. [29]. We solve capacity planning
problems of practical size and complexity. Computations
indicate that the divide-and-conquer method for the contin-
uous-time model finds a solution that is very close to the
solution of the discrete-time model. The divide-and-conquer
method runs much faster than the discrete-time algorithm.

We modify the data used in Roundy et al. [29] by mod-
ifying the cost for tool purchases such that it is close to zero
at the end of the planning horizon. We test both cases where
the stationary product mix assumption on demand holds and
does not hold. For the first case, the demand data is modified
to satisfy the stationary product mix assumption with a finite
number of rays. There are 4 product families and 43 tool
types. The algorithms are tested with 2, 4, 8, 16, 32, 64, and
128 demand rays. Simulations are carried out on a Dell

Table 1. Computational result for the capacity planning models: With demand satisfying stationary product mix assumption.

Number of demand rays 2 4 8 16 32 64 128

Discrete
time
model

Lost sales cost (million $) 20.66 22.85 29.83 31.16 31.07 28.96 31.27
Purchase cost (million $) 202.92 205.55 197.98 194.90 194.36 199.04 196.67
Total cost (million $) 223.58 228.40 227.82 226.05 225.43 228.00 227.94

HIPR CPU time (s)* 0.92 1.42 3.75 8.50 12.81 26.81 50.22
MATLAB CPU time (s) 29.82 53.54 104.33 199.22 407.03 803.58 1613.25

Continuous
time
model

Lost sales cost (million $) 12.20 15.29 25.27 21.90 20.83 22.01 22.00
Purchase cost (million $) 212.42 213.82 202.82 204.79 205.22 206.64 206.60
Total cost (million $) 224.62 229.11 228.09 226.70 226.05 228.66 228.60

HIPR CPU time (s) 1.42 1.35 1.76 2.15 2.32 3.51 5.25
MATLAB CPU time (s) 8.84 12.18 25.33 44.97 74.51 162.38 331.67

* This includes, unlike Roundy et al. [29], the time required for file input/output.

341Huh and Roundy: A Continuous-Time Strategic Capacity Planning Model

Optiplex GX270 personal computer with a Pentium 4 3.00
GHz processor and 2.0 GB of RAM.

Table 1 compares the performances of the discrete-time
model with the continuous-time model when the stationary
product mix assumption holds. The first half of the table
summarizes the performance of the discrete-time model, which
makes quarterly decisions for the next four years. The algo-
rithm in Roundy et al. [29] is based on transforming the
problem into one big network flow problem that includes a set
of nodes for each discrete time period. It consists of two parts:
generating a network using MATLAB 5.3, and solving the
resulting network using a push-relabel algorithm for the min-
imum cut problem. We use a min-cut implementation called
HIPR due to Cherkassky and Goldberg [12]. Each running
time in the table is an average of four trials.

The second half of Table 1 reports the performance of the
optimization-based divide-and-conquer method for the con-
tinuous-time model, without taking advantage of either the
parametric minimum cut network, or the convex cost clo-
sure set problem. Once the optimal solution �* is obtained,
it is difficult to evaluate �(�*) since �LS(�*) in (1) involves
an integral. We approximate the optimal value �LS(�*) by
computing �(Qt

�*, t) for t � 1, 2, . . . , T and taking a
summation. Thus, we expect the approximate optimal val-
ues to be close to, but not as good as, those reported by the
discrete model. This method uses HIPR several times, and
the sum of running times on all HIPR calls are reported. All
other operations, including the descent methods, are in-
cluded in the MATLAB running time. Each of the four
repetitions yielded the same solution, and their average
running times are reported.

Table 1 shows that both models find solutions that are
very close. The differences (less than 0.5%) in the cost are
due to the approximation of the optimal values. They are
less than a fraction of 1%. However, we see that as the
number of demand rays increases, the continuous-time

model has a dramatic advantage over the discrete-time
model in running time. This is probably due to the size of
the min-cut network: The discrete-time model solves by one
big min-cut problem, whereas the continuous-time model
generates many minimal cuts on smaller networks.

Table 2 shows similar results for the case when the station-
ary product mix assumption does not hold, as in the original
demand data of Roundy et al. [29]. In such case, the discrete-
time model yields a globally optimal solution whereas the
continuous-time model does not. However, the optimality gap
is within 2% when the number of rays is greater than 8.

Computational results suggest that the divide-and-conquer
method produces the optimal solution for the given data set, as
verified by the discrete-time model. Compared to the discrete-
time model, its running time grows moderately. Reduction in
running time implies that a bigger and more complex model
can be solved, and that the capacity planning model can be
effectively used to support real-time decision-making such as
lead-time quotation (Dietrich [16]).

6. CONCLUSIONS

This paper addresses the capacity planning for multiple
tool types that are shared by multiple product families.
Under demand uncertainty, we have shown how problems
of realistic size and complexity can be modeled and how
these models can be solved efficiently using a continuous-
time model. The models and theoretical results presented in
this paper may serve as a prototype in constructing more
complex and robust strategic capacity planning systems.

It would be nice to extend our model to use stochastic
programming with full recourse; however, for problems of
realistic size, that is beyond today’s computational ability.
Possible extensions of our model to incorporate some gener-
alizations that are of interest to the semiconductor industry.
Possible generalizations include: capacity contraction, tool re-

Table 2. Computational result for the capacity planning models: Without demand satisfying stationary product mix assumption.

Number of demand rays 2 4 8 16 32 64 128

Discrete
time
model

Lost sales cost (million $) 53.32 55.81 64.65 68.14 65.80 64.92 65.69
Purchase cost (million $) 155.94 155.82 146.59 146.27 153.26 157.26 159.19
Total cost (million $) 209.26 211.63 211.24 214.41 219.06 222.18 224.89

HIPR CPU time (s)* 0.79 1.34 2.33 5.17 8.88 18.89 53.17
MATLAB CPU time (s) 24.06 48.09 93.18 184.01 364.49 750.66 1616.55

Continuous
time
model

Lost sales cost (million $) 48.56 63.23 62.95 62.90 53.54 57.69 55.89
Purchase cost (million $) 173.33 158.49 152.94 155.96 168.45 166.69 127.31
Total cost (million $) 221.89 221.73 215.89 218.86 221.99 224.37 227.20

HIPR CPU time (s) 4.87 5.56 5.36 4.58 6.62 7.42 11.43
MATLAB CPU time (s) 40.52 68.13 96.48 131.06 242.96 515.20 1055.70

* This includes, unlike Roundy et al. [29], the time required for file input/output.

342 Naval Research Logistics, Vol. 52 (2005)

tirement, mean demand that is not necessarily increasing, com-
plex tool-product relationships (such as technology evolution a
tool group), and LP-based shortfall allocation (see Section 3.1).
These extensions may spoil many of the theoretical properties
presented in this paper. Yet, there are many nonconvex mini-
mization problems for which local descent algorithms consis-
tently yield very good solutions. It is hoped that a modification
of the algorithm presented in this paper will obtain good
solutions with these generalizations.

ACKNOWLEDGMENTS

The authors would like to thank Metin Çakanyıldırım,
Lisa Fleischer, Dorit Hochbaum, Tom McCormick, Michael
Todd, and Feng Zhang for their assistance and insightful
comments in preparing this document. We also thank anon-
ymous referees for their careful and thorough comments.
Research was supported by the Semiconductor Research
Corporation Task ID: 490.001 and Graduate Fellowship
Program, as well as the Natural Science and Engineering
Council of Canada Postgraduate Scholarship.

REFERENCES

[1] S. Ahmed and N. Sahinidis, An approximation scheme for
stochastic integer programs arising in capacity expansion,
Oper Res 51 (2003), 461–471.

[2] A. Atamturk and D.S. Hochbaum, Capacity acquisition, sub-
contracting, and lot sizing, Management Sci 47 (2001),
1081–1100.

[3] F. Barahona, S. Bermon, O. Gunluk, and S. Hood, Robust
capacity planning in semiconductor manufacturing, Techni-
cal Report RC22196, IBM Research Division, Yorktown
Heights, NY, 2001.

[4] D.L. Benavides, J.R. Duley, and B.E. Johnson, As good as it
gets: Optimal fab design and deployment, IEEE Trans Semi-
conductor Manuf 12 (1999), 281–287.

[5] O. Berman, Z. Ganz, and J.M. Wagner, A stochastic optimiza-
tion for planning capacity expansion in a service industry under
uncertain demand, Naval Res Logist 41 (1994), 545–564.

[6] S. Bermon and S.J. Hood, Capacity Optimization Planning
System (CAPS), Interfaces 29 (1999), 31–50.

[7] D.P. Bertsekas, Nonlinear programming, Athena Scientific,
Belmont, MA, 1995.

[8] S. Bhatnagar, E. Fernándz-Gaucherand, M.C. Fu, Y. He, and
S.I. Marcus, A Markov decision process model for capacity
expansion and allocation, Proc 38th IEEE Conf Decision
Control, 1999, pp. 1380–1385.

[9] M. Çakanyıldırım and R. Roundy, Optimal capacity expan-
sion and contraction under demand uncertainty, Technical
Report, School of Management, University of Texas at Dal-
las, Richardson, TX, 2001.

[10] M. Çakanyıldırım, R.O. Roundy, and S.C. Wood, Machine
purchasing strategies under demand- and technology-driven
uncertainties, Technical Report 2, School of Management,
University of Texas of Dallas, Richardson, TX, 2004.

[11] Z.-L. Chen, S. Li, and D. Tirupati, A scenario based stochas-
tic programming approach for technology and capacity plan-
ning, Comput Oper Res 29 (1998), 781–806.

[12] B.V. Cherkassky and A.V. Goldberg, On implementing push-
relabel method for the maximum flow problem, Algorithmica
19(4) (1997), 390–410.

[13] V. Chvátal, Linear programming, Freeman, New York, 1983.
[14] R. Correa, A. Jofré, and L. Thibault, “Subdifferential char-

acterization of convexity,” Recent advances in nonsmooth
optimization, D.-Z. Du, L. Qi, and R.S. Womersley (Editors),
World Scientific, Singapore, 1995, pp. 18–23.

[15] M.H.A. Davis, M.A.H. Dempster, S.P. Sethi, and D. Vermes,
Optimal capacity expansion under uncertainty, Adv Appl
Probab 19 (1987), 156–176.

[16] B. Dietrich, Use of optimization with IBM’s supply chain,
Keynote presentation at the Second Meeting of the Value
Chain Academic-Industry Consortium, Lucent Technologies,
Bell Labs, Murray Hill, NJ, 22 May 2003.

[17] L.F. Escudero, P.V. Kamesam, A.J. King, and R.J.B. Wets,
Production planning with scenario modelling, Ann Oper Res
43 (1993), 311–335.

[18] D. Gusfield and C. Martel, A fast algorithm for the general-
ized parametric minimum cut problem and applications, Al-
gorithmica 7 (1992), 499–519.

[19] D.S. Hochbaum and M. Queyranne, Minimizing a convex
cost closure set, SIAM J Discrete Math 16 (2003), 192–207.

[20] W.T. Huh, A continuous-time strategic capacity planning
model based on the minimum-cut problem, Manuf Serv Oper
Management 5 (2003), 63–66.

[21] W.T. Huh, R.O. Roundy, and M. Çakanyıldırım, A general
strategic capacity planning model under demand uncertainty,
Technical Report 1379, School of Operations Research and
Industrial Engineering, Cornell University, Ithaca, NY, 2003.

[22] S. Iwata, A faster scaling algorithm for minimizing submodu-
lar functions, SIAM J Comput 32 (2003), 833–840.

[23] E. Khmelnitsky and K. Kogan, Optimal policies for aggre-
gate production and capacity planning under rapidly chang-
ing demand conditions, Int J Prod Res 34(7) (1996), 1929–
1941.

[24] S. Li and D. Tirupati, Dynamic capacity expansion problem
with multiple products: Technology selection and timing of
capacity additions, Oper Res 42(5) (1994), 958–976.

[25] L. Lovász, “Submodular functions and convexity,” Mathe-
matical programming: The state of the art, Bonn 1982, A.
Bachem, M. Grötschel, and B.H. Korte (Editors), Springer,
Berlin, 1983, pp. 235–257.

[26] H. Luss, Operations research and capacity expansion prob-
lems: A survey, Oper Res 30(5) (1982), 907–947.

[27] G.L. Nemhauser and L.A. Wolsey, Integer and combinatorial op-
timization, Wiley, New York, 1988, Chap. III.3, pp. 659–819.

[28] S. Rajagopalan and J.M. Swaminathan, Coordinated produc-
tion planning model with capacity expansion and inventory
management, Management Sci 47 (2001), 1562–1580.

[29] R.O. Roundy, F. Zhang, M. Çakanyıldırım, and W.T. Huh,
Optimal capacity expansion for multi-product, multi-ma-
chine manufacturing systems with stochastic demand, IIE
Trans 36 (2004), 23–36.

[30] J.M. Swaminathan, Tool capacity planning for semiconduc-
tor fabrication facilities under demand uncertainty, European
J Oper Res 120 (2002), 545–558.

343Huh and Roundy: A Continuous-Time Strategic Capacity Planning Model

