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1. Introduction
In this paper, we study the optimal control problem for
a periodically reviewed single-stage inventory system with
fixed ordering costs and stochastic, but controllable, de-
mand. In each period, a manager makes inventory decisions
as well as decisions that influence demand—for example,
the price choice or the advertisement budget. We refer to
these decision variables as sales levers.
For a single-stage system with inventory and pricing con-

trol and a fixed ordering cost, the optimality of �s� S�-type
inventory policies1 has been established in recent papers
such as Chen and Simchi-Levi (2004a, b) and Chen et al.
(2006). They generalize the classical approach of Scarf
(1960), who showed �s� S� optimality when demands are
exogenous. The only sales lever in these papers is the price.
The proofs in these papers rely heavily on induction argu-
ments for finite-horizon results and rather involved con-
vergence arguments for infinite-horizon results. A majority
of their results require joint-concavity of the single-period
expected profit function with respect to inventory and price.
We extend the optimality of the �s� S�-type structure for sta-
tionary systems by allowing a multidimensional sales lever,
and a less restrictive single-period expected profit function
(permitting, for example, quasi-concavity). Moreover, we
provide constructive proofs, primarily using sample-path
arguments, which are completely different from the ear-
lier proofs in the joint inventory-pricing literature; this is
our main contribution. Our ideas are a generalization of

some arguments used by Veinott (1966), who provided
an alternate proof for �s� S� optimality when demands are
exogenous.
In the process of developing this proof technique, we

identify a sufficient condition to guarantee the optimality
of �s� S�-type policies (Condition 1). This condition can
be verified by simply studying a single-period problem;
meanwhile, the existing results in the literature are proved
by studying the value function from the dynamic program,
which is typically more difficult to analyze. This is our sec-
ond contribution. The sufficiency of Condition 1 for �s� S�
optimality has been used to prove new results in other
settings—namely, Song et al. (2006) for lost-sales mod-
els with multiplicative demands, and Huh and Janakiraman
(2008) in the context of selling through auction channels.

1.1. Brief Literature Review

With complete backlogging, no fixed ordering costs, and
the concave demand model,2 Federgruen and Heching
(1999) show the optimality of the base-stock list-price pol-
icy for the nonstationary finite-horizon model as well as
the stationary infinite-horizon model. (A base-stock list-
price policy is defined as follows: If the starting inventory
level is less than some level y∗t , then order up to y∗t , and
charge a fixed list price in period t; otherwise, do not order
and offer a price discount.) They assume that the single-
period expected profit function is jointly concave in inven-
tory (after ordering) and price.3
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With complete backlogging, positive fixed cost, and the
additive demand model, Chen and Simchi-Levi (2004a)
show that the �s� S�p� policy is optimal in the finite hori-
zon. (An �s� S�p� policy is defined as follows: Order noth-
ing if inventory exceeds s; order up to S otherwise. The
price chosen depends on y, the inventory level after order-
ing, through a specified function p�y�.) They also present
an example indicating that the �s� S�p� policy may not be
optimal in the finite-horizon problem when demand is not
additive. With the linear demand model, Chen and Simchi-
Levi (2004b) show the optimality of the �s� S�p� policy in
infinite-horizon models, both with the discounted-profit and
the average-profit criteria. They require joint concavity of
the single-period expected-profit function for their results
on the finite-horizon problem as well as the infinite-horizon
discounted-profit problem. They develop the notion of sym-
metric K-concavity, a generalization of K-concavity, and
show that the profit function in the finite-horizon dynamic
program possesses this property. This is the key step in
their proof, which uses inductive arguments and is quite
involved.
Feng and Chen (2004) use fractional programming to

establish �s� S�p�-optimality for the average-profit crite-
rion, and provide an algorithm for computing the optimal
parameters. The continuous-review extensions have been
studied by Feng and Chen (2003) and Chen and Simchi-
Levi (2006).
With the lost-sales assumption, Chen et al. (2006) study

a periodic-review finite-horizon problem with the addi-
tive demand model. They introduce some restrictions on
the function relating expected demand and price as well
as additional restrictions on the distribution of 
. With
these assumptions, they demonstrate the optimality of the
�s� S�p� policy.
Subsequent to the initial version of the current paper,

a number of papers on the optimality of �s� S�-type poli-
cies have been written. Yin and Rajaram (2007) extend the
results of Chen and Simchi-Levi (2004a, b) to Markovian
environments. Song et al. (2006) prove �s� S�p� optimality
with lost sales and the multiplicative demand model. Chao
and Zhou (2006) provide algorithmic results for models
with a Poisson demand process.

1.2. Problem Definition

Consider the following periodic-review system with a plan-
ning horizon of T periods (T can be finite or infinite) and
a discount factor � ∈ �0�1�. All parameters of the system
are assumed to be stationary. Periods are indexed forward.
At the beginning of period t (t � T ), we have x units of
inventory. At this instant, an order can be placed to raise
the inventory to some level y instantaneously (that is, there
is no lead time). There is a fixed cost or a set-up cost, K,
associated with ordering any strictly positive quantity. In
addition, there is a set of levers to control the demand pro-
cess. Examples of these levers are prices, salesforce incen-
tives, and advertisements. We model the sales lever control

by a vector d within some compact convex subset �⊆�n;
the first component could denote the price discount and the
second component could denote the advertisement expense
and so on.4

After y and d are chosen, the demand in period t is real-
ized. It is a nonnegative random variable D�d� 
�, where

 is an exogenous random variable. (That is, the distri-
bution of demand depends on the sales lever control, and

 is the source of randomness.) The net inventory at the
end of the period is y−D�d� 
�, and a holding or a short-
age cost is charged based on this quantity. We let ��y�d�
denote the expected profit in this period, excluding the set-
up cost (that is, the total expected profit is ��y�d�−K ·
1�y > x�); � includes sales revenue, the cost of choos-
ing the sales lever, and the holding and shortage costs.
The inventory level at the beginning of the next period
is given by ��y−D�d� 
��, where either (a) ��x� = x if
excess demand is backordered, or (b) ��x�= �x�+ if excess
demand is lost.
The objective is to find a pair �y�d� for every x and t

that maximizes the expected discounted profits in periods
t, t+ 1� � � � � T .
A purchase cost, linear in the order size y − x, could

also be present. However, a simple assumption about sal-
vaging inventory left at the end of T periods can be used
to transform the system into one in which this proportional
cost is zero and the other cost parameters are suitably mod-
ified. Consequently, we will not consider this linear cost
in our analysis. Our proofs for the finite-horizon results
depend on this assumption. Although it is useful for nota-
tional simplicity, our infinite-horizon results and proofs do
not require this assumption. Veinott (1966) makes a similar
observation (see p. 1072).
We make the following assumption throughout the paper.

Assumption 1. (a) ��y�d� is continuous, and

max
d
��y�d�→−
 as y→
�

Furthermore, max�y�d� ��y�d� exists.
(b) The demand model is stationary, that is, the sequence

of 
s in time periods �1�2� � � � � T � is independent and iden-
tically distributed.
(c) D�d� 
� is continuous in �d� 
�. Moreover, for every 
,

D�d� 
� is componentwise monotone in d.5

Let �y∗�d∗� be a maximizer of ��y�d�, and let �∗ be
the maximum value. We remark that �y∗�d∗� would be the
solution chosen in a single-period problem in which there
is no fixed cost and the starting inventory is lower than y∗.
The dynamic programming formulation for the finite-

horizon problem is given by

Ut�x�= max
�y� y�x�

�Vt�y�−K · 1�y > x���
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where

Vt�y�= max
�d�d∈��

�Wt�y�d�� and

Wt�y�d�=





��y�d�+� ·E
Ut+1���y−D�d� 
���
if t < T �

��y�d� if t = T �

(The subscript t in the above formulation denotes the period
index.) It can be shown using standard arguments that the
above maxima exist.6

An optimal policy for this finite-horizon problem speci-
fies a feasible pair �y�d�, i.e., y � x and d ∈�, for every x
and t, that maximizes Wt�y�d�−K ·1�y > x�. The infinite-
horizon optimal policy specifies a feasible pair �y�d�, for
every x, that maximizes W�y�d� − K · 1�y > x�, where
W�·� ·� is the pointwise limit of W1�·� ·� as T approaches
infinity.7 In this paper, we study both finite-horizon prob-
lems and infinite-horizon discounted-profit problems.
The following definitions are based on the dynamic pro-

gramming formulation and become useful later. Let V �y� �=
max�W�y�d�� d ∈�� and Q�y� �=max���y�d�� d ∈��.
Next, we list the three kinds of demand models we use

to capture the dependence of D�d� 
� on d.
• Additive Demand Model. For any d ∈ �, where �

is a closed real interval, D�d� 
� is nonnegative for almost
every 
, and can be expressed as D�d� 
�= d+ 
. (In this
model, we use d instead of d because � ⊆ �1.) Without
loss of generality, we assume that E�
�= 0.

• Linear Demand Model. For any d ∈ �, D�d� 
� is
nonnegative for almost every 
, and can be expressed as
D�d� 
� =  · d + !, where 
 = � �!�, and  ∈ �n and
! ∈�. Here, we assume that � is a convex compact set.
When != 0, this is commonly known as the multiplicative
demand model in the literature.
• Concave Demand Model. For any d ∈ �, D�d� 
�

is nonnegative, monotonic, and concave in d for almost
every 
. Again, we assume that � is a convex compact set.
Note that the linear demand model is a generalization of

the additive demand model, and the concave demand model
is a generalization of the linear demand model.
We present our analysis in the following sequence. In

§2, we present Conditions 1 and 2, sufficient conditions for
�s� S� optimality. In §3, we prove the optimality of �s� S�-
type policies when Condition 1 is satisfied. The validity of
Condition 1 is shown in §4 for the backordering case, and
the validity of Condition 2 is shown in §5 for the lost-sales
case.

2. Single-Period Conditions for
�s�S� Optimality

In this section, we present two sets of conditions on the
expected single-period profit function, �, that lie at the core
of our proofs. Although the conditions appear technical,
we show in §§4 and 5 that common modeling assumptions
found in the literature satisfy these conditions.

Condition 1. (a) Q�y� = maxd∈���y�d� is quasi-
concave,8 and
(b) for any y1 and y2 satisfying y∗ � y1 < y2 and d2,

there exists

d1 ∈ �d ���y1�d����y2�d2�� (1)

such that for any 
,

��y1 −D�d1� 
���max���y2 −D�d2� 
��� y∗�� (2)

Recall that �y∗�d∗� maximizes ��y�d�. Thus, y∗ max-
imizes Q�y�. It follows from part (a) that the set in (1)
is nonempty. An intuitive explanation of the condition fol-
lows. Part (a) indicates that the closer the starting inventory
level (after ordering) is to y∗, the greater the single-period
profit the system can generate. As a result, in a single-
period problem without the fixed cost, it is optimal to order
up to y∗ if y < y∗ and to order nothing if y � y∗. By part (b),
if y∗ � y1 < y2, the system starting from y1 is capable of
ensuring that it will be at a “better” inventory level in the
immediate following period than the system starting from
y2; in the next period, the starting inventory of the y1-
system is closer to y∗ than that of the y2-system, or ordering
up to y∗ is possible because the starting inventory of the
y1-system is below y∗. We show that Condition 1 guaran-
tees the optimality of �s� S�-type policies in infinite-horizon
models.

Theorem 1. Suppose that Condition 1 holds. In the infinite-
horizon discounted-profit model, there exist s and S such
that if the inventory level, x, in the current period is
at least s, it is optimal to not order, and otherwise to order
up to S. That is, an �s� S� policy is optimal.9

The proof of this result is presented in §3.2. It turns out
that Condition 1 does not guarantee �s� S� optimality in
finite-horizon models. That result requires a stronger con-
dition presented below.

Condition 2. (a) Same as Condition 1(a).
(b) Same as Condition 1(b).
(c) If y∗ � y1 > y2, there exists d1 satisfying (1) such

that for any 
,

��y1 −D�d1� 
��� ��y2 −D�d2� 
��� (3)

We now state the �s� S� optimality result for finite-
horizon models. The proof is presented in §3.3.

Theorem 2. Suppose that Condition 2 holds. Then, in a
finite-horizon model, an �st� St� policy is optimal in period t.

3. Proofs of �s�S� Optimality

3.1. Preliminary Results

Let y�t be the smallest maximizer of Vt�yt�. We first estab-
lish that in period t, if the starting inventory level before
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ordering is below y�t , and an order is placed, then it is opti-
mal to order up to y�t (Proposition 1). Furthermore, if the
starting inventory level is above y�t , then it is optimal not to
order (Corollary 1). We use xt to denote the starting inven-
tory level before ordering, whereas yt is the inventory level
after ordering. The proposition below follows directly from
the definition of y�t .

Proposition 1. Suppose that xt � y�t . Then, yt = y�t maxi-
mizes �Vt�yt�� yt � xt�. That is, if the fixed cost K is waived
in period t only, then it is optimal to order y�t − xt units.

Proposition 2. Suppose that Condition 1 holds. For any
y1t and y2t satisfying y∗ � y1t < y2t or y2t < y1t � y∗, we have

Vt�y
1
t �+�K � Vt�y

2
t ��

Proof. We prove the result for the finite-horizon case. The
infinite-horizon discounted-profit case follows directly. If
t = T , Condition 1(a) implies Vt�y

1
t � � Vt�y

2
t �, and the

required result holds. We proceed by assuming t < T .
We compare two systems starting with y1t and y2t , and

use the superscripts 1 and 2 to denote each of them. (In
this proof and all subsequent proofs, whenever we compare
two systems, we assume without loss of generality that they
experience the same sample paths of 
s.) Suppose that the
y2-system follows the optimal decision to attain Vt�y

2
t �. Let

d2t be the sales lever decision of the y
2-system.

We claim that there exists d1t such that ��y1t �d
1
t � �

��y2t �d
2
t � and x

1
t+1 �max�x2t+1� y

∗��max�y2t+1� y
∗�.

If y2t < y1t � y∗, Condition 1(a) implies the existence of
d1t such that ��y

1
t �d

1
t ����y2t �d

2
t �, and we know x1t+1 � y∗

because y1t � y∗. On the other hand, when y∗ � y1t < y2t ,
Condition 1(b) is applicable. In either case, the claim is
true, and either (a) x1t+1 � y2t+1 or (b) y

2
t+1 < x1t+1 � y∗ holds.

• Case (a): x1t+1 � y2t+1. In the next period t + 1, set
the ordering quantity of the y1-system to y2t+1−x1t+1. Thus,
y1t+1 = y2t+1. From period t + 2 onwards, let the y1-system
mimic the y2-system.
• Case (b): y2t+1 < x1t+1 � y∗. In period t + 1, the

y1-system does not order, i.e., set y1t+1 �= x1t+1. By Con-
dition 1(a), we choose d1t+1 such that ��y1t+1�d

1
t+1� �

��y2t+1�d
2
t+1�. We continue choosing the sales lever in the

y1-system in this way until we come across the first period
in which Case (a) is encountered, or the end of the horizon
is reached.
Therefore, the y1-system generates as much profit �

as the y2-system in each period after period t. Furthermore,
the y1-system does not place an order in periods in which
the y2-system does not order, with possibly one exception
(where the first case is applied). Thus, the ordering cost
of the y1-system is at most �K more than the y2-system.
Hence, the discounted profit of the y1-system is at worst
�K less than the discounted profit in the y2-system. �

A corollary of this proposition is the optimality of not
placing any order when the starting inventory level xt is at
least y∗ or y�t .

Corollary 1. Under Condition 1, we have the follow-
ing. If xt �min�y∗� y�t �, then it is optimal not to order in
period t, i.e., yt = xt .

Proof. Suppose that the starting inventory before ordering
is xt , and we order up to yt , where yt > xt . The ordering
cost K is incurred in period t. One of the following cases
occurs.
• Case xt � y∗. Because yt > xt � y∗, we apply Propo-

sition 2 to get

Vt�xt�� Vt�yt�−�K � Vt�yt�−K�

• Case y�t < xt < y∗. By Proposition 2 and the choice
of y�t , we have

Vt�xt�� Vt�y
�
t �−�K � Vt�yt�−�K > Vt�yt�−K�

It follows that when the starting inventory level is greater
than min�y∗� yot �, ordering a positive quantity does not
increase the discounted profit. �

Remark. In online Appendix A, we discuss the impli-
cation of Corollary 1 to the zero fixed-cost case, i.e.,
the optimality of myopic base-stock policies. An elec-
tronic companion to this paper is available as part of the
online version that can be found at http://or.pubs.informs.
org/ecompanion.html.

3.2. Infinite-Horizon Models: Proof of Theorem 1

We first prove the following claim: For x2 < x1 � y∗, if it
is optimal to place an order when the beginning inventory
level is x1, then it is also optimal to order when the starting
inventory level is x2.
Let y� be the smallest maximizer of V �y�. For the

infinite-horizon discounted-profit model, the profit function
and the optimal policy are both stationary. (See the com-
ments following Assumption 1.) Thus, we assume that the
current period t is 0, and drop the subscript t when t = 0.
By Corollary 1, we proceed by assuming x1 < y�0 = y�

because it is not optimal to order when the inventory level
is above y�.
If we order when the starting inventory level is either

x1 or x2, then the order-up-to level is y� by Proposi-
tion 1, and the maximum profit from period t onward is
v� �= V �y��−K. Suppose that the starting inventory level
is x1. By deferring order placement to the next period, we
can obtain a present value of profit equal to Q�x1�+ �v�.
Because it is optimal to order in the current period, we
must have v� �Q�x1�+�v�. Thus,

�1−��v� �Q�x1��Q�x� for all x� x1� (4)

where the second inequality follows from Condition 1(a).
Now suppose that the starting inventory level is x2. Let J

denote the period in which the next order is placed accord-
ing to the optimal solution, or J =
 if the x2-system never
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orders. Thus, x2 = x20 � x21 � x22 � · · ·� x2J−1. From x2 < x1

and (4), an upper bound on the present value of the maxi-
mum profit between periods 0 and period J −1 is given by

�1+�+···+�J−1�Q�x2���1+�+···+�J−1�Q�x1�
��1+�+···+�J−1�·�1−��v�
=�1−�J �v��

In period J , an order is placed. Thus, the present value
of the maximum expected profit from J onwards is �J v�.
In summary, the present value of the expected profit in
all periods is bounded above by �1− �J �v� + �J v� = v�,
which is attained if we order in the current period. Thus,
we complete the proof of the claim.
Let s =max�x� it is optimal to order when the inventory

level is x�. Corollary 1 implies s � y�. Thus, by Proposi-
tion 1, the optimal order-up-to level is S = y� for all x� s.
This completes the proof of Theorem 1.

3.3. Finite-Horizon Models: Proof of Theorem 2

Proposition 3. Suppose that Condition 2 holds. Then,
Vt�yt� is nondecreasing in the interval �−
�min�y∗� y�t ��
for each t.

Proof. Suppose that y1t and y2t satisfy y2t < y1t �

min�y∗� y�t �. We want to show Vt�y
1
t � � Vt�y

2
t �. Suppose

that the y2-system with the starting inventory level y2t fol-
lows an optimal policy and attains Vt�y

2
t �. Below, we con-

struct a policy for the y1-system such that
• the expected profit of the y1-system before accounting

for the ordering cost in every period is at least that of the
corresponding quantity in the y2-system, and
• the y1-system places an order in a period only if the

y2-system places an order in that period.
Let d2t be the optimal sales lever of the y2-system in

period t. By Condition 2(c), there exists d1t such that
��y1t �d

1
t � � ��y2t �d

2
t � and x

1
t+1 � x2t+1 for any realization

of 
 in the demand model. Thus, if x1t+1 < y2t+1 occurs, an
order must have been placed in the y2-system. In that case,
let the y1-system place an order such that y1t+1 = y2t+1, and
mimic the y2-system for the remaining periods. Otherwise,
we repeat the above process until both the systems have the
same ending inventory level, or the end of the horizon is
reached. This concludes the proof of the proposition. �

Proposition 1 and Corollary 1 state that it is optimal to
order only if xt < min�y∗� y�t �, and the order-up-to level
is St = y�t . Thus, if an order is placed in period t, the
optimal profit from the remaining periods is independent
of the starting inventory level xt . For xt < min�y∗� y�t �,
it is optimal to order if Vt�xt� � Vt�y

�
t � − K, and not to

order if Vt�xt�� Vt�y
�
t �−K. Consequently, the monotonic-

ity of Vt in the interval �−
�min�y∗� y�t �� (from Propo-
sition 3) establishes the existence of st , which is any
solution to Vt�st� = Vt�St�−K. This completes the proof
of Theorem 2.

Remark. Note that Theorem 2 depends on Condition 2(c)
only through Proposition 3. Thus, this theorem still holds
if Condition 2 is replaced with Condition 1 and the mono-
tonicity of Vt in the interval �−
�min�y∗� y�t ��.

4. Application to the Backordering Model
In this section, we apply the results of the previous sec-
tion to the case where excess demand is backordered. The
specification of Condition 1 and Condition 2 in §2 is quite
technical. However, we will now show that it is a gener-
alization of common modeling assumptions found in the
literature. We present two sets of sufficient conditions for
Conditions 1 or 2 to hold, and formally establish the opti-
mality of �s� S�-type policies for finite- and infinite-horizon
models under these conditions.

4.1. Joint Quasi-Concavity of �: A Sufficient
Condition for Condition 1

It is shown in the following proposition that the concave
demand model and the quasi-concavity of the expected
single-period profit function �, together, imply Condi-
tion 1. The models studied in Federgruen and Heching
(1999) and Chen and Simchi-Levi (2004b) satisfy these
assumptions.

Proposition 4. Assume that excess demand is backo-
rdered. With the concave demand model, the joint quasi-
concavity of � implies Condition 1.

Proof. Because � is jointly quasi-concave, Q�y� =
maxd��y�d� is quasi-concave (see p. 102 of Boyd and
Vandenberghe 2004 for a proof), and part (a) of Condition 1
is satisfied.
Suppose that y1 and y2 satisfy y∗ � y1 < y2. Let % �=

�y2 − y1�/�y2 − y∗�. For any d2, let d1 be the following
convex combination of d∗ and d2: d1 = %d∗ + �1− %�d2.
Because � is quasi-concave and �y1�d1� is a convex com-
bination of �y2�d2� and �y∗�d∗�,

��y1�d1����y2�d2��

The concavity of D�d� 
� in d implies

D�d1� 
�� %D�d∗� 
�+ �1−%�D�d2� 
��

Thus,

y1 −D�d1� 
�� %�y∗ −D�d∗� 
��+ �1−%��y2 −D�d2� 
��

�max�y∗ −D�d∗� 
�� y2 −D�d2� 
��

�max�y∗� y2 −D�d2� 
���

It follows that

��y1 −D�d1� 
���max�y∗���y2 −D�d2� 
����

satisfying part (b) of Condition 1. �

We are now ready to show the infinite-horizon optimality
result holds under the concave demand model if � is jointly
quasi-concave.

Theorem 3. Assume that excess demand is backordered.
Assume the concave demand model and the joint quasi-
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concavity of �. Then, for the infinite-horizon discounted-
profit model, an �s� S� policy is optimal.

Proof. By Proposition 4, we know that Condition 1 is sat-
isfied if � is jointly quasi-concave. The result now follows
from Theorem 1. �

We point out the following differences between our
results and those contained in Chen and Simchi-Levi
(2004b). They assume the concavity of the expected single-
period profit function, whereas quasi-concavity is found to
be sufficient for our results. Whereas they use the linear
demand model, we use the more general concave demand
model. In addition, our proof holds with multidimensional
sales levers. However, they are able to show the optimality
of �s� S�p� policies even in the infinite-horizon average-
profit case, which we have not shown.

4.2. Additive Demand Model and the
“Separability” of �: A Sufficient Condition
for Condition 2

We now show that when the additive demand model is
used, a separability-like condition on � is sufficient to guar-
antee Condition 2. Here, the sales lever d is single dimen-
sional, corresponding to the expected demand associated
with the decision.

Assumption 2. There exist quasi-concave 'R and quasi-
convex 'H such that ��r +d�d�='R�d�−'H�r�.

This assumption holds, for example, under the additive
demand model with backordering in which revenues are
received based on total demand and not on demand satis-
fied. In this case, 'R denotes the revenue function and 'H

denotes the holding and shortage cost function. Note that
this assumption does not imply the joint quasi-concavity
of �. Assumption 2 is more general than the additive
demand model of Chen and Simchi-Levi (2004a), which
assumes concave 'R and convex 'H .
Let d∗ �= argmax'R�d� and r∗ �= argmin'H�r�.

Clearly, y∗ = r∗ +d∗.
The following proposition shows that under the additive

demand model, Assumption 2 implies Condition 2.

Proposition 5. Assume that excess demand is backo-
rdered. Under the additive demand model, Assumption 2
implies Conditions 1 and 2.

Proof. Suppose that y1 and y2 satisfy y∗ � y1 < y2. For
any fixed d2, set r2 �= y2 − d2. Set r1 �=min�r2� y1 − d∗�
and d1 �= y1 − r1. (It can be shown that d1 is sandwiched
between d∗ and d2. Therefore, d1 ∈� because � is con-
vex.) Clearly, by r1 � r2 and the additivity of demand, (2)
is satisfied.
Now consider the following two cases.
• Case r1 = r2. Clearly, 'H�r1�='H�r2�. Because r1 �

y1 −d∗, we get

d∗
� y1 − r1 < y2 − r1 = y2 − r2 = d2�

Because d1 �= y1 − r1, we have d∗ � d1 < d2. It follows
from the quasi-concavity of 'R that 'R�d1��'R�d2�.
• Case r1 = y1 − d∗. It follows d1 = d∗, implying

'R�d1�='R�d∗��'R�d2�. We have

r2 � r1 = y1 −d1 � y∗ −d1 = y∗ −d∗ = r∗�

By the quasi-convexity of 'H , it follows that 'H�r2� �
'H�r1�.
Therefore, for every d2, there exists d1 such that

��y1�d1����y2�d2�. We thus verify Condition 2(b). Fur-
thermore, we obtain that Q�y� is nonincreasing for y � y∗.
If y1 and y2 satisfy y∗�y1>y2, let r1 �=max�r2�y1−d∗�

instead. Clearly, r1 � r2. A similar argument shows that
Condition 2(c) holds and Q�y� is nondecreasing for y � y∗.
Thus, it follows that Q is quasi-concave. �

We now establish that Assumption 2 implies the opti-
mality of �s� S�-type policies for finite- and infinite-horizon
problems.

Theorem 4. Assume that excess demand is backordered.
Consider the additive demand model. Suppose that
Assumption 2 holds. In the finite-horizon model, an �st� St�
policy is optimal in period t. For the infinite-horizon case,
an �s� S� policy is optimal.

Proof. Recall that Assumption 2 satisfies Conditions 1 and
2 by Proposition 5. Thus, the infinite-horizon optimality
result follows from Theorem 1. The finite-horizon result
follows from Theorem 2. �

Chen and Simchi-Levi (2004a) also show the finite-
horizon optimality result. Our result is more general in that,
for example, the single-period profit function does not even
need to be quasi-concave, whereas they assume concavity
of this profit function. (Also see the comments following
Assumption 2.) On the other hand, their results hold in
nonstationary systems also.

5. Application to the Lost-Sales Model
Chen et al. (2006) study a finite-horizon model in which
any unsatisfied demand is lost. They introduce some techni-
cal assumptions that facilitate their dynamic programming,
induction-based proof of the �s� S� optimality result. In this
section, we show this result for both the finite- and the
infinite-horizon discounted-profit models using our proof
technique. We apply results from §3.
They use the additive demand model in which the sales

lever is the per-unit selling price p per unit,10 i.e.,

D�p� 
�= d�p�+ 
� (5)

where d�p� is the deterministic part of demand. Let f and
F denote the probability density and cumulative distribution
functions of 
, respectively. Let � �= �0� Pu� be the domain
of p. Assume that any p ∈ � satisfies d�p� � 0. They
impose the following additional technical assumptions.
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Assumption 3 (Chen et al. 2006). Demand is additive
and is given by (5), where d�p� is a deterministic function,
and 
 is a nonnegative, continuous random variable defined
on a closed interval �0�B�. The probability density of 
 is
strictly positive on �0�B�. We have
(a) d�p� is decreasing, concave, and 3d′′ + pd′′′ � 0

on �;
(b) the failure rate function r�u� �= f �u�/�1− F �u�� of


 satisfies r ′�u�+ 2�r�u��2 > 0 for any u ∈ �0�B�;
(c) the expected single-period profit function is given by

��y�p�= p ·E�min�y�D�p� 
���−h ·E��y−D�p� 
��+�

− b ·E��D�p� 
�− y�+��

where h is a holding cost per unit and b is a penalty cost
per unit.

This assumption is satisfied by a wide range of demand
functions and distribution functions of 
; see Chen et al.
(2006) for a discussion. Our proof makes use of some inter-
mediate results they derived using the technical assumption
above.

Proposition 6. Assume that excess demand is lost. As-
sumption 3 implies Conditions 1 and 2.

Proof. See online Appendix B. �

We are now ready to demonstrate the application of our
proof technique to the optimality of �s� S�p� policies for
both the finite- and the infinite-horizon discounted-profit
models with lost sales.

Theorem 5. Assume that excess demand is lost. Suppose
that Assumption 3 holds. In the finite-horizon model, an
�st� St� policy is optimal in period t. For the infinite-horizon
case, an �s� S� policy is optimal.

Proof. For the infinite-horizon case, we know from Propo-
sition 6 that Condition 1 is satisfied; the result now follows
from Theorem 1. Moreover, for the finite-horizon case,
Proposition 6 implies Condition 2 holds. Therefore, the
finite-horizon result now follows from Theorem 2. In addi-
tion to the proofs omitted here, it also contains a section
on stochastically increasing, additive demands. �

6. Electronic Companion
An electronic companion to this paper is available as part
of the online version that can be found at http://or.pubs.
informs.org/ecompanion.html.

Endnotes
1. We use the terminology “�s� S�-type policies,” which are
the obvious generalization of �s� S�p� policies, when we
discuss our results.
2. The three types of demand models discussed in this
section—namely, concave, linear, and additive—will be
defined precisely in §1.2.

3. As Chen and Simchi-Levi (2004a) point out, the only
sufficient condition provided by Federgruen and Heching
(1999) for this assumption is the linearity of the demand
model.
4. We also allow the possibility of � containing a single
element; this represents traditional inventory control with-
out any sales levers.
5. The monotonicity requirement of demand with respect
to each sales lever does not cause any loss of generality in
a practical sense. For example, price discounts and adver-
tising budgets have a clear monotone effect on the demand.
6. The details are available upon request from the authors.
7. Theorem 4.2.3 and Lemma 4.2.8 of Hernandez-Lerma
and Lassere (1996) give conditions for the existence of
an optimal stationary policy and for the convergence of
the finite-horizon dynamic program to the infinite-horizon
dynamic program. The models studied in this paper satisfy
these conditions. The details are available upon request.
Also, the functions Wt depend on T , but we have sup-
pressed this dependence for the sake of conciseness.
8. A function f � �n →� is quasi-convex if the level set
�w� f �w� � l� of f is convex for any l ∈ �. A convex
function is quasi-convex. We say f is quasi-concave if −f
is quasi-convex. Quasi-concave functions are also referred
to as unimodal functions.
9. Because we do not make any claims about the optimal
sales lever to be chosen, we prefer referring to this as an
�s� S� policy rather than an �s� S�d� policy.
10. In this section, we use p in place of d because in this
model, the only sales lever is the price, p.
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