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Abstract

We study a periodically reviewed, serial inventory system in which excess demand

from external customers is lost. We derive elementary properties of the vector of opti-

mal order quantities in this system. In particular, we derive bounds on the sensitivity

(or, more mathematically, the derivative) of the optimal order quantity at each stage to

the vector of the current inventory levels. Our analysis uses the concept of L-natural-

convexity, which was studied in discrete convex analysis (Murota (2003)) and recently

used by Zipkin (2008) for studying single-stage inventory systems with lost sales. We

also remark on how our analysis extends to models with capacity constraints and/or

backordering.

∗Industrial Engineering and Operations Research Department, Columbia University, 500 West 120th
Street, New York, NY 10027, USA. Email: huh@ieor.columbia.edu. Research supported partially by NSF
grant DMS-0732169.

†Stern School of Business, New York University, 44 West 4th Street, New York, NY 10012, USA. Email:
gjanakir@stern.nyu.edu.

1



1 Introduction

We consider a periodically-reviewed, single-item inventory system with J stages in series.

Excess demand that cannot be satisfied immediately at the most downstream (i.e., customer-

facing) stage is lost. Lost sales inventory systems are known to be difficult to analyze, and

the optimal policy for even the single-stage system is complicated when the order delivery

lead-time is positive. (When the lead-time is zero, the problem becomes the standard multi-

period newsvendor problem for which order-up-to policies are optimal.) For single-stage

systems, a partial characterization of the structure of the optimal policy has been provided

by Karlin and Scarf (1959) and Morton (1969), and their results are recently reinterpreted

and strengthened by Zipkin (2008). For multi-echelon systems, no such results are known;

in fact, to our knowledge, this work is the first attempt to study the structure of optimal

policies in multi-echelon systems with lost sales. In particular, we provide bounds on the

sensitivity of the optimal order quantity at each stage with respect to the vector of the

inventory levels.

In this paper, we use the concept of L-natural-convexity (L\-convexity) from discrete

convex analysis (Murota (2003)), recently used by Zipkin (2008) for single stage systems,

to establish properties of the optimal policy in serial systems. Another recent example of

its use in inventory theory is Lu and Song (2005). We refer the reader to Chapter VII of

Fujishige (2005), Murota (2003), and Zipkin (2008) for a more detailed discussion on this

concept.

Our analysis is based on two main ideas. The first one is to consider J equivalent versions,

one for each stage, of the stochastic dynamic program corresponding to the problem of

minimizing the expected costs incurred by this system over some finite horizon of periods.

The jth version is used to generate the sensitivity result related to the order quantity of stage

j. The second one is to transform the state vector such that a state can be represented by a

so-called “bi-echelon inventory vector”, with respect to which the L\-convexity property can

be established. To the best of our knowledge, both of these ideas are novel in the inventory

literature.

2



2 Model and Result

We consider a serial inventory system with lost sales under periodic review. The system

consists of J ≥ 1 stages, indexed by j = 0, 1, . . . , J − 1. The lowest stage facing exogenous

demand is represented by stage 0, stage j orders from stage j + 1 where j ∈ {0, . . . , J − 2},
and stage J−1 orders from an outside supplier with infinite supply. The replenishment lead-

time from one stage to another is deterministic, and we assume initially that each lead-time

is 1 period. (In Section 4, we comment on how our analysis extends to the case of arbitrary

lead times.) In each period, the following sequence of events occurs: (1) receipt of delivery

at every stage, (2) order placement at every stage, and (3) demand realization. The demand

in each period is satisfied to the extent possible, and any demand that cannot be satisfied

immediately is lost. Let p ≥ 0 represent the per-unit lost sales penalty cost, and let Hj ≥ 0

denote the holding cost at stage j, that is, the cost for holding one unit at stage j for a period.

These costs are charged at the end of a period. For any j ∈ {0, 1, . . . , J − 1}, let xj ≥ 0

denote the stage-j inventory level after receiving deliveries at the beginning of a period, and

let q̃j ∈ [0, xj+1], where xJ is taken to be ∞, denote the quantity ordered by stage j in a

period. Thus, the vector (x0, x1, . . . , xJ−1) represents the state at the beginning of a period

after receiving deliveries, and the vector (q̃0, q̃1, . . . , q̃J−1) represents the action in a period.

We use x and q̃ to denote the vectors (x0, . . . , xJ−1), and (q̃0, . . . , q̃J−1), respectively. Let

Dt denote the demand in period t. We assume that demands are independently distributed

across periods.

Next, we define the dynamic program for this system for a planning horizon of T periods

indexed by t = 1, 2, . . . , T . Periods are indexed forwards, i.e., period t + 1 follows period t.

Given a state-action pair of x and q̃ in period t, the stage-j inventory level in period t + 1

is given by





(x0 −Dt)
+ + q̃0 if j = 0

xj − q̃j−1 + q̃j if j ∈ {1, . . . , J − 1}.
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Let f̃T+1(x) = 0 for all x. Consider any t ∈ {1, . . . , T}. Let γ ∈ (0, 1] denote the discount

factor for capturing the time value of money. Define

f̃t(x) = E

[
H0 · (x0 −Dt)

+ +
J−1∑
j=1

Hj · xj + p · (Dt − x0)+

]

+ γ·min
q̃

E
[
f̃t+1

(
(x0 −Dt)

+ + q̃0, x1 − q̃0 + q̃1, . . . , xJ−1 − q̃J−2 + q̃J−1
)]

s. t. 0 ≤ q̃j ≤ xj+1 , j = 0, . . . , J − 1.

Let q̃∗t (x) denote a minimizing vector, q̃, in the optimization problem above. Thus, q̃j∗
t de-

notes the order quantity for stage j, according to this vector. [Note: When the optimization

problem above does not have a unique solution, any statements we make on properties of

q̃∗t should be taken to mean the existence of an optimal selector q̃∗t (x) (precisely defined in

Section 3.4) with those properties.]

We are now ready to state the main result of the paper.

Theorem 1. Assume that q̃∗t is a differentiable function of x. Then, the following inequal-

ities hold:

−1 ≤ ∂q̃k∗
t

∂xk
≤ · · · ≤ ∂q̃k∗

t

∂x0
≤ 0 for every k ∈ {0, . . . , J − 1},

0 ≤ ∂q̃k∗
t

∂xJ−1
≤ · · · ≤ ∂q̃k∗

t

∂xk+1
≤ 1 for every k ∈ {0, . . . , J − 2}, and

∂q̃k∗
t

∂xk+1
− ∂q̃k∗

t

∂xk
≤ 1 for every k ∈ {0, . . . , J − 2} .

If q̃∗t is not differentiable, then the inequalities above hold after replacing every quantity of

the form
∂q̃k∗

t

∂xj with
q̃k∗
t (x+εj)−q̃k∗

t (x)

ε
, where εj is a vector with ε in its jth component and zero

in all the other components and ε is any strictly positive number.

In words, Theorem 1 states that the optimal order quantity at stage k is a decreasing

function of the inventory at any downstream stage j (i.e., j ≤ k), and that the rate of this

decrease is smaller than 1. On the other hand, the optimal order quantity at stage k is

an increasing function of the inventory at any upstream stage j (i.e., j > k), and the rate

of this increase is also smaller than 1. Furthermore, the sensitivity of the optimal order

quantity at a stage to the inventory level at a downstream (upstream) stage is greater the
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less downstream (upstream) the latter stage is relative to the former stage. Finally, the rate

of decrease of the optimal order quantity at a stage with respect to any downstream stage’s

inventory plus the rate of its increase with respect to any upstream stage’s inventory is itself

smaller than 1.

We present the proof of this theorem in Section 3.

3 Proof of Theorem 1

3.1 Preliminary Results

Let V ⊆ <n be a polyhedron that forms a lattice. A function f : V → < is submodular

provided that

f(x) + f(y) ≥ f(x ∨ y) + f(x ∧ y) ,

for any pair of x and y in V , where ∨ and ∧ are the component-wise minimum and

component-wise maximum operators. Let e = (1, 1, . . . , 1) be the vector of 1’s with an

appropriate length. Following Zipkin (2008), we say that f : V → < is L\-convex if

ψ(v, ζ) = f(v − ζe) , ζ ≤ 0 ,

is submodular on {(v, ζ) | v ∈ V, ζ ∈ <−, v − ζe ∈ V }. The following basic properties of

L\-convexity are straightforward extensions of results presented in Zipkin’s paper.

Lemma 2.

(a) If f(v) is L\-convex, then ψ(v, ζ) = f(v − ζe) is also L\-convex.

(b) Let rj and uj be fixed for all j ∈ {1, . . . , m} such that rj ≤ uj, and let ξij and ς ij be

fixed for all (i, j) ∈ {1, . . . , n} × {1, . . . , m} such that ς ij ≤ ξij. Define

S =
{
(v, w) ∈ <n ×<m | ς i,j ≤ vi − wj ≤ ξi,j ∀(i, j) , and rj ≤ wj ≤ uj ∀j} .

Suppose that g(v,w) is a L\-convex function defined on S. Let

f(v) = min
w

{g(v,w) | (v,w) ∈ S} .

Then, f is L\-convex.
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(c) Let I be a subset of {1, . . . , n}, and suppose that g(v, ζ) is L\-convex, defined on

{v : vi ≤ 0 for all i ∈ I}. Let ζ(v) denote the largest value of ζ that solves

min
ζ

{
g(v, ζ) | vi ≤ ζ ≤ 0 for i ∈ I}

.

Then, ζ(v) is nondecreasing in v, and ζ(v + ωe) ≤ ζ(v) + ω for ω > 0.

Proof. While part (a) is due to Zipkin (2008), parts (b) and (c) require minor modifications.

We will first prove part (b), which slightly generalizes Lemma 2 of Zipkin (2008). Let

ψ(v, ζ) = f(v − ζe)

= min
w

{
g(v − ζe,w) | ς i,j ≤ vi − ζ − wj ≤ ξi,j ∀(i, j), rj ≤ wi ≤ uj ∀j}

= min
w̃

{
g(v − ζe, w̃ − ζe) | ς i,j ≤ vi − w̃j ≤ ξi,j ∀(i, j), rj ≤ w̃i − ζ ≤ uj ∀j} .

Since each constraint in the above minimization problem has exactly two non-zero variables

of (v, w̃, ζ) and these two variables have the opposite signs, the feasible region forms a lattice

(Topkis (1998), Example 2.2.7). Thus, ψ(v, ζ) is submodular (Topkis (1998), Theorem 2.7.6),

and we conclude that f is L\-convex.

We will now prove part (c). Since g is submodular and the feasible region of the min-

imization problem forms a lattice, ζ(v) is nondecreasing in v by Theorem 2.8.2 of Topkis

(1998). Also, for any ω > 0 and ζ ≤ 0 satisfying ζ > ζ(v) + ω,

g(v + ωe, ζ)− g(v + ωe, ζ(v) + ω) ≥ g(v, ζ − ω)− g(v, ζ(v)) > 0 . (1)

The first inequality in (1) is true because of the following argument.1 Define

ψ(v, ζ, ζ ′) = g(v − ζ ′e, ζ − ζ ′) .

Since g is L\ convex, we know that ψ is submodular in (v, ζ, ζ ′); in particular, for a given v,

ψ(v, ζ, ζ ′) is submodular in (ζ, ζ ′). This implies that

ψ(v, ζ − ω,−ω)− ψ(v, ζ(v),−ω) ≥ ψ(v, ζ − ω, 0)− ψ(v, ζ(v), 0).

1An alternate proof of this inequality is based on the following property known as translation-

submodularity (see Theorems 7.2 and 7.29 of Fujishige (2005) and the paper by Murota and Shioura (2004)):

if g is L\ convex, then g(p)+g(q) ≥ g((p−α ·e)∧q)+g(p∨ (q+α ·e)) for all α ≥ 0. The desired inequality

follows by choosing p = (v+ωe, ζ), q = (v, ζ(v)) and α = ω and from the facts that (p−α·e) = (v, ζ−ω) ≥ q

and (q + α · e) = (v + ωe, ζ(v) + ω) ≤ p.

6



Observe that the left and right sides of the inequality above are equal to the left and middle

expressions of (1), respectively. This completes the proof of the first inequality in (1).

The second inequality in (1) follows from the assumption that ζ −ω > ζ(v) and the fact

that, for every ζ ′′ > ζ(v), the inequality g(v, ζ ′′) > g(v, ζ(v)) holds due to the definition of

ζ(v). Now, from (1), we obtain g(v + ωe, ζ) > g(v + ωe, ζ(v) + ω), which implies that ζ

cannot be optimal for v + ωe. Thus, ζ(v + ωe) ≤ ζ(v) + ω.

3.2 State Transformation

We fix k ∈ {0 . . . , J − 1}, one of the stages of the system, whose optimal order quantity we

will analyze, and introduce an alternate representation of the state. Define

wj = xj + xj+1 + · · ·+ xk for j ∈ {0, 1, . . . , k}, and, (2)

uj = −(xk+1 + xk+2 + . . . + xj) for j ∈ {k + 1, . . . , J − 1} and k ≤ J − 2 . (3)

Let w = (w0, . . . , wk). For k ≤ J − 2, let u = (uk+1, . . . , uJ−1). (For conciseness, we refrain

from stating k ≤ J − 2 each time u is used. If k = J − 1, u should be treated as the null

vector.) We refer to (w,u) as the bi-echelon inventory vector anchored at k. Then, (w,u)

is a valid representation of the state, where the corresponding state space is given by

V =
{
(w,u) | w0 ≥ · · · ≥ wk ≥ 0 ≥ uk+1 ≥ . . . ≥ uJ−1

}
.

Notice that V is a lattice.

For our analysis, it is convenient to consider the following modifications to our model.

First, we divide the set of ordering decisions into two steps, the first one for stage k and the

second one for all the other stages. Second, we no longer insist that the manager must satisfy

demand to the maximum extent possible; we give the manager the flexibility of selecting the

sales quantity (provided that the sales quantity does not exceed the demand and does not

exceed the available inventory at stage 0). It is easy to show that it is optimal to satisfy

demand to the maximum extent possible. Of these two modifications, the first is a technique

which is new to the multi-echelon inventory literature whereas the second appears in Zipkin

(2008). Now, the revised sequence of events is as follows: (1) receipt of delivery at all stages,
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(2a) order placement for stage k, (2b) order placement for all the other stages, (3) demand

realization, and (4) the sales quantity decision. We emphasize that the modified problem

remains equivalent to the original problem, and these modifications are introduced for the

convenience of our analysis only.

Let qj ≥ 0 denote the quantity ordered by stage j. For j < J − 1, this quantity qj is

constrained above by the amount of available inventory in the immediately upstream stage,

xj+1. Define

wj
+ = wj − qj−1 for j ∈ {1, . . . , k}, and

uj
+ = uj − qj for j ∈ {k + 1, k + 2, . . . , J − 1} .

Let ŵ+ = (w1
+, . . . , wk

+) and u+ = (uk+1
+ , . . . , uJ−1

+ ). Then, (w0, ŵ+,u+) corresponds to the

state in the next period, assuming that stage k does not order in the current period, and the

realized demand is zero. Further, let ζ ≤ 0 denote the negative of the order quantity of stage

k in the current period, i.e., ζ = −qk. It follows that (ζ, ŵ+,u+) could be used to represent

the order placement action in the current period; that is, given (w,u) and (ζ, ŵ+,u+), the

vector of order quantities at all stages is completely determined. The feasible order placement

action (ζ, ŵ+,u+) corresponding to the state (w,u) can be characterized by the following

set of constraints:

wj+1 ≤ wj
+ ≤ wj for j ∈ {1, . . . , k} (4)

uj ≥ uj
+ ≥ uj+1 for j ∈ {k + 1, k + 2, . . . , J − 1} (5)

0 ≥ ζ ≥ uk+1 , (6)

where we let wk+1 = 0, and uJ = −∞.

The sales decision is made after demand is realized. Let d denote the realized demand.

Given the current state (w,u) and the order placement action (ζ, ŵ+,u+) in the current

period, the sales quantity can be deduced from the state of the next period. Let w0
+ denote

the first component of the state at the end of the current period after sales have occurred;

then, the sales quantity is w0 − w0
+. The set of feasible values for w0

+ is given by

w0 − d ≤ w0
+ and w1 ≤ w0

+ ≤ w0 , (7)
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since the sales quantity is non-negative and can neither exceed demand nor the inventory at

stage 0, that is, w0 − w1.

We now comment on the transition of states from one period to the next. Given the

bi-echelon state vector (w,u) and the action vector (ζ, ŵ+,u+, w0
+), the order quantity −ζ

at stage k shifts the corresponding amount of inventory from stage k + 1 to stage k. Thus,

in the next period, each wj increases by −ζ for j ∈ {0, 1, . . . , k} and each uj also increases

by −ζ for j ∈ {k + 1, k + 2, . . . , J − 1}. (See the definitions of wj and uj in (2) and (3).)

Let w+ = (w0
+, . . . , wk

+) = (w0
+, ŵ+). Then, the state vector in the next period is given by

(w+,u+)− ζe.

3.3 L\-Convexity Properties

Let us now formally define the T -period stochastic dynamic program for our system using

the state vector (w,u) and the actions (ζ, ŵ+,u+, w0
+). For any (w,u), let fT+1(w,u) = 0.

Fix t ∈ {1, 2, . . . , T}. Define, for every (w,u, ζ,w+,u+) and d ≥ 0 satisfying constraints

(4)-(7),

ψt(w,u, ζ,w+,u+|d)

= H0 · (w0
+ − w1) +

k∑
j=1

Hj · (wj − wj+1) +
J−1∑

j=k+1

Hj · (−uj + uj−1)

+ p · (w0
+ − w0 + d) + γ · ft+1((w+,u+)− ζe) ,

where wk+1 = 0 and uk = 0. (The equation above can be understood by observing that the

inventory on hand at stage 0 at the end of the period is w0
+ − w1; the inventory on hand at

stage j is (wj −wj+1) if j ∈ {1, . . . , k} and (−uj + uj−1) if j ∈ {k + 1, k + 2, . . . , J − 1}; and

the amount of sales lost is d− (w0 − w0
+) if d is the demand.)

Now, recall that ŵ+ = (w1
+, . . . , wk

+) and w+ = (w0
+, w1

+, . . . , wk
+). Let ψ̂t(w,u, ζ, ŵ+,u+|d)

be the minimum value of ψt optimized over the sales decision w0
+, i.e.,

ψ̂t(w,u, ζ, ŵ+,u+|d) = min
w+

0

ψt(w,u, ζ,w+,u+|d) subject to (7) .
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Also, let

φt(w,u, ζ, ŵ+,u+) = EDt

[
ψ̂t(w,u, ζ, ŵ+,u+|Dt)

]
,

gt(w,u, ζ) = min
ŵ+,u+

φt(w,u, ζ, ŵ+,u+) subject to (4) and (5) ,

and ft(w,u) = min
ζ

gt(w,u, ζ) subject to (6) .

Theorem 3. For each t ∈ {1, . . . , T}, the functions gt(w,u, ζ) and ft(w,u) are L\-convex.

Proof. Note that fT+1 = 0 is L\-convex. We assume, as an inductive hypothesis, that ft+1

is L\-convex. We will first prove that ψt is L\-convex. In the definition of ψt, each of the

first four terms is separable and linear, and is therefore L\-convex. In the last term, since

ft+1 is L\-convex, Lemma 2 implies that ft+1((w+,u+) − ζe) is L\-convex in (w+,u+, ζ).

Therefore, ψt(w,u, ζ,w+,u+|d) is a sum of L\-convex functions and is, therefore, L\-convex

in (w,u, ζ,w+,u+).

Since ψt(w,u, ζ,w+,u+|d) is L\-convex, Lemma 2(b) implies that ψ̂t(w,u, ζ, ŵ+,u+|d)

is L\-convex for each d. Since the expectation operator preserves L\-convexity, it follows that

φt(w,u, ζ, ŵ+,u+) is L\-convex. Again by Lemma 2(b), we obtain that both gt(w,u, ζ) and

ft(w,u) are L\-convex, thus completing the induction.

3.4 Implications of L\-Convexity

Let ζ∗t (w,u) denote the largest minimizer in the definition of ft for some t. Let qk∗
t (w,u) =

−ζ∗t (w,u); thus, qk∗
t (w,u) is an optimal order quantity for stage k. Assuming that qk∗

t (w,u)

is differentiable, the following inequalities are implied by Lemma 2(c):

∂qk∗
t

∂wj
≤ 0 for j ∈ {0, . . . , k}. (8)

−∂qk∗
t

∂uj
≥ 0 for j ∈ {k + 1, . . . , J − 1} if k ≤ J − 2. (9)

k∑
j=0

∂qk∗
t

∂wj
+

J−1∑

j=k+1

∂qk∗
t

∂uj
≥ −1 , (10)

where the second summation in the last inequality above does not exist if k = J − 1.

Notice that Theorem 1 is stated in terms of q̃k∗
t , which is a function of x, whereas the

inequalities above are stated in terms of qk∗
t which is a function of (w,u). Since q̃k∗

t has not
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been uniquely defined yet, we define

q̃k∗
t (x) = qk∗

t (w,u),

where w and u depend on x through definitions (2) and (3). The results of the theorem

follow directly by applying the chain rule for differentiation and the inequalities in (8)-(10).

The case in which q̃k∗
t (x) is not differentiable corresponds to the case in which qk∗

t is not

differentiable. The details of the proof in this case are provided in the appendix.

4 Remarks

In this section, we remark on how Theorem 1 and our analysis extend to other settings.

(i) Arbitrary Lead Times: If the lead times between two successive stages are arbitrary

integers, then we can insert a sufficient number of dummy stages between these two

stages to ensure that the lead time between any two consecutive stages (including the

dummy stages) is one period. We then make sure that no inventory is held at a dummy

stage j by inserting an additional constraint wj
+ = wj+1 to (4) and uj−1

+ = uj to (5).

Otherwise, the analysis remains the same and the conclusions of Theorem 1 hold.

(ii) Ordering Capacity: If the quantity ordered by stage j is constrained above by a capacity

limit CAP j, then we can add the constraint wj+1 − wj+1
+ ≤ CAP j to (4) and the

constraint uj − uj
+ ≤ CAP j to (5). The rest of the analysis remains unchanged and

the conclusions of Theorem 1 hold.

(iii) Backorder Models: If excess demand is backordered instead of being lost, then the only

required change to our analysis is replacing (7) with w0 − d = w0
+. In the backorder

system without capacity constraints, the conclusion of Theorem 1 trivially follows

from the fact that the optimal policy is an echelon order-up-to policy (Clark and

Scarf, 1960). However, when capacity constraints are present, then the structure of

the optimal policy is not known, in general, and our result here (Theorem 1) is the first

result which partially characterizes the optimal policy for such systems. (Parker and

Kapuscinski (2004) and Janakiraman and Muckstadt (2008) derive the optimal policy
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structure for such systems but they require the assumption that the capacity limits at

all stages are identical.)

We remark that, in addition to the first two extensions mentioned above, Zipkin (2008)

also considers systems in which demand is Markov modulated and systems in which there

are multiple demand classes; the extensions of our analysis to these cases are identical to

Zipkin’s. Moreover, he studies the case of stochastic lead times; our analysis here however

does not readily extend to this case.
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A Details for the Proof of Theorem 1: The Case where qk∗
t is not

Differentiable

Recall that ft(w,u) = minζ gt(w,u, ζ) subject to (6), that ζ∗t (w,u) is the largest minimizer

in this definition, and qk∗
t (w,u) = −ζ∗t (w,u). We know from Theorem 3 that gt(w,u, ζ) is

L\-convex. Therefore, Lemma 2 (c) implies that

qk∗
t (w,u) is nonincreasing in (w,u), and (11)

qk∗
t ((w,u) + εe) ≥ qk∗

t (w,u)− ε for ε > 0 , (12)

where e = (1, 1, . . . , 1) is the vector of 1’s. We will show the inequalities in the statement

of Theorem 1 for the non-differentiable case using (11)-(12) along with the definition of the

transformation from x to (w,u) in (2)-(3). These inequalities are directly implied by the

following five statements, which we will prove in the remainder of this section:

q̃k∗
t (x + ε0)− q̃k∗

t (x)

ε
≤ 0 ∀ k ∈ {0, . . . , J − 1} (13)

q̃k∗
t (x + εJ−1)− q̃k∗

t (x)

ε
≥ 0 ∀ k ∈ {0, . . . , J − 2} (14)

(
q̃k∗
t (x + εk+1)− q̃k∗

t (x)

ε

)
−

(
q̃k∗
t (x + εk)− q̃k∗

t (x)

ε

)
≤ 1 ∀ k ∈ {0, . . . , J − 2} (15)

(
q̃k∗
t (x + εj)− q̃k∗

t (x)

ε

)
−

(
q̃k∗
t (x + εj−1)− q̃k∗

t (x)

ε

)
≤ 0 ∀ (j, k) ∈ {1 ≤ j ≤ k}. (16)

(
q̃k∗
t (x + εj)− q̃k∗

t (x)

ε

)
−

(
q̃k∗
t (x + εj−1)− q̃k∗

t (x)

ε

)
≥ 0 ∀ (j, k) ∈ {k + 2 ≤ j ≤ J − 1}. (17)

To prove statements (13) and (14), observe that (11) implies

q̃k∗
t (x + ε0)− q̃k∗

t (x) = qk∗
t ((w,u) + ε0)− qk∗

t (w,u) ≤ 0 and

q̃k∗
t (x + εJ−1)− q̃k∗

t (x) = qk∗
t ((w,u)− εJ−1)− qk∗

t (w,u) ≥ 0 .

(Throughout this proof, we let (w,u) be the transformed vector corresponding to x.)
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We show statement (15) by applying (12) as follows. Then,

(
q̃k∗
t (x + εk+1)− q̃k∗

t (x)
)− (

q̃k∗
t (x + εk)− q̃k∗

t (x)
)

= q̃k∗
t (x + εk+1)− q̃k∗

t (x + εk)

= qk∗
t ((w,u)− εk+1 − · · · − εJ−1)− qk∗

t ((w,u) + ε0 + · · ·+ εk)

≤ ε ,

where the second equality follows from (2)-(3), and the inequality follows from (12). This

completes the proof of statement (15).

Statement (16) follows from

(
q̃k∗
t (x + εj)− q̃k∗

t (x)
)− (

q̃k∗
t (x + εj−1)− q̃k∗

t (x)
)

= qk∗
t ((w,u) + ε0 + · · ·+ εj−1 + εj)− qk∗

t ((w,u) + ε0 + · · ·+ εj−1)

≤ 0 ,

where the inequality follows from (11). The proof of statement (17) is similar.
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