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Abstract

We study periodic-review inventory replenishment problems with fixed ordering costs, and

show the optimality of (s, S) inventory replenishment policies. Inventory replenishment is in-

stantaneous, i.e., the lead time is zero. We consider several sales mechanisms, e.g., auction

mechanisms, name-your-own-price mechanisms, and multiple heterogeneous sales channels. We

prove this result by showing that these models satisfy a condition given by Huh and Janakira-

man (2004), which is sufficient for the optimality of (s, S) policies. Thus, this paper shows that

the optimality of (s, S) policies extends well beyond the traditional sales environments studied

so far in the inventory literature.
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1 Introduction

In this paper, we study periodic-review inventory replenishment problems with fixed ordering costs

when replenishment is instantaneous, i.e., the lead time is zero. In the classical literature on

inventory theory, products are assumed to be sold at an exogenously fixed price. The demand

distribution in each period is exogenously determined; the manager is assumed to have no control

over demand. In contrast, in many business environments, managers routinely make decisions that

affect demand and sales quantities by controlling some “sales levers” such as pricing, advertising,

and product availability among sales channels. (We call any decision variable that affects the

demand distribution a sales lever.) The most popular form of demand control studied in the

inventory literature is dynamic pricing, where the seller dynamically posts a price that influences

the demand distribution. (We refer to this as a posted price channel.) In this paper, we consider

controlling the following sales levers: (i) the reserve price in periodic auctions, (ii) the minimum

acceptable price in “name-your-own-price” channels, and (iii) product allocation and prices in

multiple sales channels. We show that the optimal replenishment policy is of the (s, S) type in the

above-mentioned models. Thus, this paper demonstrates that the optimality of this simple and

popular replenishment policy extends well beyond the traditional sales environments studied so far

in the inventory literature.

We briefly discuss the possible rationales for dynamic demand control (e.g., dynamic pricing) for

replenishable and non-perishable products. For a stationary demand environment and a sufficiently

long planning horizon, the optimal demand control is static over time when inventory is replenished

every period. This is because the marginal value of a unit of inventory held at the end of a period

does not change through time. However, when there is a fixed ordering cost, it is not optimal

to order every period; in fact, the time between two successive orders is not a constant and can

potentially be large. Therefore, demand control will optimally be dynamic in such models. In

this paper, we study the optimal inventory replenishment problem with a fixed ordering cost and

dynamic demand control in a variety of examples which we motivate below.

First, consider a seller who has a fixed cost for replenishing inventory and sells through an online

auction channel like eBay. Each week, she auctions her inventory using a suitably determined reserve

price. Any unsold inventory is carried over to the next week. The seller’s optimal control problem
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is to maximize her expected profit over a planning horizon. In each week, she has to decide whether

to place a replenishment order or not, and, if so, how much to order; also, she has to determine the

reserve price for that week’s auction depending on the available inventory. This example motivates

section 4.

Our second motivating example is the “name-your-own price” mechanism of priceline.com.

Although this company currently sells only perishable products like air-tickets and hotel rooms,

we believe it is quite plausible for sellers of certain slow-moving, non-perishable products with

high ordering costs to adopt this mechanism. See Farwell (2001) for a discussion. Buyers arrive

sequentially, and the manager needs to decide the minimum price at which an order will be accepted.

This minimum price dynamically changes over time depending on the inventory availability. This

example motivates section 5 on bid-price control.

Third, several firms sell the same product in several bricks-and-mortar stores as well as one or

more Internet channels. For certain products, replenishment of inventory is fairly infrequent due

to the economics involved; however when there is an inventory imbalance across stores caused by

uneven sales, inventory can be transferred among the stores, if necessary. We study such a firm

in section 6.2. Our fourth example is closely related to the previous example. Many companies

maintain a centralized pool of inventory to serve different sales channels, each of which is dedicated

to a particular customer segment, e.g., individual home consumer, non-profit organizations such

as universities, and for-profit businesses. We consider such a firm in section 6.3, allowing the

possibility of dynamic channel-specific pricing.

In many cases, the frequency with which prices can be changed is higher than that at which

inventory can be replenished, especially when ordering costs are high or when replenishment sched-

ules are governed by several other constraints. For example, in some retail stores, prices can be

updated frequently using electronic shelf labeling systems. This motivates our analysis in section

7.

In sections 4 through 7, we show that (s, S) inventory replenishment policies are optimal for

models motivated by the examples described above. In the classical approach, proving the optimal-

ity of (s, S) policies is based on a dynamic programming formulation. Its value function exhibits

a certain structure, which is shown to be preserved by an inductive argument. When there is no
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sales lever, this structure is K-convexity, a concept due to Scarf (1960). Nearly half a century later,

Chen and Simchi-Levi (2004a,b) have extended it to “symmetric K-convexity” to establish the op-

timality of (s, S) policies when the demand distribution in each period is a function of the price set

by the manufacturer in that period. A handful of papers show the same result for related models

with dynamically posted prices, e.g., Chen et al. (2006); Feng and Chen (2004). A recent paper

by Huh and Janakiraman (2004) provides an alternate approach for proving optimality results in

stochastic inventory models with multiple sales levers. They have identified a sufficient condition

(Condition 1 in Section 3), for the optimality of (s, S)-type replenishment policies. They show that

this condition is satisfied by existing models in the literature that combine pricing and inventory

decisions. While Huh and Janakiraman (2004) have only considered a single sales channel with

dynamically posted prices, we show in this paper that Condition 1 is applicable to more general

settings.

The remainder of the paper is organized as follows. In section 2, we present a review of the liter-

ature in this area. Section 3 contains the basic model and the main result of Huh and Janakiraman

(2004) since their result is essential to this paper. In section 4, we develop an inventory replen-

ishment model in which sales are conducted through auctions. Section 5 contains a model where

customers arrive and make price offers which can be accepted or rejected by the seller. Section 6

describes models with multiple sales channels. In section 6.1, we study a model with sequential

sales channels, where the first channel is a posted price channel, and the second channel is an

auction channel. In sections 6.2 and 6.3, we analyze models in which sales are conducted through

multiple channels simultaneously. Section 7 contains a modification of the dynamic pricing model

in which the seller has the capability of dynamically changing the price between two successive

ordering epochs. We conclude in section 8.

2 Literature Survey

Combined Pricing-Inventory Control. Recently, there has been a growing interest in periodic-

review inventory models in which demand is stochastic and influenced by the pricing decision, i.e.,

demand D(p, ε) is a function of price p, where ε is a stochastic component. When the fixed

ordering cost of inventory replenishment is zero and excess demand is backordered, Federgruen
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and Heching (1999) showed the optimality of the base stock inventory policy. Establishing the

structure of optimal inventory policies is more challenging when the fixed ordering cost is strictly

positive. Under the assumption of complete backlogging, Chen and Simchi-Levi (2004a,b) showed

the optimality of (s, S) inventory policies for finite and infinite horizon models under different

assumptions. They used the term (s, S, p) policy, which refers to an (s, S) inventory policy where

the price p depends on y, the inventory level after ordering. Under the assumption of lost sales,

Chen et al. (2006) showed a similar result using a finite horizon model. For stationary systems, Huh

and Janakiraman (2004) used an alternate proof technique to obtain a few extensions: (i) the joint

concavity of the expected single-period profit in Chen and Simchi-Levi (2004b) can be replaced by

the weaker assumption of joint quasi-concavity, and (ii) the lost sales result of Chen et al. (2006)

can be extended to the infinite horizon discounted profit criterion. For more references, please see

Huh and Janakiraman (2004).

Auctions and Other Sales Channels. Single-period auctions have been well-studied in the

economics literature. We refer readers to a textbook by Krishna (2002) for details. There are

several papers that have addressed maximizing the seller’s revenue when a finite quantity is sold

over a time horizon. Some of them use auctions exclusively (Segev et al. (2001); Lavi and Nisan

(2004); Vulcano et al. (2002); Gallien (2006)) while others use a combination of auctions and posted

prices (Etzion et al. (2006); Caldentey and Vulcano (2004)). For an excellent review of management

science research on online auctions, see Pinker et al. (2003).

The only paper to our knowledge that considers inventory replenishment when the sales channel

is not a posted price channel is Van Ryzin and Vulcano (2004). They proved the optimality of a

base-stock policy with periodic auctions when there is no fixed cost for inventory replenishment.

When a positive fixed cost is present and an auction is run every period, there is no known result on

the structure of the optimal inventory policies. Furthermore, the optimal inventory replenishment

problem has never been studied in the presence of multiple sales channels. In this paper, we

address the inventory replenishment problem with a fixed ordering cost and more general types of

sales channels.
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3 Inventory Replenishment and Sales Mechanisms: A General

Model

The main result of this paper is the optimality of (s, S)-type inventory policies in systems with a

variety of sales channels. In this section, we review Condition 1 of Huh and Janakiraman (2004)

and its implication on the optimality of (s, S) policies. In subsequent sections, we demonstrate that

the systems we study satisfy Condition 1.

The basic model is the following. Let c and K be the variable cost and fixed ordering cost of

inventory replenishment. Without loss of generality, we assume c = 0 by appropriately transforming

the holding and back-order cost function and assuming that all inventory at the end of the horizon

can be salvaged at c dollars per unit. We assume instantaneous inventory replenishment, i.e., the

replenishment lead time is zero. Let x and y be the inventory levels before and after possible

replenishment in a period, respectively. Let d be the vector of sales levers (e.g., price), and D(d, ε)

be the stochastic demand, where ε is a random variable. (We denote vectors by a bold-face.)

In this paper, the inventory levels (x and y) and demand D(d, ε) are assumed to be integers.

When demand exceeds inventory, excess demand is backlogged. The single-period expected profit,

excluding inventory replenishment cost, is denoted by π(y,d), which depends on both y and d.

The following sequence of events takes place in each period:

(1) The available inventory level x at the beginning of a period is observed.

(2) A replenishment decision is made to raise the inventory to y ≥ x. A fixed ordering cost of

K is incurred if y > x.

(3) A sales lever d is chosen. Demand is a random variable D(d, ε) whose distribution is deter-

mined by the choice of d. In each of the models we study, the sales lever and the dependence

of demand on it are further described in detail.

(4) Demand is realized and generates revenue. A holding and back-order cost g(y − D(d, ε)) is

incurred. The expected single-period profit π(y,d) is the difference between the expected

revenue and E[g(y −D(d), ε)].
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An inventory replenishment policy is said to be an (s, S) policy if there exist two numbers s

and S such that the inventory level is raised to S whenever x ≤ s and no order is placed otherwise.

If these two numbers depend on the period index t, then we call this an (st, St) policy.

We state Condition 1, which ensures that the problem has sufficient structure in terms of the

expected single-period profit π. Let Q(y) := maxd π(y,d), and let y∗ be a maximizer of Q(·).

Condition 1.

(a) Q(y) is quasi-concave, i.e., Q(y) is increasing1 for y ≤ y∗, and decreasing for y ≥ y∗, and

(b) for any y1 and y2 satisfying y∗ ≤ y1 < y2 and any d2, there exists

d1 ∈ { d | π(y1,d) ≥ π(y2,d2)}

such that for any ε,

y1 −D(d1, ε) ≤ max{ y2 −D(d2, ε), y∗ }. (1)

Observe that Condition 1 is stated in terms of a single-period profit function. We also state a

stronger version of Condition 1.

Condition 1∗. Condition 1 is satisfied with the following added requirement:

(c) for any y1 and y2 satisfying y∗ ≥ y1 > y2, and any d2, there exists d1 satisfying π(y1,d1) ≥

π(y2,d2) such that for any ε,

y1 −D(d1, ε) ≥ y2 −D(d2, ε) .

By definition, Condition 1∗ implies Condition 1. We now state one of the main results of Huh

and Janakiraman (2004):

Theorem 1 (Huh and Janakiraman (2004)). Suppose Condition 1 holds.

(a) If K > 0, (s, S) replenishment policies are optimal with the infinite horizon discounted-profit

model. If K = 0, the optimal replenishment policy is myopic and of the base-stock type with

the finite horizon or the infinite horizon discounted-profit model.
1In this paper, we use increasing (decreasing) to mean non-decreasing (non-increasing).
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(b) In addition, if Condition 1∗ also holds, then an (st, St) policy is optimal for a finite-horizon

model with K > 0.

Theorem 1 simplifies the task of proving the optimality of base-stock and (s, S) policies. It is

sufficient to focus on a single period and verify Condition 1. Thus, the analysis of a multi-period

dynamic program is reduced to examining a simpler single-period problem.

4 Periodic Auctions with Inventory Replenishment and Fixed Costs

In this section, we study systems in which inventory is sold through an auction in every period.

The reserve prices used in each period are dynamically chosen based on the inventory levels. In

section 4.1, we review the so-called modified second price auction for a single period. In section

4.2, we restrict our attention to this type of auction, and show that Condition 1 is satisfied. In

section 4.3, we extend this result to the case where backorders are not allowed. In section 4.4, we

discuss an important issue associated with determining the optimal auction to use in each period.

4.1 A Modified Second-Price Auction

Let us now consider a single-period multi-unit auction in which each customer bids for at most a

single unit. Suppose there are y units available to be auctioned. If k is the number of units sold

in the auction, then the ending inventory is y − k units. Let S(·) be the salvage value obtained as

a function of the ending inventory y − k. The seller’s problem is to design an auction maximizing

the expected revenue and the salvage value.

Suppose customer n has the realized value of vn, and submits a bid of bn. We assume that

customers’ values are nonnegative, and have an identical and independent distribution with CDF

F and PDF f . We let v = (v1, v2, . . .) and b = (b1, b2, . . .) be the value vector and the bid

vector, respectively. Let b(i) be the i’th highest bid, and v(i) be the i’th highest value. Ties are

broken arbitrarily. When there is no ambiguity, we also use v and b to denote (v(1), v(2), . . .) and

(b(1), b(2), . . .), respectively.
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We use a second price auction with an appropriately chosen vector of non-decreasing reserve

prices, which Vulcano et al. (2002) refer to as the modified second price auction. In this auction,

the seller selects the reserve price vector r = (r(1), r(2), . . .) where r(1) ≤ r(2) ≤ · · · , and the i’th

unit will be sold if and only if b(i) ≥ r(i). Given a particular bid vector b, the number of sold

units is given by κ(r,b) = max{i : b(i) ≥ r(i)}. The highest κ(r,b) bidders receive a unit, and

pay a uniform price of max{r(κ(r,b)), b(κ(r,b) + 1)}. It is well known that a dominant strategy

for buyers is to bid their own values in this auction.

From Maskin and Riley (1989) and Vulcano et al. (2002), the seller’s optimization problem is

to set the reserve price vector to maximize the expected profit, i.e.,

max
r

Ev

[
y∑

i=1

{J(v(i))−∆S(y − i)} · I[v(i) ≥ r(i)]

]
(2)

s. t. r(1) ≤ r(2) ≤ · · · ≤ r(y)

where I is a binary indicator function, ∆S(x) = S(x + 1) − S(x) is the marginal salvage value,

and J(v) = v − 1/ρ(v) is the virtual value function where ρ(v) = f(v)/(1− F (v)) is the associated

failure rate function. We assume, as in Maskin and Riley (1989) and Vulcano et al. (2002), that

the virtual value function J is strictly increasing.

4.2 Periodic Auction Sales Channel: Backorders Allowed

In this section, we consider a model in which inventory is sold using an auction in each period.

Inventory is reviewed every period and replenished, if necessary. We consider the class of modified

second-price auctions with reserve price vectors.

The number of customers and the value vectors are independently and identically distributed

across time periods, and each buyer submits his bid only once in the period he arrives. If a customer

fails to procure a unit in the period he arrives, he leaves the system. These assumptions are also

used by Van Ryzin and Vulcano (2004).

In the periodic auction model, the following sequence of events takes place in each period.

(1) The available inventory level x at the beginning of a period is observed.
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(2) An ordering decision is made to raise the inventory to y ≥ x. A fixed ordering cost of K is

incurred if y > x.

(3) A reserve price vector r = (r(1), r(2), . . .) is chosen and announced to the bidders, where

r(1) ≤ r(2) ≤ · · · .

(4) Customers arrive and submit their bids. The bid vector b = (b(1), b(2), . . .) is sorted in a

descending order.

(5) The allocation and payment decisions are made according to the modified second-price auction

mechanism. A holding and back-order cost of g(y − k) is incurred, where k is the number of

units sold in this period.

By the incentive compatibility property, customers’ bids are the same as their values, i.e.,

b(i) = v(i). Thus, the number of units sold equals

κ(r,v) =
∞∑
i=1

I[v(i) ≥ r(i)] , (3)

where I is the indicator function. We suppose g(·) is nonnegative and convex in Z, and satisfies

g(0) = 0. Furthermore, we assume that the holding cost is linear, i.e., there exists h ≥ 0 such that

g(z) = h ·z for z ≥ 0. The back-order cost does not have to be linear. Let ∆g(z) = g(z)−g(z−1).

We note that our model allows the seller to sell more units than the inventory level. This

would occur when buyers’ bids are sufficiently high. (We analyze the case where backorders are

not allowed in section 4.3.)

Let R(y, r) denote the seller’s expected single-period profit when the inventory level after re-

plenishment is y and the reserve price vector is r. The value of R(y, r) includes the holding and

back-order cost g(·), but excludes the fixed ordering cost K. By the revenue equivalence theorem,

we know that R(y, r) = Ev [R(y, r,v)], where

R(y, r,v) = −g(y) +
∞∑
i=1

[J(v(i)) + ∆g(y − i + 1)] · I[v(i) ≥ r(i)]. (4)

We recall our assumption that the virtual value function J(·) is a strictly increasing function.

It follows that J(v(i)) is decreasing in i. Let

v∗ = J−1(0) , and v∗y(i) = J−1(−∆g(y − i + 1)). (5)
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We remark that if the starting inventory is y, then v∗y(i) is the least value above which it is profitable,

in this single period, to sell the i’th unit to a customer with that value. Let

ry = (v∗y(1), v∗y(2), . . .). (6)

Then, the components of ry are increasing since J(·) is an increasing function and g(·) is convex.

Observe from equation (4) that ry maximizes R(y, r,v) for each v; that is, ry is the optimal reserve

price vector for a single-period problem.

We will now show through Proposition 2 and Lemma 3 that Condition 1 holds in this model.

Let L(y) be the maximum possible expected profit in a single period, i.e.,

L(y) = max
r

R(y, r) .

Let y∗ be the largest maximizer of L(y). Let ∆L(y) = L(y + 1)− L(y).

Proposition 2. In the periodic auction model, the following statements are true:

(a) L(y) = R(y, ry).

(b) L(y) is concave.

(c) ∆L(y) ≤ 0 for y ≥ y∗, and ∆L(y) ≥ 0 for y < y∗.

(d) y∗ ≥ 0.

Proof. Since ry maximizes R(y, r,v) for each v from equation (4), it follows clearly that ry maxi-

mizes R(y, r), proving (a). The proof of (b) is based on the following property

R(y, ry,v) = max
k∈Z+

{J(v(1)) + J(v(2)) + . . . + J(v(k))− g(y − k) }

and is given in appendix A.1. Statement (c) immediately follows from (b). To prove (d), consider

the definition (4) of R(y, r,v):

R(0, r,v) = −g(0) +
∞∑
i=1

[J(v(i)) + ∆g(1− i)] · I[v(i) ≥ r(i)], and

R(−1, r,v) = −g(−1) +
∞∑
i=1

[J(v(i)) + ∆g(−i)] · I[v(i) ≥ r(i)].

11



For any integer z, we have g(z) ≥ 0 = g(0). By the convexity of g(·), we have ∆g(−i+1) ≥ ∆g(−i).

It follows that R(0, r,v) ≥ R(−1, r,v) for any r and v. Thus,

R(−1, r−1) = Ev[R(−1, r−1,v)] ≤ Ev[R(0, r−1,v)] = R(0, r−1) ≤ R(0, r0).

Therefore, ∆L(−1) = L(0)−L(−1) ≥ 0 from (a). Since y∗ is the largest maximizer of L(·), we get

y∗ ≥ 0.

From (5) and (6), we recall ry = (v∗y(1), v∗y(2), . . .) where v∗y(i) = J−1(−∆g(y − i + 1)).

Lemma 3. For y2 > y∗, consider a system A with y2 units of inventory after replenishment and

the reserve price vector r = (r(1), r(2), . . .). For y1 ∈ [y∗, y2), let Ã be another system with y1

units of inventory after replenishment and the reserve price vector r̃ = (r̃(1), r̃(2), . . .), where

r̃(i) =

 min{v∗y1(i), r(i)}, if 1 ≤ i ≤ y1

v∗y1(i), if i ≥ y1 + 1.

For a given realization of v, let z1(v) and z2(v) denote the ending inventories in systems Ã and

A, respectively. Then, the single-period expected profits satisfy R(y1, r̃) ≥ R(y2, r), and

z1(v) ≤ max{0, z2(v)} ≤ max{y∗, z2(v)} . (7)

Proof. Since r is a valid reserve price vector, r(i) is increasing in i. Since v∗y(i) is increasing in i for

any fixed y, it follows that the components of r̃ are increasing.

For any given v, we recall that κ(r̃,v) and κ(r,v) are the number of units sold in Ã and A,

respectively. We show (7) by considering two disjoint cases. In the first case, suppose κ(r,v) ≤ y1,

i.e., z1(v) ≥ 0. By the construction of r̃, we have r̃(i) ≤ r(i) for each i = 1, 2, . . . , y1, implying

κ(r̃,v) ≥ κ(r,v). Thus,

z1(v) = y1 − κ(r̃,v) ≤ y2 − κ(r,v) = z2(v)

Thus, we obtain (7) in this case. In the second case, we have κ(r,v) > y1. It follows v(y1) ≥

r(y1) ≥ r̃(y1). Therefore, we have κ(r̃,v) ≥ y1, and z1(v) ≤ 0. Now (7) follows from the fact

that y∗ ≥ 0 (Proposition 2).
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Next, we proceed to show R(y1, r̃) ≥ R(y2, r). We recall that κ(ry1 ,v) and κ(ry2 ,v) are the

number of units sold when the reserve price vectors are ry1 and ry2 , respectively. We claim that

for any v,

R(y2, r,v)−R(y1, r̃,v) ≤ R(y2, ry2 ,v)−R(y1, ry1 ,v) . (8)

The proof of this claim, given in appendix A.2, is not straightforward and is based on analyzing

multiple cases. Then, it follows that

R(y2, r)−R(y1, r̃) = Ev

[
R(y2, r,v)−R(y1, r̃,v)

]
≤ Ev

[
R(y2, ry2 ,v)−R(y1, ry1 ,v)

]
= L(y2)− L(y1),

where the last equality comes from Proposition 2. Since y2 > y1 ≥ y∗, we have L(y1) ≥ L(y2),

from which we obtain R(y1, r̃) ≥ R(y2, r).

Lemma 3 establishes that Condition 1 holds for the periodic auction sales channel model pre-

sented in this section. Thus we obtain the conclusion of Theorem 1 (a), in particular the optimality

of (s, S) policies for the infinite-horizon discounted-profit model.

Theorem 4. The optimal inventory replenishment policy for the infinite-horizon discounted-profit

model is of the (s, S) type under the following assumptions: (i) the class of auctions under consid-

eration is the class of modified second-price auctions with increasing reserve price vectors, and (ii)

the number of customers and the value vectors are independently and identically distributed across

time periods.

Unfortunately, we are unable to verify Condition 1∗ for this model, which prevents us from

establishing the finite-horizon analogue of Theorem 4.

4.3 Periodic Auction Sales Channel: Backorders Not Allowed

In section 4.2, the seller was allowed to sell more units than the inventory level and backlog excess

demand. In this section, we assume that the seller cannot sell any more units than the inventory

level after replenishment in each period.
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When back-orders are not allowed, the analysis of section 4.2 carries over by setting an arbitrarily

high cost for back-orders, i.e., g(z) = ∞ for z < 0. (It is useful to define ∆g(z) = −∞ for z ≤ 0.)

Thus, the seller does not want to backlog any demand, i.e., r(i) = ∞ for any i > y, where y is

the inventory level after replenishment. Thus, (s, S) replenishment policies are guaranteed to be

optimal when backorders are not allowed. Moreover, in this case, a slightly stronger version of

Lemma 3 holds. This result will be useful later in the analysis of multiple channels in sections 6.2

and 6.3.

Lemma 5. Under the assumptions and definitions in Lemma 3, if no back-orders are allowed, the

conclusions of Lemma 3 hold. Moreover, we have

z1(v) ≤ z2(v) .

Proof. Since back-orders are not allowed, the reserve price vector r̃ = (r̃(1), r̃(2), . . .) in Lemma 3

is given by

r̃(i) =

 min{v∗y1(i), r(i)}, if 1 ≤ i ≤ y1

∞, if i ≥ y1 + 1.

We consider two separate cases. If κ(r,v) ≤ y1, then the definition of r̃ implies that κ(r̃,v) ≥

κ(r,v). Thus, we have y1 − κ(r̃,v) ≤ y2 − κ(r,v), and the required inequality holds. Otherwise,

if κ(r,v) > y1, it follows κ(r̃,v) = y1. Since back-orders are not allowed, we must have

z1(v) = 0 ≤ z2(v).

In this section, we have so far used a non-decreasing reserve price vector. We now comment

on the modified second-price auction with a uniform reserve price. Let us suppose that the seller

is restricted to set the same reserve price for each of the y units, and does not sell more than y

units. Consider Lemma 5. Suppose that for some r, the reserve price vector r satisfies r(i) = r for

i ≤ y2, and r(i) = ∞ for i > y2. Let r̃ = min{J−1(−h), r}. Then, since v∗y1(i) = J−1(−h) for

each i ≤ y1, the construction of r̃ satisfies r̃(i) = r̃ for i ≤ y1, and r̃(i) = ∞ for i > y1. In other

words, if r represents a uniform reserve price, then r̃ also represents a uniform reserve price. Thus,

when the reserve price vector is restricted to a uniform price, Condition 1 still holds, as in Lemma 5.
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We remark that our analysis also holds for the modified first-price auction (pay-your-bid auction)

as in Van Ryzin and Vulcano (2004).

4.4 Optimal Auctions and Non-Concave Salvage Value Functions

In this section, we revisit the single-period auction discussed in Section 4.1, and explain why we

restrict our attention to the modified second-price auction as opposed to an optimal auction. The

reader may skip this section without affecting the understanding of the remainder of the paper.

When the salvage value function S(·) is concave, Vulcano et al. (2002) have shown that the

modified second price auction is indeed an optimal auction. However, with a fixed ordering cost

K, the profit-to-go function from the dynamic program is typically not concave. (Even in the

traditional inventory models where demands are exogenous, the profit-to-go function fails to be

concave.) Consequently, we are interested in the design of an optimal auction in the case where

S(·) is not necessarily concave.

Maskin and Riley (1989) have shown that the expected revenue of the seller is determined by

the allocation, a result known as the revenue equivalence theorem. Let q̇n(v) be the binary variable

indicating whether a unit is allocated to customer n given a value vector v. Recall J(v) = v−1/ρ(v)

is the virtual value function where ρ(v) = f(v)/(1 − F (v)) is the associated failure rate function.

Then, the expected seller’s revenue is given by

Ev

[∑
n

J(vn) · q̇n(v)

]
, (9)

provided that (i) the bidder with vn = 0 has an expected equilibrium profit of 0, and (ii) q̇n(v) ≤

q̇n(v′) whenever v and v′ are identical except vn < v′n.

Let qi(v) be the indicator that the customer with the i’th highest value is awarded a unit. Recall

that ∆S(x) = S(x + 1)− S(x) is the marginal salvage value. Given that y units are available for

auction, it can be shown using (9) that the seller’s expected profit is

Ev

[
y∑

i=1

{J(v(i))−∆S(y − i)} · qi(v)

]
plus an additive constant, S(y). Assume, as in Maskin and Riley (1989) and Vulcano et al. (2002),

that the virtual value function J is an increasing function. Therefore, if we sell k units to the bidders
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with the k highest values, the expected marginal profit from the i’th unit is J(v(i)) −∆S(y − i).

If S is zero as in Maskin and Riley (1989), or concave as in Vulcano et al. (2002), the expected

marginal profit is decreasing in i. Therefore, the modified second price auction with the reserve

price vector (J−1(∆S(y − 1)), J−1(∆S(y − 2)), . . .) is an optimal mechanism.

However, if S(·) is not concave, then J−1(∆S(y − i)) may not be increasing in i, and it is not

clear if there is any reserve price vector with which the modified second-price auction is an optimal

mechanism. This is because it is possible that the i’th unit will be sold even if the marginal profit

J(v(i))−∆S(y− i) is negative since the marginal profit from subsequent units will be substantially

high. In other words, a marginal loss from one unit may be offset by the marginal profits from

selling the subsequent units. To our knowledge, the optimal auction with a non-concave salvage

value function (or equivalently, a non-convex production cost function) is not known. This is an

interesting research question in its own right. Also, it appears that even if such an optimal auction

can be found, it would be a complex one. Consequently, we have restricted our attention to the

modified second-price auction of Vulcano et al. (2002).

5 Inventory Replenishment with Bid-Price Control

Consider a bid-price control model, also known as a name-your-own-price model. Suppose that in

each period, the seller observes the available inventory x, and has an option of raising it to any level

y ≥ x; a set up cost of K is incurred if y is strictly greater than x. In each period, there is at most

one customer arrival, and the arrival probability is q. (This could be treated as a discrete-time

approximation of a Poisson arrival model.) The customer submits a bid of v for a single unit, and

we assume that the customer bids are independently and identically distributed as F (·). The seller

decides whether or not to accept this bid. Since the bids are independent, it is optimal to accept

the bid if it exceeds a threshold that depends on the inventory level after ordering. An accepted

order is back-ordered if inventory is not available. If z is the inventory level at the end of the

period, a holding and back-order cost of g(z) is incurred, where g(z) = h · [z]+ + b · [z]− for some

nonnegative constants h and b. This model is motivated by the name-your-own-price practice of

priceline.com.
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We will now demonstrate that this model satisfies Condition 1∗.

Lemma 6. In the bid-price control model described in this section, Condition 1∗ is satisfied, with

the stronger property y1−D(d1, ε) ≤ y2−D(d2, ε) in lieu of (1). Thus, the conclusions of Theorem

1 (a) and (b) hold.

Proof. When the inventory level is y, the maximum expected single-period profit, excluding the

ordering cost, is given by

Q(y) = −g(y) + max
r

(E[v|v ≥ r] + ∆g(y)) · (1− F (r)) .

We claim that Q(·) is quasi-concave. To see this, let

φ1 = max
r

(E[v|v ≥ r]− b) · (1− F (r)) and

φ2 = max
r

(E[v|v ≥ r] + h) · (1− F (r)) .

Note that both φ1 and φ2 are independent of y. It follows that

Q(y) =


b · y + φ1 if y ≤ 0,

−h · y + φ2 if y ≥ 1.

Thus, Q is increasing for y ≤ 0, and decreasing for y ≥ 1. Thus, Q is quasi-concave on the set of

integers, proving the claim.

Furthermore, suppose y∗ ≤ y1 < y2. Consider two systems Ã and A, in which the inventory

levels after replenishment are y1 and y2, respectively. For the Ã system, let r̃ be the maximizer in

the expression of φ1 if y1 ≤ 0, and the maximizer in φ2 if y1 ≥ 1. Thus, Ã system achieves the

maximum expected single-period profit at an inventory level of y1, which exceeds the maximum

expected profit of A (by the quasi-concavity of Q). Furthermore, the ending inventory of the Ã

system is at most the ending inventory of the A-system since the demand is at most one.

We apply a similar argument when y∗ ≥ y1 > y2 to show that the ending inventory of Ã is

greater than or equal to the ending inventory in A, and Ã achieves a higher expected profit.

The above lemma can be extended to allow for Markov-modulated arrival probabilities.
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6 Inventory Replenishment and Allocation in Multiple Sales Chan-

nels

In this section, we study the optimal inventory policy when there are multiple sales channels. We

present a formal definition of a sales channel. A sales channel M = (D,Λ) consists of a demand

function, D, and a revenue function, Λ:

• D(d, ε) is stochastic demand as a function of the sales lever d, where ε is a random variable.

• Λ(d) is the expected single-period revenue when the sales lever is d.

We provide a few examples of sales channels. The first example is the dynamic pricing channel with

additive demand which is common in the literature. Here, the sales lever is the expected demand

d, which belongs to {dL, dL + 1, . . . dU}, where dL and dU are integers. Then,

D(d, ε) = d + ε and

Λ(d) = p(d) · d,

where ε is an integer random variable with E[ε] = 0, and p(d) is the price corresponding to d.

The second example is the auction model of section 4, where the sales lever is the reserve price

vector. Let V(ε) = (V (1, ε), V (2, ε), . . .) be the sorted value vector parameterized by a random

variable ε, and let r be a reserve price vector. Here,

D(r, ε) = κ(r,V(ε)) and

Λ(r) = E

D(r,ε)∑
i=1

J(V (i, ε))

 ,

where κ(·, ·) is the number of units sold as defined in (3).

In the next three subsections, we will present three different models of systems with multiple

sales channels. These models differ with respect to whether inventory is shared or pre-allocated

among channels, and whether the channels are operated simultaneously or sequentially.
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6.1 Posted Pricing and Auctioning: A Sequential Model

In this section, we consider a sequential dual sales channel system in which the first channel is

a posted price channel and the second is an auction channel. In each period, inventory is first

allocated to the posted price channel, and then the remaining inventory is sent to the auction

channel. One may interpret the posted price channel as a primary channel and the auction channel

as a secondary channel. This section is motivated by recent papers on online auctions such as

Budish and Takeyama (2001), Matthews (2003), Etzion et al. (2006), Van Ryzin and Vulcano

(2004), and Caldentey and Vulcano (2004).

In the posted pricing and auction dual channel model, the following sequence of events takes

place in each period:

(1) The available inventory level x at the beginning of a period is observed.

(2) A replenishment decision is made to raise the inventory to y ≥ x. A fixed ordering cost of

K is incurred if y > x.

(3) The sales lever d (“demand level”) for the posted price channel is chosen, where d ∈ D where

D = {dL, dL+1, . . . , dU} for some integers dL and dU . Then, demand D(d, εP ) = d + εP is

realized, where εP is an integer random variable with E[εP ] = 0. We require εP ≥ −dL with

probability one so that D(d, εP ) is always nonnegative. Let dP = D(d, εP ) be the realized

posted price channel demand. (We call this model the discrete additive demand model.)

(4) The reserve price vector s = (s(y−dP−1), s(y−dP−2), . . . , s(0), s(−1), . . .) for the auction

channel is chosen, where the components of s are nondecreasing. Thus, s(y − dP−1) is the

reserve price for the first unit sold through the auction channel, s(y−dP−2) is the reserve price

for the second unit, and so on. Then, the customer value vector v = (v(1), v(2), v(3), . . .) is

realized. The number of units sold through the auction equals

k(s,v, y, dP ) =
∞∑

i=dP +1

I[v(i− dP ) ≥ s(y − i)].

(5) Holding and back-order costs are charged based on the ending inventory level y−D(d, εP )−

k(s,v, y, dP ). We assume a linear holding cost and a convex back-order cost function, as in

section 4.
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The first dP units are sold through the posted price channel. For i > dP , s(y − i) acts as the

reserve price for the (i− dP )’th unit in the auction channel, i.e., the (i− dP )’th is sold if and only

if v(i− dP ) ≥ s(y − i). We assume a separate stream of customers for each sales channel. Within

the posted price channel, the demand distribution in each period depends only on the sales lever

d of that period. Similarly, in the auction channel, the number of bidders and their valuations are

independent and identically distributed over time.

The expected revenue from the posted price channel is p(d) · d, which we assume to be concave

in d. Let τ = y − dP be the inventory level between steps (3) and (4), i.e., immediately after

demand from the posted price channel is satisfied. Let RA(τ, s) be the expected single-period profit

from the auction channel, similar to R in section 4. The value of RA(τ, s) includes the holding

and back-order cost. Let LA(τ) be the maximum expected single-period profit from the auction

channel, i.e., LA(τ) = maxs RA(τ, s). This LA(·) corresponds to L(·) in section 4. The maximum

value of LA(·) is achieved when the reserve price vector s satisfies s(y − i) = v∗y(i), i.e.,

(s(y − 1), s(y − 2), . . .) = (v∗y(1), v∗y(2), . . .) = ry,

where we recall v∗y(i) = J−1(−∆g(y − i + 1)). It follows that the maximum total expected profit

from both channels in a single period is

Q(y) = max
d∈D

p(d) · d + E[LA(y − d− εP )] .

Proposition 7. Q(y) is a concave function.

Proof. The proof is based on constructing a continuous-space interpolation of the single period

profit function with respect to y and d. The details are available in Appendix A.3.

Theorem 8. The sequential list-price and auction channel model described in this section satisfies

Condition 1, and the conclusion of Theorem 1 (a) holds.

Proof. We have already shown the concavity of Q. Let τ∗ be the maximizer of E[LA(τ − εP )] over

τ , and let d∗ be the maximizer of p(d) · d over d. It is straightforward to observe that Q(·) is

maximized at y∗ = d∗ + τ∗.
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Suppose y1 and y2 satisfy y∗ ≤ y1 < y2. Consider two systems Ã and A, in which the inventory

levels after replenishment are y1 and y2, respectively. Let (d, s) be the pair of posted price sales

lever and reserve price vector used in A. We show how to choose (d̃, s̃) for the Ã system to satisfy

the second part of Condition 1.

Let τ2 = y2 − d. Set τ1 = min{y1 − d∗, τ2} and d̃ = y1 − τ1. We consider two disjoint cases. In

the first case, we assume τ1 = τ2. Then, we must have d∗ ≤ d̃ ≤ d, which implies p(d̃) · d̃ ≥ p(d) · d

by the concavity of revenue from the posted price channel. We set s̃ = s, and it follows that

E[RA(τ1 − εP , s̃)] = E[RA(τ2 − εP , s)].

Furthermore, the ending inventories of Ã and A systems are the same.

In the second case, we have τ1 = y1− d∗ < τ2, and d̃ = d∗. Thus, p(d̃) · d̃ = p(d∗) · d∗ ≥ p(d) · d.

Furthermore, we have τ∗ ≤ τ1 < τ2. Then, we set s̃ = (s̃(y1 − 1), s̃(y1 − 2), . . .) such that

s̃(y1 − i) =

 min { J−1(−∆g(y1 − i)), s(y1 − i + (τ2 − τ1)) } , if i ≤ y1;

J−1(−∆g(y1 − i)), if i > y1.

Following an argument similar to the proof of Lemma 3, it can be shown that (i) Ã has an expected

single-period profit no less than A, and (ii) for every realization of εP , the ending inventory of Ã is

either negative or at most the ending inventory of A.

Remark. Consider a special case of the model presented here, when dL = dU , that is, the sales

lever d in the posted price channel is pre-determined. Here, the first channel is a primary channel

representing a long-term supply contract at a fixed price, and the auction channel is a secondary

channel.

6.2 Multiple Sales Channels with Inventory Allocation

Recently, there has been some research on the simultaneous sales of a product through multiple

sales channels, e.g., Etzion et al. (2006); Caldentey and Vulcano (2004). These papers model

demand such that customers arrive in a single stream, observe all channels, and decide which

channel to purchase from. However, there are also situations where the customers may be aware of

only one sales channel, or prefer only one channel because of reasons such as geographic proximity.
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For example, an Amazon Marketplace customer may not be aware that the same product is sold

through another sales channel, or may not be comfortable purchasing through that channel. In this

section, we study such a multiple sales channel model with independent demands. Furthermore,

we assume that the existing aggregate inventory is pre-allocated among multiple sales channels

at the beginning of each period. Several firms sell the same product in several bricks-and-mortar

stores as well as one or more Internet channels, and while the replenishment of inventory might be

infrequent, inventory can be redistributed among the channels more frequently, if necessary. (The

case of inventory allocation after demand realization is discussed in the next section 6.3.)

We suppose that there are M sales channels indexed by m = 1, 2, . . . ,M . In each period, the

inventory level after possible replenishment is rationed among the M sales channels, and the seller

sets the sales lever for each channel. The demand distribution faced by each channel is determined

by its sales lever, and independent of one another. The following sequence of events takes place

in each period. After the available inventory level x at the beginning of a period is observed, the

manager raises the inventory to y ≥ x units, possibly incurring a fixed ordering cost of K if y > x.

Then, the inventory is allocated among sales channels. We denote by ym the amount of inventory

allocated to channel m; thus,
∑

m ym = y. For each channel m, a sales lever dm is chosen. The

expected single-period revenue from channel m is Λm(dm). Then, demand Dm(dm, εm) is realized

from for each channel, and a holding cost of H(zh) and back-order cost of B(zb) are incurred, where

zm = ym −Dm(dm, εm) and

zh =
∑
m

[zm]+ and zb =
∑
m

[zm]− .

We assume that both the holding cost and the back-order cost are linear, i.e., H(zh) = h · zh and

B(zh) = b · zb for some nonnegative constants h and b. In the next period, inventory, if any, should

first be allocated towards back-orders. The net inventory of the entire system at the beginning of

the next period is z = zh − zb. Note that inventory can be shared among channels before demand

is realized, but not after it is realized.

Let g(z) = h · [z]+ + b · [z]−. Then, H(zh) + B(zb) =
∑

m g(zm). If we charge the holding and

back-order cost g(zm) to sales channel m, the expected profit of sales channel m is given by

πm(ym,dm) = Λm(dm)− E [g(ym −Dm(dm, εm))] . (10)
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The seller’s expected profit is the sum of expected profits in all sales channels. Let d = (d1,d2, . . . ,dM ).

For fixed y and d , the seller’s maximum system-wide expected profit is

π(y,d) = max {
∑
m

πm(ym,dm) |
∑
m

ym = y }.

We proceed by assuming that the distribution Dm(dm, εm) is discrete, and its support is a set of

consecutive integers for each m.

To state our results in the remainder of section 6, it is useful to formalize the following notions.

Condition 2. Condition 1 is satisfied where (1) is replaced by y1 −D(d1, ε) ≤ y2 −D(d2, ε).

Condition 2∗. Condition 1∗ is satisfied where (1) is replaced by y1 −D(d1, ε) ≤ y2 −D(d2, ε).

It is easy to observe that Condition 2∗ implies Condition 1∗ and Condition 2, each of which

implies Condition 1. We remark that the periodic auction channel without back orders (section 4.3)

and the bid-price control model (section 5) satisfy Condition 2 and 2∗, respectively; see Lemmas 5

and 6.

Theorem 9. Consider the multiple sales channel model with inventory allocation. Suppose that

the support of demand in each channel is a set of consecutive integers. If each channel satisfies

Condition 2, then the multiple sales channel model also satisfies Condition 2, implying Theorem

1 (a). If each channel satisfies Condition 2∗, then the multiple sales channel model also satisfies

Condition 2∗, implying Theorem 1 (a) and (b).

Proof. The complete proof can be found in Appendix A.4. We sketch the main ideas here. Suppose

y∗ ≤ y1 < y2. For any choice of inventory allocation for the y2-system, we choose the allocation of

the y1 system such that the inventory level for each channel is either the same as the corresponding

channel in the y2 system, or lies in the interval bounded below by the optimal inventory level for

the channel and above by the inventory level allocated by the y2-system. Choose the sales lever

for each channel according Condition 2 or Condition 2∗. Condition 2 implies Condition 1, implying

the conclusion of Theorem 1 (a); Condition 2∗ implies Condition 1∗, implying the conclusion of

Theorem 1 (a) and (b). Then, the required results can be verified.
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We remark that these sales channels need not be identical. For example, one sales channel may

be a channel with dynamically posted prices such as the discrete additive demand model. Another

sales channel may be the periodic auction channel described in section 4.3.

6.3 Multiple Posted Price Channels with Inventory Sharing

In the multiple channel model of section 6.2, the inventory at the beginning of each period is

allocated among sales channels before demand is realized, and the underage cost is incurred if

demand in a channel exceeds inventory allocated to that channel. In this section, we consider a

model in which inventory is shared among channels, and the underage cost is incurred only if the

total demand in all channels exceeds the inventory level. We focus on posted price channels.

Suppose there are M sales channels, each of which is a list-pricing model with additive discrete

demand, i.e., demand in channel m is given by Dm(dm, εm) = dm + εm. The expected single-period

revenue from channel m is Λm(dm) as a function of the sales lever dm, which is assumed to be a

concave function of dm. The sequence of events is similar to section 6.2 with a few differences.

First, the total inventory level y is not allocated among sales channels. Second, the holding and

back-order cost is given by g(z) = h · [z]+ + b · [z]− where z = y −
∑

m Dm(dm, εm). We refer to

this model as the multiple posted price channel model with inventory sharing.

Let d = (d1, d2, . . . , dM ). The expected profit in a single period, as a function of the after-

replenishment inventory level y, is given by

π(y,d) =
∑
m

Λm(dm)− E[g(y −
∑
m

Dm(dm, εm))]

=
∑
m

Λm(dm)− h · E[y −
∑
m

dm −
∑
m

εm]+ − b · E[y −
∑
m

dm −
∑
m

εm]− ,

where the expectation is taken over ε = (ε1, ε2, . . . , εM ). Thus, it is straightforward to show that π

is jointly concave in (y,d). It follows maxd π(y,d) is concave in y. Let y∗ be its maximizer.

Theorem 10. The multiple posted price channel model with inventory sharing satisfies Condition

1∗, and the conclusions of Theorem 1 (a) and (b) hold.

Proof. See Appendix A.5.
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7 Dynamic Pricing with Limited Ordering Opportunities

Suppose now that inventory can be replenished in a posted price channel every T ≥ 2 periods. For

example, inventory replenishment is allowed at the beginning of every week, whereas prices can be

changed every day. Alternatively, we assume that inventory is replenished in every period, and a

single period is divided into T sub-periods, in which prices are set and sales take place. We assume

additive demands here.

The following sequence of events takes place in each period, where each period is defined by an

ordering opportunity:

(1) The available inventory level x at the beginning of a period is observed.

(2) A replenishment decision is made to raise the inventory to y ≥ x. A fixed ordering cost of

K is incurred if y > x.

(3) For each sub-period t = 1, 2, . . . , T , let yt be the inventory level at the beginning of sub-period

t. A sales lever dt is chosen, and demand is a random variable given by Dt(dt, εt) = dt+εt. An

appropriate revenue is realized, and the holding and back-order cost is incurred. We assume

full backlogging, and α ∈ [0, 1] is the discount factor per sub-period.

We suppose that the expected single sub-period profit πt(yt, dt), the difference between the

revenue and the holding and back-order cost, is jointly concave. In the next lemma, we verify

that Condition 1 holds for each period. (Note that we show this result for each period, not each

sub-period.)

Lemma 11. In the posted price model with limited ordering opportunities described in this section,

Condition 1 is satisfied, and the conclusion of Theorem 1 (a) holds.

Proof. See Appendix A.6.
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8 Conclusions and Extensions

Inventory managers have long adopted (s, S) policies for inventory replenishment when there is

a non-trivial cost or effort associated with placing an order. Inventory researchers have been

interested in demonstrating that this class of policies is optimal under certain conditions since the

seminal work of Scarf (1960). For about five decades, research in this area was limited to models in

which demands cannot be influenced by managerial decisions. In the last few years, starting with

Chen and Simchi-Levi (2004a,b), however, progress has been made in establishing the optimality

of (s, S) policies in models where demands are influenced by price, which is a control variable. In

this paper, we have expanded the scope of sales environments in which (s, S) policies can be shown

to be optimal by studying two increasingly popular settings: (a) auctions conducted on a periodic

basis and (b) simultaneous sales through multiple channels, for example, physical retail outlets and

online retail sites or separate channels for different categories of customers. In addition, we have

shown this result for name-your-own-price channels and channels in which prices can be changed

more frequently than inventory can be replenished.

We now highlight the modeling assumptions that we needed to prove our main results and

also discuss their impact. In our study of periodically conducted auctions, we assumed that a

new pool of customers becomes available in each period; in particular, we assume that customers

who have participated in an auction unsuccessfully in one period do not participate in subsequent

auctions. Similarly, when studying multiple sales channels operating simultaneously, we assumed

that each channel has a dedicated customer pool, i.e., customers cannot choose between channels.

While this assumption holds in cases where the different channels are made exclusively available

to different customer segments, for example household customers and business customers, there

are many situations where it does not hold; for example, price-sensitive customers and bargain

hunters choose between physical retail outlets and retail websites. In the presence of such customer

behavior, the combination of sales levers chosen in these channels will influence the distribution

of demand among these channels. It is an open question whether (s, S) policies will continue to

be optimal in such an environment. While the primary focus of this paper is the replenishment

strategy, we believe that there is a value in understanding how bidding data in the auction case or

sales and price data in the multiple channels case can be used to update pricing strategies. Finally,
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it is important to develop computational approaches to determine the optimal (s, S) parameters

and pricing strategies for the models studied here.
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A Appendix

A.1 Concavity of L(·) in Proposition 2

In this section, we prove that the maximum single-period profit L(y) is concave in y. This result is

one of the components of Proposition 2.
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We note y ∈ Z. By part (a) of Proposition 2 and the definition of R(y, r), it follows that

L(y) = R(y, ry) = Ev[R(y, ry,v)]. (11)

Now, we fix the the vector v. From (4),

R(y, ry,v) = max
k∈Z+

{J(v(1)) + J(v(2)) + . . . + J(v(k))− g(y − k) } .

For each nonnegative integer k, we let

J̄(k,v) =

 0, if k = 0;

J(v(1)) + J(v(2)) + · · ·+ J(v(k)), if k ∈ {1, 2, . . .}.

Observe that the marginal difference J̄(k + 1,v) and J̄(k,v) is J(v(k)); the sequence {J(v(k))} is

decreasing because J(·) is an increasing function and {v(k)} is a decreasing sequence. Therefore,

J̄(k,v) is concave in k for every v.

We extend the definition of J̄(k,v) to <+ as follows: for k ∈ <+, let

J̄(k,v) = (dke − k) · J̄(bkc ,v) + (k − bkc) · J̄(dke ,v) .

That is, for any fixed v, J̄(k,v) is a piecewise linear function of k with slope changes only at

integers. Let g̃(·) be a piecewise-linear extension of g(·) to <. We also define, for y ∈ < and

k ∈ <+,

ϕ(y, k,v) = J̄(k,v)− g̃(y − k) . (12)

Thus, for each integer y and value vector v, we have

R(y, ry,v) = max
k∈Z+

ϕ(y, k,v). (13)

We claim that for any fixed v, ϕ(y, k,v) is jointly concave in (y, k) in < × <+. We know that

J̄(·,v) is concave, and g̃(·) is convex. Since y−k is a linear function of (y, k), equation (12) implies

ϕ(y, k,v) is jointly concave in (y, k).

Thus, for any fixed v and integer y, ϕ(y, k,v) is concave in k ∈ <+. Since ϕ(y, k,v) is piecewise

linear in k with slope changes only at integer points, there exists an integer value of k that maximizes

ϕ(y, k,v). Thus,

max
k∈Z+

ϕ(y, k,v) = max
k∈<+

ϕ(y, k,v) . (14)
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Since ϕ(y, k,v) is a jointly concave function in (y, k) ∈ < × <+, maxk∈<+ ϕ(y, k,v) is concave

with respect to y in <. Thus, maxk∈<+ ϕ(y, k,v) is also concave, in the discrete sense, with respect

to y in Z. It follows from (13) and (14) that R(y, ry,v) is concave with respect to y in Z. From

(11), we conclude L(y) is concave in y.

A.2 Proof of (8) in Lemma 3

In this section, we provide the proof of claim (8). We fix any v, and show

R(y2, r,v)−R(y1, r̃,v) ≤ R(y2, ry2 ,v)−R(y1, ry1 ,v) .

From the definition of r̃, we get r̃(i) ≤ v∗y1(i) for i ≤ y1, and r̃(i) = v∗y1(i) for i > y1. Thus,

κ(ry1 ,v) ≤ κ(r̃,v). We consider two disjoint cases.

Case A: κ(ry1 ,v) = κ(r̃,v).

First, we compare R(y1, ry1 ,v) and R(y1, r̃,v). Now, I[v(i) ≥ v∗y1(i)] = I[v(i) ≥ r̃(i)] for each

i, by the definition of κ. Then,

[J(v(i)) + ∆g(y1 − i + 1)] · I[v(i) ≥ v∗y1(i)]

= [J(v(i)) + ∆g(y1 − i + 1)] · I[v(i) ≥ r̃(i)],

implying R(y1, ry1 ,v) = R(y1, r̃,v) by (4). Also, we compare R(y2, ry2 ,v) and R(y2, r,v). Observe

from equation (4) that ry2 maximizes R(y2, r,v) for each v. Therefore, we obtain R(y2, ry2 ,v) ≥ R(y2, r,v).

Thus, combining these two results, we obtain claim (8).

Case B: κ(ry1 ,v) < κ(r̃,v).

Since r̃(i) = v∗y1(i) holds for i > y1, by the definition of r̃, it follows that

κ(ry1 ,v) < κ(r̃,v) ≤ y1.

From equation (4), we observe that if the following pair of inequalities holds for each positive

integer i, then (8) holds.

[
J(v(i)) + ∆g(y2 − i + 1)

]
· I[v(i) ≥ v∗y2(i)] ≥

[
J(v(i)) + ∆g(y1 − i + 1)

]
· I[v(i) ≥ v∗y1(i)] (15)
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and

[
J(v(i)) + ∆g(y1 − i + 1)

]
· I[v(i) ≥ r̃(i)] ≥

[
J(v(i)) + ∆g(y2 − i + 1)

]
· I[v(i) ≥ r(i)]. (16)

We first show (15). For each i,

[J(v(i)) + ∆g(y2 − i + 1)] · I[v(i) ≥ v∗y2(i)]

= [J(v(i)) + ∆g(y2 − i + 1)]+

≥ [J(v(i)) + ∆g(y1 − i + 1)]+

= [J(v(i)) + ∆g(y1 − i + 1)] · I[v(i) ≥ v∗y1(i)].

The equalities above follow from the definition of v∗y2 and v∗y1 . The inequality follows from the

convexity of g.

Now, we show (16) by considering two subcases.

• Subcase B1: i ∈ {1, 2, . . . , y1}.

Since i ≤ y1 and ∆g(z) = h for all z > 0, observe from the definition of v∗y1 that v∗y1(i) =

J−1(−h) holds. In this case, r̃(i) is either r(i) or v∗y1(i).

If r̃(i) = v∗y1(i), then

[J(v(i)) + ∆g(y1 − i + 1)] · I[v(i) ≥ r̃(i)]

= [J(v(i)) + h] · I[v(i) ≥ v∗y1(i)] (since r̃(i) = v∗y1(i) and y1 − i + 1 > 0)

= [J(v(i)) + h]+ (since v∗y1(i) = J−1(−h))

≥ [J(v(i)) + h] · I[v(i) ≥ r(i)] (by a property of [·]+)

=
[
J(v(i)) + ∆g(y2 − i + 1)

]
· I[v(i) ≥ r(i)] (since y2 − i + 1 > 0) .

Otherwise, r̃(i) = r(i) holds. Then,

[J(v(i)) + ∆g(y1 − i + 1)] · I[v(i) ≥ r̃(i)] =
[
J(v(i)) + ∆g(y2 − i + 1)

]
· I[v(i) ≥ r(i)] ,

since ∆g(y1 − i + 1) = h = ∆g(y2 − i + 1).
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• Subcase B2: i > y1.

Since κ(r̃,v) ≤ y1 holds in Case B, it follows i > κ(r̃,v). Thus, I[v(i) ≥ r̃(i)] = 0, implying

[J(v(i)) + ∆g(y1 − i + 1)] · I[v(i) ≥ r̃(i)] = 0 .

Furthermore, since i > y1 > κ(ry1 ,v), we get i ≥ κ(ry1 ,v) + 1. Thus, v(i) ≤ v(κ(ry1 ,v) + 1).

J(v(i)) + ∆g(y2 − i + 1) ≤ J(v(i)) + h

≤ J(v(κ(ry1 ,v) + 1)) + h

≤ 0.

The first inequality follows from the convexity of g whose derivative is bounded above by h.

The second inequality follows from the monotonicity of J . For the last inequality, observe

that the virtual value from the (κ(ry1 ,v) + 1)’th “highest” customer is smaller than −h, the

holding cost savings from selling that unit.

Thus, we complete the proof of (16) for both subcases B1 and B2. This completes the proof of

(8) in Lemma 3.

A.3 Proof of Proposition 7

Let D̃ be the compact interval [dL, dU ]. Thus, D is the set of integers in D̃. For any fixed integer

y and d ∈ D, define π(y, d) = π1(d) + π2(y − d), where

π1(d) = p(d) · d , and

π2(r) = E[LA(r − εP )] .

Now, for any integer y and real d ∈ D̃, define

π̃1(d) = (1− λ) · π̃1(bdc) + λ · π̃1(dde)

where λ = d− bdc. Similarly, for any real r, define

π̃2(r) = (1− λ) · π̃2(brc) + λ · π̃2(dre)
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where λ = r − brc. For any real y and d ∈ D̃, let

π̃(y, d) = π̃1(d) + π̃2(y − d) .

Since the expected revenue from the posted price channel, π1(d) = p(d) · d, is assumed to be

concave with respect to d ∈ D, its linear interpolation π̃1(d) is also concave with respect to d ∈ D̃.

The concavity of LA(t), the maximum expected single-period profit from the auction channel, is

proved in Proposition 2 of section 4. Thus, π̃(y, d) is jointly concave with respect to y and d. Thus,

maxd∈D̃ π̃(y, d) is concave with respect to y.

Moreover, from the construction of π̃, if y is an integer, then π̃(y, d) is a piece-wise linear

interpolation of π(y, d) with respect to d. Thus, for fixed integer y, the single-dimensional function

π̃(y, ·) has at least one integer maximizer, i.e.,

Q(y) = max
d∈D

π(y, d) = max
d∈D̃

π̃(y, d) .

The conclusions of the last two paragraphs together imply that Q(y) is concave with respect to

y.

A.4 Proof of Theorem 9

We need the following lemma about the optimal allocation problem which is useful in studying the

multiple channel problem.

Lemma 12. For each i = 1, 2, . . . , I, let fi(·) be a quasi-concave function defined on a set of

consecutive integers. Let s∗i be a maximizer of fi(·). Then, f(s) = max{
∑

i fi(si) |
∑

i si = s} is

quasi-concave, and achieves its maximum at
∑

i s
∗
i .

Proof. First, we provide the proof assuming that the domain of fi is the set of all integers. Since s∗i

is the maximizer of fi(·), we have fi(si) ≤ fi(si + 1) for si < s∗i , and fi(si) ≥ fi(si + 1) for si ≥ s∗i .

Let s∗ =
∑

i s
∗
i .

Suppose s < s∗. Then, we claim that there exist s1, s2, . . . , sI such that s =
∑

i si and f(s) =∑
i fi(si) satisfying si ≤ s∗i for each i. To see this claim, suppose that there exists j such that
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sj > s∗j and sk < s∗k. Then, by decreasing sj by 1 and increasing sk by 1, we weakly increase the

objective function. By repeating this process, we prove the claim.

Furthermore, there exists i′ such that si′ < s∗i′ . Then,

f(s) =
∑

i

fi(si) = fi′(si′) +
∑
i6=i′

fi(si) ≤ fi′(si′ + 1) +
∑
i6=i′

fi(si) ≤ f(s + 1).

Similarly, it can be argued that s > s∗ implies f(s) ≤ f(s− 1).

If the domain of fi is a subset of all integers, extend fi by defining fi(si) = −∞ for each si

outside the domain.

Proof of Theorem 9. Let Qm(ym) = maxdm πm(ym,dm), and Q(y) = maxd π(y,d). Since each

sales channel m satisfies Condition 2, Qm(·) is quasi-concave. Let y∗m be a maximizer of Qm. Then,

by Lemma 12, Q(·) is also quasi-concave, and achieves its maximum at y∗ =
∑

m y∗m.

Consider two systems Ã and A, in which the inventory levels after replenishment are y1 and y2,

respectively. Assume y∗ ≤ y1 < y2. Suppose that in the A system, the seller chooses an allocation

of y = (y1, . . . , yM ) where y2 =
∑

m ym, and the sales lever vector of d = (d1, . . . ,dM ).

For the Ã system, we specify the allocation vector ỹ = (ỹ1, . . . , ỹM ) and the sales lever vector

d̃ = (d̃1, . . . , d̃M ) such that for each channel m, the pair of ỹm and d̃m satisfy part (b) of

Condition 2.

From
∑

m y∗m = y∗ ≤ y1 < y2 =
∑

m ym, there exists an allocation vector (ỹ1, . . . , ỹM ) satisfying

y1 =
∑

m ỹm, and

ỹm = ym, if ym < y∗m

ỹm ∈ {y∗m, y∗m + 1, . . . , ym}, if ym ≥ y∗m.

We now construct the sales levers for the Ã system. If ỹm = ym, set d̃m = dm, and we get, for

every εm,

ỹm −Dm(d̃m, εm) = ym −Dm(dm, εm), and

πm(ỹm, d̃m) = πm(ym,dm).
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Otherwise, we have y∗m ≤ ỹm < ym. By Condition 2, there exists d̃m such that, for any εm, we have

ỹm −Dm(d̃m, εm) ≤ ym −Dm(dm, εm), and

πm(ỹm, d̃m) ≥ πm(ym,dm)

Therefore, for every ε = (ε1, . . . , εM ), it follows

y1 −
∑
m

Dm(d̃m, εm) ≤ y2 −
∑
m

Dm(dm, εm), and

π(y1, d̃) =
∑
m

πm(ỹm, d̃m) ≥
∑
m

πm(ym,dm) = π(y2,d),

satisfying part (b) of Condition 2 for the multiple sales channel model.

Now consider the case y∗ ≥ y1 > y2 under Condition 2∗. Here, set ỹm = ym if ym > y∗m;

otherwise, let ym ≤ ỹm ≤ y∗. A similar analysis can be applied.

A.5 Proof of Theorem 10

We first prove the result assuming that both y and dm’s are real-valued. Let (y∗,d∗) = arg maxπ(y,d).

From the additivity of the demand function, d∗m = arg max Λm(dm) where each Λm is concave, and

y∗ is a minimizer of g(y|d∗) where

g(y|d) = h · E[y −
∑
m

dm −
∑
m

εm]+ + b · E[y −
∑
m

dm −
∑
m

εm]− .

Note that g(y|d) depends on y and d only through y −
∑

m dm in a convex manner.

The first part of Condition 1∗ follows from the concavity of maxd π(y,d) in y. We will now

prove part (b). Consider any y1 and y2 satisfying y∗ ≤ y1 < y2, and any d2 = (d2
1, . . . , d

2
M ). Recall

d∗ = arg maxd π(y∗,d) and let d◦ = arg maxd{π(y2,d) |
∑

m dm =
∑

m d2
m}. By an application of

the proof of Lemma 12, we can assume, without loss of generality, that we have either (i) d◦m ≤ d∗m

for all m, or (ii) d◦m ≥ d∗m for all m. If (i) occurs, set d1
m = d∗m for each m. Thus, d∗m = d1

m ≥ d◦m

for each m, and y∗ −
∑

m d∗m ≤ y1 −
∑

m d1
m ≤ y2 −

∑
m d◦m. Otherwise, in case of (ii), define

λ = (y1 − y∗)/(y2 − y∗). Then, set d1 = (d1
1, d

1
2, . . . , d

1
M ) such that∑

m

d1
m = (1− λ)

∑
m

d∗m + λ
∑
m

d◦m

d1
m ∈ {d∗m, d◦m} for each m 6= m′, and

d1
m′ ∈ [d∗m′ , d◦m′ ] ,
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for some m′ ∈ {1, . . . ,M}. It follows that y1−
∑

m d1
m is a convex combination of y∗−

∑
m d∗m and

y2 −
∑

m d◦m. Therefore, in both cases, it is straightforward to show

π(y1,d1) ≥ π(y2,d◦) ≥ π(y2,d2) , and

y1 −
∑
m

Dm(d1
m, εm) ≤ max

{
y2 −

∑
m

Dm(d◦m, εm), y∗ −
∑
m

Dm(d∗m, εm)

}
,

where d1 = (d1
1, . . . , d

1
M ). Since

∑
m Dm(d◦m, εm) =

∑
m Dm(d2

m, εm), part (b) of Condition 1∗ is

satisfied.

For part (c), apply a similar analysis to the case of y∗ ≥ y1 > y2. If y2 −
∑

m Dm(d2
m, εm) ≤

y∗−
∑

m Dm(d∗m, εm), then choose d1 similar to the case (ii) above; otherwise, choose d1 such that

y2 −
∑

m Dm(d2
m, εm) = y1 −

∑
m Dm(d1

m, εm), and d∗m ≥ d1
m ≥ d2

m for each channel m.

We remark that if y and dm’s are integer-valued, then probabilistic rounding results in the

required conclusions.

A.6 Proof of Lemma 11

For each t, we define Lt(·) recursively as following:

Lt(yt) =

 maxdt πt(yt, dt) + α · E[Lt+1(yt − dt − εt)], if t < T .

maxdt πt(yT , dT ), if t = T .

By the convexity of π, Lt is convex for each t. Let y∗ be the maximizer of L1.

Suppose y∗ ≤ y1 ≤ y2. For a fixed sequence of ε1, ε2, . . . , εT , let A∗ be the optimal system

starting with the inventory level y∗. Let d∗1, d
∗
2, . . . , d

∗
T be the optimal sequence of decisions in A∗.

(Clearly, d∗t depends on ε1, . . . , εt−1, but we suppress that dependence to simplify notation.) Let

y∗t be the beginning of sub-period inventory level in A∗.

Consider two systems Ã and A, and suppose that the inventory levels at the beginning of sub-

period t = 1 are y1 and y2, respectively. Suppose that for fixed ε1, ε2, . . . , εT , the decisions of A are

given by d2
1, d

2
2, . . . , d

2
T . Let λ ∈ [0, 1] such that y1 = λy∗+(1−λ)y2. For each t, choose the decision

d1
t of the Ã system such that d1

t = λd∗t + (1− λ)d2
t . Let z∗t , z1

t and z2
t be the ending inventories in
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sub-period t in systems A∗, Ã and A, respectively. Thus, if y1
t = λy∗t + (1− λ)y2

t , then

z1
t = y1

t − (d1
t + εt)

= [λy∗t + (1− λ)y2
t ]− [λd∗t + (1− λ)d2

t + εt]

= λ[y∗t − d∗t − εt] + (1− λ)[y2
t − d2

t − εt]

= λz∗t + (1− λ)z2
t .

By induction, we show the above result for all t. Since z∗T ≤ y∗, it follows z1
T ≤ max{z2

T , y∗}.

Furthermore, the expected single sub-period profit in t satisfies

πt(y1
t , d

1
t ) ≥ λ · πt(y∗t , d

∗
t ) + (1− λ) · πt(y2

t , d
2
t ),

where expectation is taken over εt. Thus, the total expected profit in all T sub-periods satisfies

T∑
t=1

αt−1πt(y1
t , d

1
t ) ≥ λ ·

T∑
t=1

αt−1πt(y∗t , d
∗
t ) + (1− λ) ·

T∑
t=1

αt−1πt(y2
t , d

2
t ).

Therefore, the total expected profit in the Ã system (left-hand side) is at least the total expected

profit in the A system (last term on the right-hand side).
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