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Abstract

The impact of rare risks such as natural disasters, terrorism and epidemics are an increasing

force in society. Unlike the case of common risks, our inexperience in rare risks creates di�ering

views on the level of risk and the optimal form of risk management. Nonetheless, in both cases,

the transfer of the �nancial risk can play a role in risk management. This paper illustrates how

risk class impacts the price of risk transfer. In each risk class, two kinds of risk transfer assets

are considered: an aggregate transfer (a share in an insurance company) and a disaggregated

transfer speci�c to a particular risk (a catastrophe bond). Learning is harnessed to underline

the di�erences between the risk classes and examine the change in prices over time. Results

demonstrate persistent pricing bene�ts through disaggregation in rare risks. In contrast, these

bene�ts are not maintained in common risks.
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1 Introduction

Rare events excite the imagination because of their inherent uncertainty and irregu-

larity. The magnitude of impact and the infrequency of event tends to misguide our

sensibilities and lead us to a wide dispersion of beliefs. For instance, consider a national

lottery. Although there is an objective probability of winning, it is reasonable that an

average ticket purchaser would provide a probability of winning that di�ers from the

objective probability. Unlike a common event such as the toss of a coin, individuals

have a vast range of beliefs over rare events.

One particularly devastating rare event is a natural disaster. Natural disasters occur

infrequently with large impacts on economies and communities (Cavallo and Noy 2011).

To combat these impacts, communities, individuals and businesses seek to transfer

their natural disaster risk through insurance and capital markets. Investors act as

counterparties, trading risk for returns. However, in rare risks the returns are di�cult

to determine and quantify.1 Further, it is realistic that investors have di�ering views

on the probability of a natural disaster. 'In practice, the very concept of uncertainty

implies that reasonable men may di�er in their forecasts' (Miller 1977).

This paper aims to connect the attributes of rare risk classes through learning and

dispersion of beliefs to asset markets. In current asset markets, natural disaster risk

is a rare risk class that is traded in two ways. Firstly, an investor can purchase a

catastrophe bond by providing principal to a bond issuer in return for coupons. In

the event of a natural disaster the investor forfeits the principal and it is provided to

the issuer.2 If no event occurs during the bond duration the catastrophe bond lapses

and the principal is returned to the investor. Catastrophe bonds are often multi-year

1For example, the ratings of catastrophe bonds face a di�erent methodology to other bonds due to
their inherent uncertainty.

2Remaining coupons may also be forfeited.
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bonds of up to �ve years in length. In evaluating the investment value, an investor

is calculating the likelihood of a natural disaster during that period. In this paper,

catastrophe bonds are referred to as disaggregated since the likelihood refers to a single

event.

Secondly, an investor seeking to capitalise on natural disaster risk transfer may invest in

a reinsurance company that deals in natural disaster risk transfer. Since the catastrophe

bond market is still very small compared to the reinsurance market, there are many

risks that are not traded individually. Instead these risks are transferred via reinsurance.

Indirectly, the investor is absorbing a suite of natural disaster risks through purchasing

a share in a reinsurance company. The investor's return depends upon a group of

natural disaster risks rather than a single event. In this paper, this risk transfer asset

is referred to as the aggregated asset. The aggregated asset re�ects the transfer of a

group of risks rather than a single risk.3

This paper compares the pricing dynamics of aggregated and disaggregated risks across

risk classes. By utilising the rare risk as a base, the paper explores the impact of learn-

ing through the arrival time of information. The paper illustrates that distinguishing

between risk classes is important in market price determination. Further, in the time

scale of asset markets the disaggregation bene�ts in rare risk classes are maintained

whereas the disaggregation bene�ts in common risk classes are negligible. This pro-

vides important implications to the design of risk transfer assets in rare risk classes.

As the transfer of rare risks becomes more prevalent, greater attention is needed to

understand the di�erent attributes of rare risk classes. This paper takes a preliminary

step in elucidating the price impacts due to di�erences in learning for rare risk classes.

Section 2 of the paper provides a review of literature in the context of this paper. Sec-

3An alternative framing is that the aggregated asset constrains each investor to purchase the same
amount of each risk.
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tion 3 describes and explores the theoretical framework used in the analysis. For ease

of explanation the learning and the pricing model are initially considered separately in

Section 3. Following the explanation of each model independently, the models are inte-

grated to provide the results of Section 4. Section 5 provides some numerical examples.

Section 6 provides further applications of the results and Section 7 concludes.

2 Context

This paper lies at the intersection of several diverse �elds of literature. The most

similar literature relates to asset pricing with belief dispersion. This literature uses

the competitive equilibrium of individuals to determine asset pricing. Varian (1985)

considers the impact of subjective probabilities on asset prices in an Arrow-Debreu

equilibrium and determines that if 'risk aversion declines less rapidly than ... in the

case of logarithmic utility, an increase in the diversity of opinion will be associated

with decreased asset prices'. Varian considers a static model in which individuals'

subjective probabilities are unchanging. Morris (1996) illustrates that heterogenous

priors can result in a persistent speculative premium in asset prices when there is

learning. Unlike Varian (1985), Morris concentrates on risk neutral traders where assets

are traded inde�nitely. Whilst Lintner (1969) illustrates the analytical pricing solution

for exponential utility maximising individuals with heterogenous normally distributed

beliefs.4 This paper follows in this vein of the literature by modelling risk neutral

investors with heterogenous priors. Unlike Morris, the assets in this paper are modelled

as �xed term contingent bonds without resale. Thus, within this model there is no

speculative premium.

A second cluster of relevant papers in the �nancial literature focus on the pricing of

4Exponential utility implies constant absolute risk aversion.
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assets under rare disasters and learning. Rare disasters are comparable to rare risks in

this paper. However, rare disasters in the �nancial literature most commonly refers to

economic and political disasters.5 The �ow on e�ects of these disasters are both analysed

in the volume and pricing data and in learning behaviour (Cogley and Sargent (2008)).

These papers tend to incorporate rare disasters through parameter uncertainty in the

dividend pricing process and have the aim of explaining asset pricing inconsistencies

(Barro 2006, Gabaix 2012).

Within the �nancial literature, a common method of modelling rare disasters is via a

Poisson process. Koulovatianosi and Wieland (2011) introduce rare downward jumps

through a Poisson process representing rare disasters and �nd that investors do not

reach rational expectations about the average likelihood of rare disasters even after

in�nite time. Liu et al. (2003) also use a Poisson process to model rare risks to determine

an optimal portfolio strategy. This paper follows in this tradition and models rare risks

by a Poisson process.

In contrast to the rare disaster literature in �nance, this paper focuses directly on

the likelihood of rare disasters as the determinant of risk transfer asset prices. The

uncertainty associated with the rare risk directly impacts the value of the risk transfer

asset rather than having a shifting e�ect on the mean of the process. Additionally,

this paper di�ers from the rare disaster literature since the number of disasters in each

period is uncertain but losses are �xed. Many of the papers in the rare disaster literature

focus on binary states such as a high or low state and the uncertainty lies in extent of

loss in the disaster state. Although, methodologically distinct the outcome of the two

frameworks is an equivalent compound random variable of disaster losses.

The third area of literature provides support for the subjectivity and heterogenity of

beliefs in rare risks. Much of this literature is survey and experimental analysis from

5For example World Wars, the Depression, stock market crashes.
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psychological literature. This literature shows the existence of heterogenous beliefs

(Tversky and Kahneman 1974, Kahneman and Tversky 1972). In particular rare risks

have heterogeneity due to personal experiences and can lead to overestimation or un-

derestimation of risks (Hertwig et al. 2004). Kunreuther and Pauly (2004) suggest that

individuals downward bias the probability of rare events because they occur so infre-

quently as not to warrant any deep thought. Whilst Viscusi and Zeckhauser (2006)

provide survey evidence that individuals underestimate the risks of natural disasters

even after they report having been impacted by a disaster. Cameron (2005) illustrates

that individuals have varying beliefs on climate change risk and use information to

Bayesian update their priors.

The intersection of these areas of literature leaves a gap that is �lled by this paper. This

paper uses a similar structure to the risk disaster literature to re�ect rare risks through

Poisson processes and allow updating through Bayesian learning. However, it seeks

to determine asset prices via the competitive equilibrium methods of earlier papers.

Finally, this paper acknowledges the di�erences between rare risks and common risks

as elucidated in the psychology literature and cultivates these di�erences to provide

comparative analysis between risk classes.

3 Model

3.1 Preliminaries

The theoretical framework of this paper concerns two risk transfer asset markets. In

each market there are k independent risks in each risk class. The full set of risks

is referred to as K. The �rst market is the disaggregated market where risk transfer

assets are based on single risks. The disaggregated market has k assets. The second
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market is the aggregated market where all risks are transferred through one asset. The

total expected loss of each market is the same. That is when faced with risk k, the

potential loss associated with k is equal under the disaggregated and aggregated case.

The exposure per risk is identical in each market. The only di�erence is in the design

of the risk transfer instrument.

Investors i = {1, 2...n} set the prices in these markets separately. Investors are able to

buy from the aggregated and the disaggregated market. Investors set the asset prices by

maximising their own utility. The market has a �xed supply of each asset, normalised

to 1.

The focus of the model is the comparison of the pricing bene�ts from disaggregation

between risk classes. This is de�ned as the di�erence in prices between the aggregated

market price and the disaggregated market price in each risk class. Di�erences in risk

classes are modelled though the learning process due to di�erences in the frequency of

events.

3.2 The Learning Process: Poisson-Gamma Model

In line with existing literature, nature's underlying likelihood of an event is modelled

using a Poisson process. To enable tractability the learning process is represented

by a Poisson-Gamma model. For a risk X ∈ K, an investor i has beliefs over the

Poisson rate parameter λX . Their beliefs are uncertain and follow a Gamma distribution

λiX ∼ Gamma(αiX , βiX). The expected mean for an investor given their uncertainty

is the mean of their Gamma distribution αiX
βiX

and this will be used as their likelihood

estimate of event X occurring. Investor i has parameters αiv and βiv for each risk

v ∈ {1, 2...k}.

The βiX parameter in the Gamma distribution represents the rate parameter and the
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spread of the distribution; a smaller βiX represents a larger variance. The αiX parameter

allows a variety of shapes from logarithmic (smaller values of αiX), left skewed (medium

range values of αiX), right skewed (large values of αiX) and symmetric distributions.

The Gamma distribution provides a convenient analytic form whilst allowing a wide

dispersion of beliefs.

Individuals gather information on the rate parameter λX as they observe events over

time. Using Baye's rule we can update each individual's prior given the new information

in the current time period to provide the prior for the following period. The underlying

likelihood is modelled as X ∼ Pois(λX) and the investor observes some number of

events z during a time period. z is the information observed by the investor each

period.

Bayes rules provides the relationship between the prior, posterior and observations:

p(λ = x | z) =
p(λ = x)p(z | λ = x)

p(z)

Using the Gamma and Poisson distributions (dropping subscripts temporarily for neat-

ness) results in:

p(z | λ = x) =
xze−x

z!

p(λ = x) =
βα

Γ(α)
xα−1e−βx

Combining these equations determines the posterior p(λ | z)

p(λ = x | z) =

βα

Γ(α)
xα−1e−βx x

ze−x

z!

p(z)

∝ xz+α−1e−(1+β)x
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Since this is the kernel of the Gamma distribution, λ|z ∼ Gamma(α + z, β + 1). The

Gamma distribution is a conjugate prior of the Poisson distribution; providing an op-

portune computation of updating. The new parameters of the Gamma distribution can

be de�ned as α̃ = α + z and β̃ = β + 1. Therefore, the new mean is α+z
β+1

and the new

variance is α+z
(β+1)2

.

Generalising this �rst period result, at time t, αiXt = αiX +
∑t

s=0 zs and βiXt = βiX + t.

Iterated over time the learning process results in a Gamma distribution for beliefs over

λiX and a Negative Binomial predictive distribution over the occurrence of an event with

mean αit
βit

and variance αit(1+βit)

β2
it

. The Negative Binomial predictive distribution re�ects

the likelihood of an event from the perspective of an investor utilising all information

until the present. Since investors are interested in the likelihood of an event to determine

their expected returns the mean of the predictive distribution represents their updated

belief for risk return assessment.

In general, at time t: zt v NegBin(αi+
∑t

s=0 zs,
1

βi+t+1
). This implies that all investors

observe the same information. Blackwell and Dubins (1962) show that in such a case

investors' opinions will converge.6 Even though opinions will eventually converge in all

risk classes, the rate of convergence given arrival times of information will di�er.

Proposition 1 illustrates that observed information a�ects investors' beliefs di�erently

depending on their prior value of β. This implies that the arrival of information is

important and the di�erences in the rate of information by risk classes will exaggerate

this e�ect.

Proposition 1: Consider n investors where α1

β1
> α2

β2
> ... > αn−1

βn−1
> αn

βn
. This does not

imply, at any point in time t > 0 that
α1+

∑t
s=0 zs

β1+t
>

α2+
∑t
s=0 zs

β2+t
> ... >

αn−1+
∑t
s=0 zs

βn−1+t
>

αn+
∑t
s=0 zs

βn+t
. That is if investors are ranked based on their prior beliefs, this ranking is

6This result requires absolute continuity which is met in this case.
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not consistent over time given the learning process.

Proof:

The proof follows from the basic concepts of Bayesian updating. If an individual has

a prior with a larger variance then more weight will be placed on the observed data

rather than the prior. Due to di�erences in prior variance, the rank order of investors's

beliefs will shift over time. The Appendix provides a numerical example.

Depending on the value of λ convergence of beliefs can occur prior to convergence to

the true underlying process. This is because the updating process produces a reinforc-

ing cycle. Koulovatianosi and Wieland (2011) describe beliefs about rare disasters as

having a degree of persistence due to the slow arrival time of information. Consider an

individual updating their beliefs for a rare event. Having not seen a rare event their

probability estimates are updated downwards, this continues until an event occurs. The

event being rare by de�nition will occur very infrequently. Thus it is more often that an

individual's updated beliefs is below the true underlying process. Since all individuals

update downwards, convergence of beliefs can occur faster than convergence to the true

underlying process. In fact once beliefs are close, they will remain close inde�nitely.7

Although this is an interesting result, the consequence of the convergence of beliefs to

a point di�erent from the truth has no impact on the pricing model. This is because

the pricing model is a negotiation between individuals, whom equally ignorant will still

arrive at a compatible price.

3.3 Pricing Process

The pricing process is governed by the beliefs of investors and their willingness to pay

for the risk transfer. Risk transfer is available in two forms as an aggregated transfer

7This is because this learning model does not allow for uncertainty in the information and the
information is observed by all individuals.
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(e.g. share) or a disaggregated transfer (e.g. catastrophe bond). Since both these

markets are incomplete, pricing is determined by exchange between parties and not by

arbitrage.

For illustrative purposes consider the simplest case of two risks X and Y . Investors

are given the option to be counterparties to these risks and can invest in the risks

individually or in aggregate. There are three prices in the market of interest: price PX

for risk transfer of X, price PY for risk transfer of Y and the price P for the combined

insurance product. The sum insured or principal for each risk is XlX and Y lY , where

lX and lY are size of loss for events X and Y respectively. lX and lY are constants but

not necessarily equal. X and Y are random variables representing the number of events

that occur in a time period. Investors choose the holdings of each risk asset ηX and ηY .

Proposition 2 establishes that in a market of homogenous investors there are no dis-

aggregation pricing bene�ts. That is the price of risk transfer in the aggregated and

disaggregated markets are identical.

Proposition 2: If investors have the same initial wealth, beliefs and preferences there

is no price di�erence between the aggregated and disaggregated risks.

Proof:

Consider n investors who have identical beliefs and preferences. Investor j seeks to

maximise their expected value Ej[Uj] = Ej[Uj(w+
∑
v∈K

ηjv(Pv−Lv))]. Where w is initial

wealth, Pv is the price of the risk v, Lv is the loss incurred in the event risk v occurs

and ηjv is the share of the risk that the individual absorbs. Set K is the set of all

assets available in the market. Since investors have identical beliefs and preferences the

subscript j can be dropped.

Let ηv = 1
n
for each asset v ∈ K. This satis�es the market clearing condition since

n∑
j=1

ηjv = 1.
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The proof is shown for a market where K = {X, Y }, however this is easily extended

to a market of many assets. The price of assets in the disaggregated market will be

determined �rst.

Utilising the �rst order condition for the �rst investor with respect to ηX provides

E[U ′(w + 1
n
(PX −XlX) + 1

n
(PY − Y lY ))(PX −XlX)] = 0. Similarly for ηY , E[U ′(w +

1
n
(PY − Y lY ) + 1

n
(PX −XlX))(PY − Y lY )] = 0 is satis�ed for the �rst investor. Solving

these equations simultaneously provides the solutions PX and PY .

In order to show that this is a unique equilibrium for the disaggregated market these

prices must satisfy the �rst order conditions of all investors.8 Since investors have the

same �rst order conditions, PX and PY provide a market equilibrium.

The second part of the proof concerns the price of the asset in the aggregated market.

The single risk asset is L = XlX + Y lY .

Since X and Y are independent, the �rst order condition can be written as: E[U ′(w +

1
n
(P −XlX − Y lY ))(P −XlX − Y lY )] = 0.

Substituting P = PX+PY (the prices from the disaggregated market) provides E[U ′(w+

1
n
(PX + PY −XlX − Y lY ))(PX + PY −XlX − Y lY )].

Rearranging this expression results in:

E[U ′(w + 1
n
(PX + PY − XlX − Y lY ))(PX − XlX)] + E[U ′(w + 1

n
(PX + PY − XlX −

Y lY ))(PY − Y lY )] = 0

This illustrates that P = PX +PY satis�es the �rst order conditions of all investors and

P provides a market equilibrium in the aggregated market.

Hence there is no pricing di�erence in the equilibrium price between the aggregated

and disaggregated markets when investors have the same beliefs and preferences.

8Uniqueness requires some technical conditions as shown in the appendix. Unique as long as there
is concavity...check weak concavity.

12



De�nition 1: An investor is considered optimistic if they have lower probability beliefs

for every asset at one point in time. That is, investor i is optimistic if and only if at

some t, Eit(V ) < Ejt(V ) ∀V ∈ K, j 6= i.

Since investors have heterogenous beliefs, for a large set of assets (K) and a large set

of investors (n) the likelihood that one investor is optimistic reduces.

Lemma 1 establishes the conditions under which there are price di�erences between the

aggregated and disaggregated risks for the risk neutral case. Short sale constraints are

required due to risk neutrality to ensure that investors do not demand in�nite amounts

of each asset. If this were the case there would be no pricing solution.

Lemma 1 : Under short sale constraints with a �nite number of risk neutral investors
and �nite number of risks,

(i) where one investor is optimistic there is no price di�erence between the

aggregated and disaggregated risks, that is P =
K∑
v=1

Pv.

(ii) where no investors are optimistic there is a positive price di�erence

between aggregated and disaggregated risks, that is P >
K∑
v=1

Pv.

Proof:

If investors are risk neutral their expected utility can be written as Ej[Uj] = w +

ηjP −ηjEj[L] for the aggregated risk. The �rst order condition provides the result that

P = Ej[L]. Similarly for the disaggregated risks PX = Ej[LX ] and PY = Ej[LY ].

Under short sale constraints each investor has a reservation price set by P = Ej[L].

The price of the market will be based on the investor with the lowest reservation price

since for this investor P − Ej[L] = 0, but for all other investors P − Ej[L] < 0.

If (i) is satis�ed then one investor is optimistic (has the lowest probability beliefs)

and has the lowest reservation price for all assets. Suppose investor j is consistently

optimistic then Ej[.] < Ei[.] for all assets and investor j will purchase all assets.
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The aggregated price will be P = Ej[XlX + Y lY ] = Ej[X]lX + Ej[Y ]lY .

The disaggregated prices will be PX = Ej[X]lx and PY = Ej[Y ]lY . Thus P−PX−PY =

0 and there is no di�erence in the prices between the aggregated and the disaggregated

prices.

Alternatively if (ii) is satis�ed, then consider an investor j with the lowest probability

beliefs about asset X but not asset Y . Now Ej[X] < Ei[X] ∀i 6= j but ∃i s.t. Ei[Y ] ≤

Ej[Y ] ∀i 6= j. This ensures that no investor is optimistic.

So we have PX = Ej[X]lX and PY = Ei[Y ]lY .

In the aggregated market P = EB[XlX +Y lY ] where B represents the investor with the

lowest probability beliefs over the random variable XlX + Y lY . By de�nition Ej[X] <

EB[X] and Ei[Y ] ≤ EB[Y ].

P − PX − PY = EB[X]lX + EB[Y ]lY − Ej[X]lX − Ei[Y ]lY

> 0

4 Results

This section combines the learning process and the pricing process. Lemma 2 and

Proposition 3 provide general results a generic risk class. Propositions 4, 5, Lemma 3

and Theorem 1 in Section 4.1 provide results for the comparison of risk classes. Theorem

1 is the main result illustrating that the expected pricing bene�ts due to disaggregation

are persistent in rare risk classes.

Lemma 2: Consider investors following a Poisson-Gamma learning process. If Lemma

1 (ii) is satis�ed then the di�erence in price between the aggregated and disaggregated
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risks at time t is given by Dt =
k∑
v=1

[
αBv
βBv +t

− αbv
βbv+t

+
(

1
βv+t
− 1

βbv+t

)∑
s

vS

]
lv ; where

the superscript B represents the individual with the lowest probability beliefs for the

aggregated risk and bv represents the individuals with the lowest probability beliefs for

each disaggregated risk v ∈ K .

Proof: The proof follows directly by combining the learning process with the pricing

process. For each asset, the investor with the lowest reservation price will set the market

price for that risk.

The proof is shown for a market where K = {X, Y }, however this is easily extended to

a market of many assets.

Using the Poisson-Gamma learning process and Lemma 1(ii):

P − PX − PY = EB[X]lX + EB[Y ]lY − EbX [X]lX − EbY [Y ]lY

=
αBy +

∑
s ys

βBy + t
lY +

αBx +
∑

s xs
βBx + t

lX −
αbY +

∑
s yS

βbY + t
lY −

αbX +
∑

s xS
βbX + t

lX

=

(
αBy +

∑
s yS

βBy + t
− αbY +

∑
s yS

βbY + t

)
lY +

(
αBx +

∑
s xS

βBx + t
− αbX +

∑
s xS

βbX + t

)
lX

≡ Dt

Since lX and lY are constants, Dt is a function of the information observed and the

starting priors of investors.

This is easily generalisable to k assets: Dt =
k∑
v=1

[
αBv
βBv +t

− αbv
βbv+t

+
(

1
βv+t
− 1

βbv+t

)∑
s

vS

]
lv.

Proposition 3: As t → ∞, the price of the aggregated and the disaggregated risks

converge.

Proof:
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From Lemma 2 we have Dt =
k∑
v=1

[
αBv
βBv +t

− αbv
βbv+t

+
(

1
βv+t
− 1

βbv+t

)∑
s

vS

]
lv. D → 0 as

t→∞.

4.1 Comparison of risk classes

In the following analysis, we consider the implications of the model for di�erent risk

classes. Risk classes are distinguished by the di�erences in the frequency of events.

To incorporate this di�erence in the model, the rare risk class will have a much lower

frequency than the common risk class. Further, since the comparison focuses on the

price of risk assets it is required that the expected value in each risk class is set to be

equal. If the expected value in each risk class were not equal the prices of assets would

not be set to the same base and as a result would be incomparable.

De�ne a rare risk class as having an underlying probability of λR, each individual has

λjRv ∼ Gamma(αjRv, β
j
Rv) as a prior over the assets within this risk class. A common

risk class has an underlying probability of λC = MλR, and each individual has priors

λjCv = MλjRv ∼ Gamma(αjCv, β
j
Cv), where M > 1. This asserts that an investor's

beliefs are the same in the rare and the common case for a single event. However, in

the common case there are more repetitions of the event represented by M resulting in

the scaling of the underlying rate parameter.

The scaled beliefs ensure that the risk classes have di�erent orders of magnitude. In

addition, to ensure the same expected value of the assets the level of losses is scaled.

In the case of common risks the loss associated with each asset v is lv. Scaling this for

the rare risk provides that the loss associated with each rare risk asset is Mlv.

The following example motivates the construction of the common risk. Suppose the

chance of a 1-year drought in a city is the rare risk in the model. This implies that
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the probability of this event in a time step t is λRt. The cycle of drought is linked to

the level of rainfall that follows a physical process that may not be fully understood.

However, it is likely there is some overlap in the process of rainfall on a daily basis and

drought. Suppose the common risk is that there is no rain on one day. This is a much

more likely event than drought conditions over the year. If we consider that rainfall

today is linked to drought conditions, then we could consider the common event to be

M times more likely than the rare event. Alternatively, if the risk was rain on one day

during the year there are 365 days in a year and M could be set to 365 to re�ect that

each day is a new draw from the distribution. This is an abstraction from the true

meteorological process. Nonetheless the abstraction allows comparison of risk classes.

In keeping with the motivating example, the k assets in each risk class could represent

various locations or di�erent cities. For instance the set of rare risks can be considered

as the risk of drought in a city where there are k cities. Whilst the set of common risks

are no rain for a day in a city for k cities. The duration of all risk transfer assets is a

single time step (for example a year), but events can occur multiple times (for instance

per day) in a time step. Each time an event occurs the investor su�ers a loss on the

risk transfer asset. Thereby for each day of rain in city k, lk is paid and if there is a

drought over the year in city k, Mlk is paid.

Proposition 4: If λjRv ∼ Gamma(αjRv, β
j
Rv) and λ

j
Cv ∼ Gamma(αjCv, β

j
Cv), then α

j
Cv =

αjRv and β
j
Cv =

βjRv
M

.

Proof:

For a Gamma distribution mean
variance

= β.

The mean of λjCv is
αjCv
βjCv

= M
αjRv
βjRv

and the variance is
αjCv

(βjCv)2
= M2 αjRv

(βjRv)2
. Using the

relationship of mean and variance, βjCv =
βjRv
M

and αjCv = αjRv.

Proposition 4 implies that although the variance of an individual's beliefs are the same
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in the rare and the common for a single incident, the scaling up of the incident parameter

in the common case leads to more variance. This is due to the cumulutive uncertainty.

The variance of a single incident is now multiplied by M . However, when the loss is

taken into account, the variance of the loss of the common case is smaller than that of

the rare case.

Proposition 5 below establishes a baseline for comparison. Both risk classes begin

without any disaggregation pricing bene�ts. That is the price di�erential between

aggregated and disaggregated markets is zero within each risk class at t = 0.

Proposition 5: Given the two risk classes, Dcomm
t = Drare

t at t = 0. That is the price

di�erential is identical in both risk classes at t = 0.

Proof:

By constuction the individuals with the lowest probability beliefs in the set of common

assets and the set of rare assets is the same. Thus these individuals will determine the

prices in both risk classes.

Let B be the individual with the lowest probability beliefs in the common aggregated

asset market.

Let bv be the individual with the lowest probability beliefs in the common disaggregated

asset market for asset v.

Dcomm
t =

k∑
v=1

[
MαBRv
βBRv
− MαbRv

βbRv
+
(

M
βBRv
− M

βbRv

)∑
s

vS

]
lv

Drare
t =

k∑
v=1

[
αBRv
βBRv
− αbRv

βbRv
+
(

1
βBRv
− 1

βbRv

)∑
s

vS

]
Mlv

∴Dcomm
t = Drare

t

Lemma 3: A t→∞, E[Drare
t ]−E[Dcomm

t ]→ 0. That is the expected price di�erential

between risk classes asymptotically converges to zero.
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Proof:

By direct application of Blackwell and Dubins (1962) the beliefs within each risk class

will converge eventually due to learning. If beliefs of individuals converge then the price

di�erential between aggregated and disaggregated risks in a risk class also converge,

implying E[Drare
t ]→ 0 and E[Dcomm

t ]→ 0. Thus E[Drare
t ]− E[Dcomm

t ]→ 0.

Theorem 1: When no investor has consistently lower probability beliefs, for su�ciently

large∞ > t, E [Drare
t ]− E [Dcomm

t ] > 0 . The expected di�erence in prices Dt is larger

in the case of rare risks than common risks.

Proof:

Consider E [Dcomm
t ] and E [Drare

Mt ]. Under Lemma 2, we know:

E [Dcomm
t ] = E

{
k∑
v=1

[
αBRv

βBRv/M+t
− αbrv

βbrv/M+t
+
(

1
βBRv/M+t

− 1
βbrv/M+t

) t∑
s=0

vcs

]
lv

}

E [Drare
Mt ] = E

{
k∑
v=1

[
αBRv

βBRv+Mt
− αbrv

βbrv+Mt
+
(

1
βBRv+Mt

− 1
βbrv+Mt

) Mt∑
s=0

vrs

]
Mlv

}

E [Drare
Mt ] = E

{
k∑
v=1

1

M

[
αBRv

βBRv/M+t
− αbrv

βbrv/M+t
+
(

1
βBRv/M+t

− 1
βbrv/M+t

) Mt∑
s=0

vrs

]
Mlv

}

E [Drare
Mt ] = E

{
k∑
v=1

[
αBRv

βBRv/M+t
− αbrv

βbrv/M+t
+
(

1
βBRv/M+t

− 1
βbrv/M+t

) Mt∑
s=0

vrs

]
lv

}

Note that
t∑

s=0

vcs ∼ Pois(Mtλ) and
Mt∑
s=0

vrs ∼ Pois(Mtλ). Therefore, both random

variables follow the same distribution.

Consider an arbitrary individual j the price setter for the aggregate risk in the rare

class and a set of individuals {ir1, ir2, ...irk} who are the price setters for the individual

risks in the rare class.

Suppose VrMt
≡

Mt∑
s=0

vrs = 0. Drare
Mt =

k∑
v=1

[
αjRv

βjRv/M+t
− αirv

βirv/M+t

]
lv.

Suppose Vct ≡
t∑

s=0

vcs = 0.
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Now, Dcomm
t =

k∑
v=1

[
αjRv

βjRv/M+t
− αirv

βirv/M+t

]
lv. So, D

rare
Mt = Dcomm

t .

Similarly suppose Vct = VrMt
= 1.

Now, Drare
Mt =

k∑
v=1

[
αjRv

βjRv/M+t
− αiRv

βiRv/M+t
+
(

1

βjRv/M+t
− 1

βiRv/M+t

)]
lv and

Dcomm
t =

k∑
v=1

[
αjRv

βjRv/M+t
− αiRv

βiRv/M+t
+
(

1

βjRv/M+t
− 1

βiRv/M+t

)]
lv. Again, D

rare
Mt = Dcomm

t .

It is easy to induce that when Vct = VrMt
the price di�erentials of each risk class is

identical. Since j and {ir1, ir2, ...irk} were chosen arbitrarily this is true for any set of

investors (j, {ir1, ir2, ...irk}).

Expected value is de�ned as: E [X] =
∞∑
x=0

xPr(x). We can rewrite the expected price

di�erentials as:

E [Dcomm
t ] =

∞∑
Vct=0

k∑
v=1

[
αjRv

βjRv/M+t
− αiRv

βiRv/M+t
+
(

1

βjRv/M+t
− 1

βiRv/M+t

)
Vrct

]
lvPr(Vct)

E [Drare
Mt ] =

∞∑
VrMt

=0

k∑
v=1

[
αjRv

βjRv/M+t
− αiRv

βiRv/M+t
+
(

1

βjRv/M+t
− 1

βiRv/M+t

)
VrMt

]
lvPr(VrMt

)

From above we have shown that Drare
Mt = Dcomm

t when Vct = VrMt
. It was also noted

above that Vct and VrMt
share the same distribution, thereby Pr(Vct = x) = Pr(VrMt

=

x). Thus combining these two notions provides that E [Drare
Mt ] = E [Dcomm

t ].

The second part of the proof shows that E [Drare
t ] > E [Drare

Mt ].

As mentioned in Lemma 3, it is clear that E [Drare
t ] → 0 as t → ∞. Thereby, it must

be the case that at a su�ciently large t, E [Drare
t ] > E [Drare

Mt ].

Su�ciently large t is required due to the risk neutrality of investors. In the case of risk

neturality the pricing function E [Drare
t ] is not a monotonic function. This is due to the

extremity that one investor purchases all of each asset. If M is small enough, at small

t there is a small possibility that E [Drare
t ] < E [Dcomm

t ]. Given the stochastic nature

of Theorem 1, it is true for su�ciently large t. The size of the required t is inversely
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related to M . A numerical example demonstrates this in Section 5.

5 Numerical Examples

This section provides numerical examples to illustrate Theorem 1. The section also

provides evidence that with large enough M , the constraint of t > T in Theorem 1 is

not restrictive.

Figure 1 displays a numerical example for 5 investors and 2 risks with �xed βjRV = βiRV .

Figure 1: Dt for common and rare

Figure 2 shows the non monotonicity of the pricing function for 5 investors and 2 risks.
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Figure 2: E [Dt]for common and rare

Figure 3 uses the same parameters as Figure 2 apart from the changing degree of

rarity, M . The large the value of M , the more rare the event. Figure 3 indicates that

as long as M is su�ciently large the expected pricing bene�ts from disaggregation are

consistently larger for rare risks over time. In the event that a rare risk is not su�ciently

sporadic, the pricing bene�ts are still maintained after su�ciently large t, as expressed

in Theorem 1.

The reason for this clari�cation is that the pricing bene�ts from disaggregation vary

with time and depend on the arrival of information. In the case of a rare event occurring

early in the learning process, investors updated beliefs can initially be closer than in

the common case. The degree of rarity determines whether Theorem 1 holds for all t

or alternatively for su�ciently large t.
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Figure 3: Theorem 1 and the degree of rarity M

M = 10

M = 1000

6 Discussion

The results of this paper are generalisable to di�erent learning models and to risk

aversion. The risk neutrality and no short sales assumptions are required for tractability

and closed form solutions. Similarly the Poisson-Gamma learning model is not necessary
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to establish Theorem 1. The model was chosen in line with literature and to simplify

calculations.

In the case of risk averse investors, short sales are allowed and investors purchase

proportions of each asset rather than one individual holding the whole of an asset. To

ensure a price is reached a limited supply of each asset is available. Under risk aversion,

there is a level of monotonicity and the requirements of a su�ciently large t no longer

have bearing. In fact, due to risk aversion even from the �rst period the disaggregation

pricing bene�ts in the rare case are above that of the common.

As yet little attention has been given to nature's underlying probability of an event.

The results of Section 4 hold for situations where the intensity of events is stochastic

or deterministic. It is not necessary for the underlying true probability to be known or

constant. It is only necessary to know that the event is possible and it has a non zero

probability. In this model investors bargain amongst themselves for the appropriate

price and whether that price is related to the true probability of an event is irrelevant.

Furthermore, this model as a description of the catastrophe bond market indicates that

bond prices cannot be taken as re�ecting the true probability of an event. The capital

market provides little guidance to determine the true probability of a natural disaster.

An attempt to backwards deduce the probability of a natural disaster from the price of

a catastrophe bond could be misleading.

7 Conclusion

Rare risks are inherently di�erent to common risks. Risk modellers have highlighted this

by creating increasingly complex models of natural disasters, terrorism, stock market

crashes and epidemic risks. Taking an alternate path this paper attempts to address the
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di�erences in a simpler and tractable model. In an e�ort to underpin the di�erences

between risk classes this paper focuses attention on the rate of learning. As a key

distinction between risk classes, learning re�ects the uniqueness of rare risks and drives

the di�erences between risk classes. Pricing di�erences are derived analytically for risk

classes allowing for comparative analysis.

Recent issuance of catastrophe bonds suggests that signi�cant demand is pushing prices

below initial price guides.9 This provides evidence that investors have di�ering views

to bond issuers on the level of risk associated with the bond and the level of return

required to match the risk. This paper suggests that these diverse opinions related to

rare risks can be harnessed to improve pricing of risk transfer. In particular, issuers can

take advantage of the diversity of beliefs by issuing risk transfer assets in disaggregated

form.

In contrast, such a bene�t is not a�orded in the case of common risks. The high

frequency of information leads to little di�erence between the price of the disaggregated

and aggregated risks. Thereby, given non-negligible transactions costs, any pricing

bene�ts due to disaggregation will be quickly expended within the time scale of asset

markets.

In the growing market of risk transfer assets, rare risks are playing an increasingly

important role. Rare risks are transferred by the issuance of catastrophe bonds and

the purchase of reinsurance. The infrequent and erratic nature of rare risks results in

a persistent diversity of beliefs. A market of disaggregated risks, such as catastrophe

bonds, allows investors to invest directly based on their beliefs. Whereas a market of

aggregated risks, such as insurance, limits the ability of investors to incorporate their

beliefs into their investment strategy.

9For example CATMEx, Blue Danube II Ltd. (Series 2013-1) Allianz, Travellers, Residential Re
2013.
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Although the range of investor beliefs decreases over time, the time scale of rare events

is on a magnitude very di�erent to that of asset markets. This ensures that within the

framework of asset markets the variety of investor beliefs and the availability of pricing

bene�ts through disaggregation are maintained.

8 Appendix

Proposition 1: Proof by example

Consider two investors 1 and 2 with prior parameters α1 = 1, β1 = 5, α2 = 5, β2 = 12.

At time t = 0, α1

β1
< α2

β2
.

However, suppose at time t = 1 the investors have seen 10 events. Bayesian updating

provides that investor 1 has α1 = 11 and β1 = 6 and investor 2 has α2 = 15 and β2 = 12.

Thereby at t = 1 we have α1

β1
> α2

β2
and the rank order has been reversed. �

Numerical Examples:

Figure 1 parameters: 5 investors, 2 assets, λ1 = 0.003, λ2 = 0.005, M = 100 and

expected loss=1000.

α1 β1 α2 β2

0.02 0.08 0.042 0.12

0.016 0.08 0.048 0.12

0.012 0.08 0.036 0.12

0.0136 0.08 0.0336 0.12

0.0176 0.08 0.03 0.12

Figure 2 parameters: 5 investors, 2 assets, λ1 = 0.003, λ2 = 0.005, M = 100 and

expected loss=1000.
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α1 β1 α2 β2

0.065 26 0.042 12

0.036 18 0.072 18

0.045 30 0.033 11

0.0255 15 0.056 20

0.0484 22 0.0225 9
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