
A Few Good Predictions: Selective Node Labeling in a
Social Network

Gaurish Chaudhari
IIT Bombay

gsc.chaudhari@gmail.com

Vashist Avadhanula
IIT Bombay

vas1089@gmail.com

Sunita Sarawagi
IIT Bombay

sunita@iitb.ac.in

ABSTRACT
Many social network applications face the following prob-
lem: given a network G = (V,E) with labels on a small
subset O ⊂ V of nodes and an optional set of features on
nodes and edges, predict the labels of the remaining nodes.
Much research has gone into designing learning models and
inference algorithms for accurate predictions in this setting.
However, a core hurdle to any prediction effort is that for
many nodes there is insufficient evidence for inferring a la-
bel.

We propose that instead of focusing on the impossible task
of providing high accuracy over all nodes, we should focus
on selectively making the few node predictions which will
be correct with high probability. Any selective prediction
strategy will require that the scores attached to node predic-
tions be well-calibrated. Our evaluations show that existing
prediction algorithms are poorly calibrated. We propose a
new method of training a graphical model using a condi-
tional likelihood objective that provides better calibration
than the existing joint likelihood objective. We augment it
with a decoupled confidence model created using a novel un-
biased training process. Empirical evaluation on two large
social networks show that we are able to select a large num-
ber of predictions with accuracy as high as 95%, even when
the best overall accuracy is only 40%.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Parameter Learning

Keywords
well calibrated probabilities; graphical models; high confi-
dence predictions

1. INTRODUCTION
The problem of predicting labels for users in a partially

labeled social network has many applications. For exam-
ple, in the Twitter follower network, a recent problem [17,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
WSDM’14, February 24–28, 2014, New York, New York, USA.
Copyright 2014 ACM 978-1-4503-2351-2/14/02 ...$15.00.
http://dx.doi.org/10.1145/2556195.2556241 .

9, 12, 10, 22] is predicting a user location starting from a
small 1–2% known locations obtained from users who allow
geo-tagging their tweets. These predictions are used to im-
prove user experience through location based services like
recommendations, advertisements, and automatic language
selection. As another example consider a friendship network
like Facebook, where a small subset of users provide profile
attributes such as age, gender, education, and, hobbies. A
problem of recent interest [28, 19, 31] is to predict the miss-
ing attributes of other users based on known attributes of
their friends.

A core problem faced by all prediction algorithms is that
for most users there is just not sufficient signal to infer their
labels. For example, existing efforts on location prediction
of Twitter users report accuracy in the range of 50–60% [17,
9, 12, 10]. This means that almost half of the predicted
locations are wrong, leading to misplaced recommendations
sometimes bordering on to downright absurd. Our goal is to
abstain from making such prediction. Our motto is pauca sed
matura1 — make a few predictions but ensure that they are
correct with high probability. More formally, our problem
statement is as follows.

Given a social network G = (V,E), known labels for a
small subset O ⊂ V , and a confidence threshold σ, predict
the labels of the largest possible V such that the predictions
are correct with at least σ probability. Equivalently, attach a
well-calibrated probability pu with the predicted label of each
node u where well-calibrated pu values have the property
that the accuracy over nodes u with pu ≥ σ is at least σ.

Such a selective labeling problem is well-motivated in large
social networks settings because such networks exhibit very
high diversity in accuracy in different regions arising out of
differences in the level of connectivity of users, the degree of
homophily of the predicted labels, and the fraction of known
labels. A node labeling algorithm just needs to translate the
diversity to correctness probability of the predicted label.
Algorithms for labeling nodes in a partially labeled graph
have been extensively researched across multiple communi-
ties (see [24, 21, 16, 3, 14] for a survey). Many techniques
have been harnessed, including, iterative classification [5,
15, 24], Markov Random Fields (MRFs) [29, 4, 27], random
walks [2, 25], label propagation [26], semi-supervised learn-
ing [6, 32], communities [19] and co-citations [3]. When we
compared many of these on their ability to provide well-
calibrated probabilities, we found that labeling probabilities
were poorly calibrated in all methods, including MRF-based
methods which create a joint distribution over labels in a

1few but ripe Carl Friedrich Gauss

graph. While many studies [24, 16, 18, 21] have compared
methods on overall accuracy, ours is the first comparison on
calibration quality.

In this paper we propose a method for labeling nodes in a
partially labeled graph and attaching well-calibrated prob-
abilities to the predicted label. Our approach is based on
MRFs, chosen because of their popularity in the graph la-
beling community and their elegant modeling of the joint
distribution over all labels in a graph. We make two key
modifications to MRFs to make them better calibrated.

First, we propose a novel training objective: maximize
likelihood of each known label conditioned on every other
known label. This objective is more directly linked to our
calibration goal than the conventional objective: maximize
joint likelihood of all known labels. Also, it is both theoreti-
cally and empirically superior to another popular objective:
maximize pseudo-likelihood. We address the computational
challenge of training our objective through a theoretically
sound graph pruning algorithm that guarantees an ε approx-
imation on trees. Second, we propose a decoupled stage of
confidence estimation based on marginals obtained from in-
ference on the MRF. A challenge in training such two stage
models is providing unbiased labeled data to both stages
without hard partitioning the data across them. We pro-
pose a novel leave one out inference strategy on graphs to
tackle this problem and provide an efficient algorithm for
implementing the strategy.

Experiments on two large social networks show that our
two-stage strategy is much better calibrated than any of
the existing techniques and provides a practical solution to
the selective prediction problem on graphs. On a one mil-
lion node Twitter location prediction problem, with only 2%
observed locations (a typical situation on the real Twitter
dataset), the best overall accuracy by any graph prediction
algorithm was only 30% whereas our method could select
60,000 users with accuracy over 80%. The best existing ap-
proach could select only one-fifth of this number.

The rest of the paper is organized as follows. Section 2 sets
up the problem and notations. Section 3 discusses existing
algorithms. Section 4 describes our approach. Theoretical
results on pruning are in Section 5. Empirical comparisons
appear in Section 6 and conclusions in Section 7.

2. PROBLEM SETUP AND NOTATIONS
Let G = (V,E) be our social network where V is the set

of n users and E the set of pairwise homophilic relationships
among them. Let O ⊂ {1, . . . , n} denote the set of k users
each of whose label is known and let R = V −O. Without
loss of generality assume O = {1, . . . , k}. Let Y denote the
space of possible labels, and cu ∈ Y for each u ∈ O denote
user u’s label. Let c denote the vector c1, . . . , ck, and m
denote the cardinality |Y|.

In general, each node and edge in G is associated with a
set of features which is either user-provided (e.g. the ed-
ucation of a user may help predict age) or derived from
properties of G (e.g, the strength of an edge may depend
on the log(degree) of its endpoints). We use f(`, u) to de-
note the vector of node features when user u takes label `,
and f(`, `′, u, v) to denote the edge feature vector on edge
(u, v) when label of u is ` and v is `′. Often the node feature
vector is empty, and the edge features may only depend on
whether ` and `′ are equal. We do not consider features
over larger subsets of variables, for example a node and all

its neighbors, because most such features can be rewritten
as sum of edge features.

Our goal is to infer a label ĉu for each remaining user
u ∈ V −O based on G and the features, and attach a prob-
ability pu that the prediction is correct. Typically, this task
is performed in two steps. First we train parameters of a
model using observed labels. We will generically call these
parameters as w. Second, we deploy the trained model to
get (ĉu, pu) for each u ∈ R.

In this paper we use bold-faced symbols for vectors (e.g.
c,µj) and normal font for their members indexed either as
a subscript (e.g. ci) or as an argument (e.g. µj(i)).

3. EXISTING/RELATED APPROACHES
We consider two types of existing solutions to this prob-

lem: iterative classification based (Section 3.1) and graphi-
cal model based (Section 3.2). Readers familiar with these
approaches can directly skip to our approach in Section 4.
We do not consider methods based on random walks [2,
25], label propagation [6, 26], and other pure inference al-
gorithms [19] because these either do not support learning
with both node and edge features, or are subsumed by the
graphical model based approach. Another promising ap-
proach based on Gaussian Markov Models is Copula Latent
Markov models [30]. These do not fit our setup because they
require the labels to be binary and do not model features on
edges. Our datasets span thousands of labels and heavily
depend on edge features.

Algorithm 1 Framework: training and deployment

Input: G = (V,E), f ,O, c
Initialize w.
while w not converged do

E-step Call inference(G,w, c) and obtain prediction ĉu
and marginals µu(`) for u ∈ R, ` ∈ Y.
M-step Re-estimate w using (ĉu,µu) for each u ∈ R
and cu for each u ∈ O.

end while
Deployment Call inference(G,w, c) to get (ĉu, µu(ĉu))
for u ∈ R.

3.1 Iterative classification
This popular approach from relational learning [5, 15, 24,

20] consists of repeatedly creating a classifier to predict a
node’s label using features of the node and labels of its neigh-
bors in the graph, only some of which may be observed. In
Algorithm 1 we present a common framework to describe
the many existing variants of this approach. The first step
is to initialize the parameters w of the classifier by train-
ing on only the observed node and its observed neighbors.
Next, we enter a EM kind of loop that trains the classifier
Pr(xu|cN(u), ĉN(u),µN(u)) which predicts xu conditioned on
known label cv, or predicted label ĉv and/or distribution
µv over possible labels of each neighbor v of u. The loop
consists of two steps:
E-step: First, using the existing parameters w infer the
unknown labels ĉu and marginal probability µu(`) that an
unobserved node u takes label `. We call this the inference
step. Inference is also iterative and is known by several
names, including ICM, relaxation labeling, and mean field
inference [21].

M-step: Second, we retrain the classifier so as to max-
imize likelihood of the observed nodes conditioned on the
(re)estimated labels/marginals of all its neighbors. This is
like normal classifier training except features are aggregate
over predicted/true labels/marginals of neighbors.

We compare with four variants: the ICA method that ig-
nores the marginals µN(u) in Pr(xu|cN(u), ĉN(u),µN(u)) and
the ICA-Soft method that includes them and ignores the
hard predictions ĉN(u), the ICA-NoLoop method which af-
ter initialization, skips the training loop; and the LR method
that uses only the observed nodes for both training and de-
ployment and is thus a simple logistic regression classifier.

3.2 Graphical model based approach
The repeated classification approach does not create a

consistent global distribution, and expresses variable depen-
dence in ad hoc terms. An undirected graphical model or
a Markov Random Field provides a more principled joint
distribution among interacting variables in a graph and has
served as another popular choice for label prediction in so-
cial networks [29, 4, 27, 24]. Let x = x1, . . . , xn be variables
denoting the labels of all n users and let F(x) denote the
sum of the feature vectors over the entire graph, that is

F(x) =

nX
i

f(xi, i) +
X

(i,j)∈E

f(xi, xj , i, j) (1)

A graphical model expresses the joint distribution as

Pr(x1, . . . , xn|w) =
1

Z(w)
ew.F(x1,...,xn) (2)

where Z(w) is a normalizer called the partition function and

is equal to
P
x1,...,xn

ew.F(x1,...,xn)

Many different methods have been proposed to train w.
We discuss one of the most popular of these: the joint likeli-
hood method. This method maximizes the joint probability
of all observed labels as follows

max
w

log Pr(xO = c|w)

= max
w

log
X
xR

ew.F(c,xR) − logZ(w)
(3)

The objective is not convex when R is non-empty because
of the summation within the log. Therefore, typically the
EM algorithm is used for finding a local optima.
E-step: The E-step computes marginal probability of each
node and edge conditioned on the observed labels. That is,
for each node compute µu(`) = Pr(xu = `|xO = c,w) and
for each edge compute µu,v(`, `′) = Pr(xu = `, xv = `′|xO =
c,w) by marginalizing the joint distribution in Equation 2.
These can be computed simultaneously for all nodes and
edges using one of the many existing algorithms for inference
in graphical models [13]. However, on general graphs, ex-
act inference is intractable, and many approximations exist,
including Gibbs Sampling, Mean-field, Belief Propagation
(BP) and its convergent variants such as TRWS [13].
M-step: The M-step solves for the expected log likelihood
of the observed node which becomes

w.Eµ(F(c,xR))− logZ(w)

where Eµ(F(c,xR) =X
(i,j)∈E,`,`′

µij(`, `
′)f(`, `′, i, j) +

X
i∈V,`

µi(`)f(`, i)
(4)

This objective is convex in w and can be solved using gra-
dient descent. However, a new challenge is that computa-
tion of logZ(w) is intractable and approximate inference
via methods like BP or sampling does not guarantee a con-
vergent gradient descent loop. Recent research [23, 11] pro-
vides an elegant solution to this problem by approximating
logZ(w) as a convex optimization over message variables
and jointly solving for the message variables and w as one
convergent program.

After training parameters w, a final inference step (same
as in the E-step of training) is used to compute the marginals
µu(`) = Pr(xu = `|xO = c,w) for each u ∈ R, ` and predict
label ĉu = argmax`µu(`), ∀u ∈ R. The confidence pu of
the prediction is just µu(ĉu).

Since the confidence is marginal probability of a distribu-
tion trained via a statistically sound training objective, we
expected the confidence values to be well-calibrated. But,
when we deployed them on two real-life social networks, we
did not find that to be the case at all. Therefore, in the next
section we present the steps we took to solve this problem.

4. OUR APPROACH
We address the problem of getting well-calibrated prob-

abilities through fixes on two fronts. First, we link the
graphical model training objective more directly to our cal-
ibration goal (Section 4.1). Second, we decouple the confi-
dence estimation problem from label prediction and develop
a method of collecting an unbiased labeled set for training
a well-calibrated estimator of confidence (Section 4.2).

4.1 Modified training of graphical models
We observed an impedance mismatch in the graphical

model approach (Section 3.2) between the training objective
of maximizing joint probability of all observations Pr(xO =
c|w), and the predicted single variable marginals conditioned
on all observation Pr(xu = ĉu|xO = c). We propose to fix
this mismatch through a training objective that maximizes
conditional likelihoods where for each observed label ci we
maximize its probability conditioned on all other observed
labels. Our revised training objective then becomes:

max
w

log
Y
i∈O

Pr(xi = ci|xO−i = c−i,w)

= max
w

X
i∈O

log
X
xR

ew.F(c,xR) − log
X

xR∪{i}

ew.F(c−i,xR∪{i})

where the condition xO−i = c−i implies that we are fixing
the labels of all observed nodes except the ith one. We call
this the node conditional likelihood method or NCL in short.
Likewise, we use the short form JL for the Joint Likelihood
method. We next elaborate on the steps required for solving
this objective efficiently. This objective is also non-convex
but this is only due to the first term which is the same as
in JL (except for being repeated k times). Therefore we use
the same EM framework to solve for a local optimum.
E-step: Same as in JL.
M-step: The M-step is different because of difference in
the second term. We need to solve for expected conditional
likelihood of each observed node which becomes:X

i

w.Eµ(F(c,xR))− log
X

xR∪{i}

ew.F(c−i,xR∪{i}) (5)

where Eµ(F(c,xR)) is same as in Equation 4. The sec-
ond term looks like a partition function and we denote it
as logZ(w|c−i). In order to compute logZ(w|c−i) we need
to separately run inference for each observed node because
the conditioning variables are different for each i. There is
no easy way to reuse computation across different i values
and requires inference on the full graph k times for each
optimization loop. We propose an approximation to reduce
this cost. For computing Pr(xi = ci|xO−i = c−i,w) (hence-
forth denoted as Pr(ci|c−i)) we select a mini-graph Gi from
G such that the approximate probability PrGi(ci|c−i) com-
puted only using features of variables in Gi is within a user-
given tolerance ε of Pr(ci|c−i). In Section 5 we present how
such mini-graphs are selected. Let Ri denote the subset of R
in Gi and let FGi(x) denote the sum of features over nodes
and edges in Gi. The modified M-step now becomes:X

i

w.Eµ(FGi(c,xR))− log
X

xRi∪{i}

ew.FGi (c−i,xR∪{i})

Computationally, this objective for each i is not too dif-
ferent from the M-step of joint likelihood except that it is
performed over a smaller graph Gi. As in the joint likelihood
case, even though the objective is convex, the computation
of logZ(w|c−i) is intractable on arbitrary Gis. Therefore,
here also we rely on the convex approximation of [23, 11].
This provides us an efficient and convergent M-step.

After training parameters w, we use inference to compute
(ĉu, µu(ĉu)) ∀u ∈ R exactly as in JL.

4.1.1 Asymptotic statistical guarantees
We can prove that like JL, the NCL objective is also con-

sistent. This means that if the model is faithful to the true
data distribution, and if labeled data is infinite, then the
NCL objective will find the true parameters. We skip a
proof due to lack of space but the broad steps are the same
as in Theorem 20.3 of [13]. Also, our EM-algorithm is guar-
anteed to find a locally optimum solution as in JL. This is
easy to see because EM only modifies the first non-convex
term in the NCL objective and this term is identical to the
first term of JL up to a positive multiplicative constant.

4.1.2 Relationship to other training objectives
Some readers might find our NCL objective similar to

another popular training objective [29, 13] called Pseudo-
likelihood (PL). PL is based on approximating the joint
probability Pr(x1, . . . , xn) as

Qn
u=1 Pr(xu|xNu), the product

of node-level probability conditioned on the node’s neigh-
bors. When all neighbors are known, PL is identical to
NCL since Pr(xi = ci|xO−i = c−i,w) = Pr(xi = ci|xNi =
cNi ,w). However, for the general case with unknown neigh-
bors, the only known extension of PL we are aware of is the
PL-EM method of [29] which is very different from NCL.
PL-EM proposes an approximate EM-based solution of the
PL objective where in the E-step mean-field inference is used
to compute the marginals µu for each u ∈ R. The M-step
then solves the following convex objective:X

i∈O

X
x
RN
i

Y
u∈RNi

µu(xu) log Pr(xi|xRNi ,xOi = cOi ,w) (6)

where RNi denotes the unobserved neighbors of node i and
Oi denote the observed neighbors of i. Unlike our approach,
PL-EM is not statistically consistent because its M-step at-

tempts to maximize expected likelihood with respect to the
mean field distribution which is not guaranteed to match the
true distribution. We will also contrast the two approaches
empirically in Section 6.

4.2 Decoupled confidence estimation
We now describe a second step that we took to better

calibrate the confidence of predictions ĉu from inference on
the graphical model. While the marginals µu(ĉu) of NCL are
better calibrated than of JL, our experiments show that they
are still not good enough for selective node labeling. Both
methods tended to provide overly inflated values of µu(ĉu)
for immediate neighbors of observed nodes, and there was
no easy way to offset that while also ensuring effective label
propagation in the graph. We therefore chose to train a
decoupled model C that works on ĉu and marginals µu(.)
produced by the graphical model and outputs a confidence
pu of the prediction ĉu being correct for each u ∈ R.

Assume that we know true labels of a subset of nodes
D ⊂ R that does not overlap with O. Then C can be a
probabilistic binary classifier, like a logistic regression model
trained using D as follows. For each j ∈ D, create an in-
stance with a label yj = 1 if ĉj = cj and yj = 0 otherwise,
and a set of features zj derived from observed and predicted
labels/marginals in j’s neighborhood. Examples of such fea-
tures include, the smoothed fraction of j’s neighbors that
have label ĉj , the marginal µj(ĉj), the largest fraction of
nodes having a label other than ĉj in j. The complete list
of features we used can be found in [7].

A major shortcoming of the above method is that we need
a labeled set D to train C in addition to the set O for pre-
diction. Since our goal is to maximize the number of nodes
correctly predicted, we want O to be as large as possible.
Setting aside a portion of O as D will compromise this goal,
and/or could lead to a poorly trained C.

We propose a novel method of creating an unbiased train-
ing set for C without any additional labeled data. When we
perform inference on the full graph to get predictions ĉu on
the unobserved set R, the labels of nodes in O are pinned to
c, and therefore get no predicted label. Our key idea is to
use the mini-graphs created during NCL training, to run in-
ference on each Gi with all but the ith observed label c−i in
Gi to obtain marginals µ̄iu(`) = Pr(xu = `|c−i,w), and pre-
diction c̄iu = argmax`µ̄

i
u(`) for each i ∈ O and u ∈ {i}∪N(i).

Note, we used a different symbol for these marginals com-
puted without ci to distinguish from the marginal obtained
using all of c. This step is efficient because Gi is small and
in Section 5 we will show how to obtain such a Gi. Now,
for each i ∈ O create a labeled instance with label yi = 1 if
c̄ii = ci else yi = 0, and features zi created as above. The
yi labels of the observed nodes can also be used to create
additional features such as the fraction of wrongly predicted
observed nodes in a node’s neighborhood.

Algorithm 2 presents our overall approach.

4.2.1 Related work on confidence estimation
The use of a decoupled binary model to get confidence

with predictions is not new, for example, [4] uses one such
for selecting nodes for active labeling. The novelty of our ap-
proach is in the way we create an unbiased labeled dataset
for training while using the same data for predictions. In
contrast, [4] assumes a separate labeled dataset. We show in
Section 6.3.1 how that impacts selective accuracy.

Algorithm 2 Our approach.

Input: G = (V,E),O, c
w = Trained parameters using NCL (Section 4.1).
Call inference(G,w, c) and get (ĉu,µu) for u ∈ R
for i ∈ O do
Gi = Prune G to approximate Pr(ci|c−i) (Section 5)
Call inference(Gi,w, c−i), get (c̄iu, µ̄

i
u) u ∈ {i} ∪N(i)

zi = Make Features(c̄ii, µ̄
i
i, c̄

i
N(i), µ̄

i
N(i), cN(i))

yi = 1 if c̄ii = ci, yi = 0 otherwise.
end for
C = logistic model trained using {(zi, yi) : i ∈ O}
for u ∈ R do

zu = Make Features(ĉu,µu, ĉN(u),µN(u), cN(u))
pu = C(zu)

end for
return {(u, pu) : u ∈ R}

1

2
3

4

7
5

10

6 8

9

11

.019
1

2
3

4

7
5

6 8

9

Figure 1: An example of graph pruning to obtain Pr(c1|c−1).
The shaded nodes are observed. The dotted nodes in the left
are nodes pruned via the Markov condition. The dotted nodes
in the right are nodes pruned using ε = 0.02 via the method of
Section 5.3.

5. PRUNING THE GRAPHICAL MODEL
We show how to select a sub-graph Gi of G such that the

approximate probability PrGi(ci|c−i) computed only using
Gi is within ε of Pr(ci|c−i). First, based on the Markov
property of graphical models, we can prune any node u
from G all of whose paths to i are through observed nodes
without modifying Pr(ci|c−i). For example, in Figure 1,
we can prune nodes 10 and 11 when i = 1 because for
both of them the only paths to node 1 are through ob-
served nodes (shown shaded). Call the pruned graph Gi.
Gi might still be large and we present recipes for pruning
further nodes from it while maintaining an ε approxima-
tion. For ease of notation, we will drop the subscript i, use
G instead of Gi, assume i = 1, ci = 1, and assume that
the nodes in G are numbered 1, . . . , n. Also, we denote the
node potentials as ψu(xu) and define ψu(xu) = ew.f(xu,u) for
u ∈ (R∩Gi)∪{i}, ψu(xu) = M if u ∈ (O− i)∩Gi, xu = cu
and ψu(xu) = 1 otherwise where M � 1 is a large constant.

We denote edge potentials as ψuv(xu, xv) = ew.f(xu,xv,u,v).
We assume that edge features f(xu, xv, u, v) depend only
on whether xu = xv. Therefore, they can be expressed as
ψuv(xu, xv) = (αuv if xu = xv, 1 else) where αuv is a con-
stant. Further, since we assume homophily, αuv ≥ 1. Let α
be an upper bound on the values of αuv. During parameter
training when the potentials are unknown, we assume that
the user can guess a suitably tight bound for α as pruning
is performed in terms of α. This is not too difficult in our
experience, particularly since the penalty for over-estimate
is just reduced pruning.

With these notations we can cast the conditional proba-
bility Pr(x1 = 1|xO−1 = c−1) as this marginal probability

Pr(x1
1) =

P
x2,...,xn:x1=1

Q
u ψu(xu)

Q
(u,v) ψuv(xu, xv)P

x1,x2,...,xn

Q
u ψu(xu)

Q
(u,v) ψuv(xu, xv)

where we use the shorthand x1
1 for x1 = 1. We introduce a

convenient normalization operator N (z) that when applied
on a vector z normalizes its entries so they sum to one. Using
this, we can write

Pr(x1 = `) = N (
X

x2,...,xn

Y
u

ψu(xu)
Y

(u,v)

ψuv(xu, xv))(`)

Our goal is to remove nodes from G so as to approximate
Pr(x1

1) within a given ε of the unpruned value. We develop
the method in three stages: first assume that G is a chain
with x1 at one end, then generalize to the case when G is a
tree, and finally to arbitrary graphs.

The proofs in the rest of the section are quite technical
and assume knowledge of message-based computations in
graphical models. Readers unfamiliar with the topic can
skip the proofs and just see the main pruning results in
Theorems 5.1, 5.2, and 5.3.

5.1 Single chain
Assume the chain of nodes is x1, . . . , xn with an edge be-

tween each xu and xu+1. In a chain if we remove a node
xt, all nodes xj for j > t are also removed. Let P (x1|ψ1...t)
denote the marginal calculated with potentials up to node
t. Then P (x1|ψ1...t) =

N

ψ1(x1)

X
x2,...,xt

tY
u=2

ψu(xu)ψu−1,u(xu−1, xu)

!
(7)

Thus, our task reduces to identifying an index t such that
|P (x1

1|ψ1...n)− P (x1
1|ψ1...t)| ≤ ε. For a chain, the impact of

all potentials on node 1 after t can be expressed as a simplex
message, say θt that node t+1 sends to t and we can rewrite
P (x1

1|ψ1...n) = P (x1
1|ψ1...t, θt). The principle we follow for

pruning is to find the maximum swing in this value over all
possible values of θt ∈ ∆m, the m dimensional simplex. Let
θ̂ and θ̌ denote the two extreme values of θt that maximize
this difference, that is, (θ̂, θ̌) =

argmaxθ̂′,θ̌′∈∆m

˛̨̨
P (x1

1|ψ1...t, θ̂
′
)− P (x1

1|ψ1...t, θ̌
′
)
˛̨̨

Now, we will derive what (θ̂, θ̌) should be and for what t will
the difference be ≤ ε. We first introduce some notations.
Let M̂t

r denote a message at distance r from node 1, when
a message M̂t = θ̂ is injected from node t+ 1 to t. Likewise
define M̌t

r with message θ̌ from t+ 1 and M̄t
r with message

θt from t+1. Let h(ψ, α,M) denote the outgoing message at
a node with node potential ψ when a message M is injected
into it via an edge with Potts potential α. That is,

h(ψ, α,M) = N (ψγ) where γ = (α− 1)M + 1m, (8)

where 1m is a length m vector of all ones. Using this we can
express M̄t

r, recursively as follows:

M̄t
r = h(ψr, α, M̄

t
r+1), if r < |t|, M̄t

t = θt, (9)

and similarly M̌t, M̂t. From the above, it is easy to see that
P (x1

1|ψ1...t, θt) = M̄ t
1(1).

First, we assume no node potentials and derive a closed
form expression for Pr(x1 = `|ψ1...t, θt).

Lemma 5.1 If G is a chain, αuv = α, ψu(`) = 1 ∀u, `, then

Pr(x1 = `|ψ1...t, θt) =
θt(`)− 1/m

(m
α−1

+ 1)t−1
+

1

m
(10)

Proof. When node potential is 1 for all labels, Equa-

tions 8 and 9 gives that M̄ t
r−1(`) =

(α−1)M̄t
r(`)+1

m+α−1
. To get

M̄ t
1(`) which is equal to Pr(x1 = `|ψ1...t, θt) we repeatedly

apply this formula t times. After simplifying the result, we
get the RHS.

A corollary from the above that we will find useful is:

Corollary 5.1 If αuv ≤ α ∀(u, v) ∈ E (other conditions
same as in Lemma 5.1), then

Pr(x1 = `|ψ1...t, θt)−

"
θt(`)− 1/m

(m
α−1

+ 1)t−1
+

1

m

#
≤ 0 if θt(`) ≥

1

m

≥ 0 otherwise.

Theorem 5.1 If G is a chain, t >
log 1

ε
log (m

α−1 +1)
, αuv ≤ α

ψu(`) = 1 ∀u, ` then |P (x1
1|ψ1...n) − P (x1

1|ψ1...t)| ≤ ε. In
other words, pruning potentials ψt,t+1 . . . , ψn−1,n changes
Pr(x1

1) by at most ε.

Proof.

|P (x1
1|ψ1...n)− P (x1

1|ψ1...t)|

≤ max
θ̂,θ̌∈∆m

˛̨̨
P (x1

1|ψ1...t, θ̂)− P (x1
1|ψ1...t, θ̌)

˛̨̨
≤ max

0≤θ̌(1)≤1/m≤θ̂(1)≤1

˛̨̨̨
˛ θ̂(1)− θ̌(1)

(m
α−1

+ 1)t−1

˛̨̨̨
˛ (Corollary 5.1)

≤ 1

(m
α−1

+ 1)t−1
≤ ε

Now let us extend the result to include node potentials.
Recall that since training is not over, we do not know the
value of the node potentials. Unlike edge potentials, it is dif-
ficult to bound their values and without those we cannot ob-
tain a closed form expression for Pr(x1) in terms of θt unlike
what we did earlier. So, we take an alternative approach and
bound the difference between the upper and lower bound of
label 1 in the message at stage r M̂ t

r(1) − M̌ t
r(1) in terms

of the corresponding difference M̂ t
r+1(1)− M̌ t

r+1(1) at stage
r + 1. The following lemma gives the bound.

Lemma 5.2 M̂ t
r(1)−M̌ t

r(1) ≤ κ(m,α)(M̂ t
r+1(1)−M̌ t

r+1(1))
where

κ(m,α) =
(α− 1)(m+ α− 1)

α(m+ α− 1) + 3m+ α− 5
(11)

Proof. The proof is involved and we provide a brief
sketch. Let ψr denote the unknown node potential at r.
Since,

M̂ t
r(1)− M̌ t

r(1) = h(ψr, α, M̂
t
r+1)(1)− h(ψr, α, M̌

t
r+1)(1)

≤ max
ψ

h(ψ, α, M̂t
r+1)(1)− h(ψ, α, M̌t

r+1)(1)

We prove in [1] that the solution ψ∗ for the optimization
problem above is

ψ∗(1) =

p
(1− γ̂1)(1− γ̌1)p

(1− γ̂1)(1− γ̌1) + (m− 1)
√
γ̂1γ̌1

, ψ∗(l > 1) =
1− ψ∗(1)

m− 1

1E-05

0.0001

0.001

0.01

0.1

1

0 1 2 3 4 5 6 7

A
p

p
ro

xi
m

at
io

n
 R

an
ge

Distance from source node

w/o NP α=exp(0.5)
w/o NP α=exp(1.0)
with NP α=exp(0.5)
with NP α=exp(1.0)

Figure 2: Error bounds (log
scale) vs distance t for m =
100

1

2 3 4

7
6

5
8

9

.019 .019

10

11

Figure 3: An example tree.
Pruned nodes are dotted:
ε = 0.05,m = 100, α = e0.5.

where γ̂1 =
(α−1)M̂t

r+1(1)+1

m+α−1
and likewise γ̌1. Plugging in

this solution we can show that:

max
ψ

h(ψ, α, M̂t
r+1)(1)− h(ψ, α, M̌t

r+1)(1) =

=
γ̂1 − γ̌1

2
p

(1− γ̂1)(1− γ̌1)γ̂1γ̌1 + γ̂1(1− γ̌1) + γ̌1(1− γ̂1)

Next, we use a set of inequalities to show that this expression
can be upper bounded by κ(m,α)(M̂ t

r+1(1)−M̌ t
r+1(1)). The

details of this can be found in [1].

Theorem 5.2 If G is a chain where αuv ≤ α and t >
log ε

log (κ(m,α))
+ 1, then |P (x1

1|ψ1...n)− P (x1
1|ψ1...t)| ≤ ε.

Proof. The proof follows by repeatedly applying Lemma 5.2
t−1 times until we get that |P (x1

1|ψ1...t, θ̂)−P (x1
1|ψ1...t, θ̌)| =

M̂t
1(1)−M̌t

1(1)≤ maxθ̂,θ̌ κ(m,α)t−1(θ̂(1)−θ̌(1)) = κ(m,α)t−1.

In Figure 2 we plot the worst case bound on |Pr(x1
1|ψ1...n)−

Pr(x1
1|ψ1...t)| on a chain when we prune nodes after distance

t from node 1 for α = e0.5,m = 100 and α = e and for
the two cases: without node potentials (Theorem 5.1) and
with node potentials (Theorem 5.2). The bounds are tighter
without node potentials but in all cases we achieve good ap-
proximation within a small t. With α = e0.5, a typical value
in our datasets, we approximate to within 0.0001 and 0.019
respectively at t = 2.

5.2 Tree
Now consider the case where G is a tree rooted at x1.

Pruning now amounts to choosing a frontier of G so that
the size of the pruned tree is smallest while ensuring that
the maximum swings in the potentials outside the frontier
do not impact Pr(x1

1) by more than ε.
Suppose we decide to prune all nodes below a node xt

with parent p. The contribution of all potentials under xt
(inclusive of its own node potential) in computing Pr(x1

1)
can be expressed as a message Mt from t to p. We compute
what happens to Mt along the path P(t) to x1. Unlike for
chains, the path has incoming messages from other children
of intermediate nodes. For example, in Figure 3 M9 has
to multiplied with when the message from node 10 passes
through node 4 to node 1. During message passing, all in-
coming messages at a node u are multiplied with the node
potential at u, so the messages can be treated as a modified
node potential. Our bounds in the previous section assumed
the most adverse node potentials. These same bounds can
be used unchanged on the path ignoring all other branches
on the path, we only have to modify Equation 9 to work with

non-continuous indices along a path P(t). We use notation

M̂P(t) instead of M̂t therefore.
Thus, we know how to compute message bounds for sin-

gle path in the tree. If we prune below a frontier of multiple
nodes, we can simply add the bounds for each frontier node
because our per-path bounds are with respect to the worst
effect of messages from the rest of the tree. The final the-
orem for pruning a tree based on frontier of nodes appears
below (We skip a formal proof due to lack of space).

Theorem 5.3 Let G be a tree rooted at 1 with potentials
as per Theorem 5.2. If GT is a subset of G obtained by
removing all nodes below a frontier T = t1, . . . , tf such thatP
j κ(m,α)|P(tj)| ≤ ε then |P (x1

1|ψG)− P (x1
1|ψGT)| ≤ ε.

An example of a pruned tree obtained by using α = e0.5,m =
100 and ε = 0.05 is shown in Figure 3. The weights on a

node t is κ(m,α)|P(t)| and the frontier is T = 2, 4.

5.3 Arbitrary graph
For arbitrary graphs, inference is intractable and it is dif-

ficult to efficiently bound the influence that a message from
some node u has on node 1 when there are multiple paths be-
tween them. Recently, [8] addressed this problem by choos-
ing the shortest path between two nodes to bound this in-
fluence. We follow the same strategy. Let SP(t) denote the
shortest path from node t to 1. Define the frontier nodes of
a pruned graph G′ ⊂ G as the set of unobserved nodes in G′

with at least one pruned neighbor. We choose G′ with fron-

tier nodes T = t1, . . . , tf such that
P
j κ(m,α)|SP(tj)| ≤ ε.

For example, the right graph in Figure 1 is obtained by
pruning with ε = 0.02. Node 2 is the only frontier node
here; node 7 is not a frontier node because it is observed.

Unlike for trees, we have no approximation guarantees on
Pr(x1

1) with this pruning but since inference algorithms on
general graphs are also not exact, we cannot hope to do
much better. Empirically, we will show in Section 6.3.3 that
our pruning method is effective.

6. EXPERIMENTS
We present an evaluation of different methods on their

ability to do selective node prediction and an analysis of our
method along different dimensions.

6.1 Social Networks
Our experiments were performed on two large real-life so-

cial networks, Twitter and Pokec, each with more than one
million nodes. We summarize their key statistics in Table 1.
Twitter: We crawled 82 million geo-tagged tweets from
all over the world over four weeks in June and July 2012.
We extracted from these 3.5 million geo-tagged users and
assigned to each his most frequent tweet location. We then
crawled for followers of users. We removed users with more
than 1000 neighbors because these are typically celebrity or
media accounts, and not useful for location prediction. This
left us with 3 million users. The raw user locations were
in (latitude, longitude) format. Since our focus is discrete
prediction, we mapped these to one of 2,113 top-populated
world cities using Google’s Geo-coding API2. Users outside
these 2113 cities were removed giving rise to our final graph
of 1.07 million users and 3.86 million edges.

2developers.google.com/maps/documentation/geocoding

Twitter Pokec
Nodes 1,071,254 1,136,049
Edges 3,863,698 10,773,722
% Uni-directional edges 42.87 61.24
Labels(m) 2,113 10

Table 1: Twitter and Pokec graph statistics

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Fr
ac

ti
o

n
 o

f
U

se
rs

Fraction of followers sharing city

Twitter Fraction

Cumulative

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Fr
ac

ti
o

n
 o

f
U

se
rs

Fraction of followers sharing age group

Pokec Fraction

Cumulative

Figure 4: Histograms of fraction of followers of a user sharing his
label for Twitter(left) and Pokec(right). Blue (darker) bars are
for histogram and red (lighter) bars for cumulative probabilities.

Pokec: As a representative of the attribute prediction
problem in a friendship network, we used the publicly3 avail-
able Pokec social network (crawled in May 2012), a popular
social network in Slovakia. Each user has a profile in Slovak
spanning attributes like gender, age, hobbies, marital status,
children, profession, and education. Our task is to predict a
user’s age, available in only 68% user profiles. We retained
these 68% users, giving rise to a graph of 1.13 million nodes
and 10.8 million edges. We segmented age into bins of five
years, obtaining 10 age groups.

6.2 Setup and Methods
We compared eight methods: four methods from the iter-

ative classification family (Section 3.1): LR, ICA-NoLoop,
ICA, and ICA-Soft; three methods based on graphical mod-
els: JL trained on joint likelihood (Section 3.2) and PL-
EM trained on pseudo likelihood (Section 4.1.2), and NCL
trained on node conditional likelihood (Section 4.1); and
finally our two stage method NCL+Conf that uses the de-
coupled training of Section 4.2. The base classifier for LR,
ICA-NoLoop, ICA, and ICA-Soft was a multi-class linear
logistics regression model. Methods JL and NCL used BP
during deployment and convergent TRWS during training.

For both our datasets an edge could be bi-directional or
uni-directional. We designed a set of nine edge features
based on intuitive clues such as edges between high de-
gree nodes indicate less homophily, bi-directional edges are
stronger, and high entropy of observed labels implies less
homophily. These are summarized in Table 2 and fire only
for the case when xu = xv. Thus all our edge potentials
are Potts. For Pokec we experimented with node features
derived from a user’s profile attributes like education and
marital status which seemed indicative of age. However, we
obtained no gain in accuracy from them. One reason could
be that these were both highly unstructured text fields. Our
best effort at picking high signal phrases provided little gain.
In contrast, we found that our edges were highly homophilic.
We ascertain this via Histograms in Figure 4 where X-axis is
the fraction su of a user’s neighbors that have the same la-
bel, bucketed into steps of 0.1, and Y-axis is the proportion
of users with su fraction co-labeled friends. On Twitter, for
more than 55% of the users, majority of their graph neigh-
bors share his label; and for Pokec it is 51%. The edge

3http://snap.stanford.edu/data/soc-pokec.html

30

40

50

60

70

80

90

1 10 100

A
cc

u
ra

cy

% Users

Twitter : 2%

40

50

60

70

80

90

1 10 100

A
cc

u
ra

cy

% Users

Twitter : 5%

LR
PL-EM
ICA-Soft
JL
NCL
NCL+Conf

40

50

60

70

80

90

1 10 100

A
cc

u
ra

cy

% Users

Twitter : 10%

LR
PL-EM
ICA-Soft
JL
NCL
NCL+Conf

30

40

50

60

70

80

90

1 10 100

A
cc

u
ra

cy

% Users

Pokec : 2%

40

50

60

70

80

90

1 10 100

A
cc

u
ra

cy

% Users

Pokec : 5%

40

50

60

70

80

90

1 10 100

A
cc

u
ra

cy

% Users

Pokec : 10%

LR
PL-EM
ICA-Soft
JL
NCL
NCL+Conf

Figure 5: Precision-recall curves comparing different methods on Twitter(up) and Pokec(below) for k = 2% (left), 5%
(middle), 10% (right). The legend is the same for all charts and dropped in some charts to reduce clutter. [Best seen in color]

f0(u, v) = 1 (This is a bias feature)
f1(u, v) = 1 if edge (u, v) is bi-directional
f2(u, v) = 1

log(#followers(u)+1)
if u has a follower v

f3(u, v) = 1
log(#followees(v)+1)

if u follows v

f4(u, v) = 1
log(degree(u)+1)

+ 1
log(degree(v)+1)

f5(u, v) = 1
log(#followers(u)+1)

+ 1
log(#followers(v)+1)

... if u and v are follower-followee
f6(u, v) = 1

log(#followees(u)+1)
+ 1

log(#followees(v)+1)

... if u and v are follower-followee
f7(u, v) = 1 if u or v is observed node

f8(u, v) = 2 -
entropy(`ON(u))−entropy(`ON(v))

logm
where `ON(i)

are labels of i’s observed neighbors

Table 2: Edge features used by our models. The label argument
is missing because they only fire when u, v get the same label.

affinity values as defined in [19] for the two datasets are 7.7
and 2.8 respectively, which compares favorably to affinities
in other social networks [19]. Thus, both our datasets were
trained on the nine edge features alone. The parameter vec-
tor w represents weight of these nine features trained via
different methods. For methods from the iterative classi-
fier family, the features at a node u were a sum of features
in Table 2 over all neighbors v of u. Thus, all our meth-
ods used the same set of features and were trained with L2
regularization.

We select various subsets O of observed nodes in a clus-
tered manner to simulate homophily in the level of privacy
that a user prefers. Starting from a random node, we select
its neighbor with probability β and teleport to some other
node with probability 1-β. We set β as 0.85. We found that
relative performance was not too sensitive to β and even for
β as small as 0.5 we got similar curves. To select a set O
of size k, we take k steps in this random walk. We used k
values for 2%, 5% and 10% of the graph size. For each k,
we select 10 random O sets and average over these 10 runs.
We measure statistical significance using a student’s t-test

over the 10 seeds and accuracy at the top-p% most confident
predictions for p=1,2,. . . ,10%. Since our focus is accuracy
at the top, we do not consider larger p.

6.3 Results
In Figure 5 we plot the PR curves for six4 methods for

Twitter on the first row and Pokec on the second and for k =
2% on the left, k = 5% in the middle, and k = 10% on the
right. The Y-axis is the accuracy on the top-X% predictions
sorted on the confidence pu output by each method. We used
a log scale on the X-axis because our focus is accuracy on the
top-few most confident predictions. The overall accuracy of
a method is the Y-axis value when X-value is 100%. We
make the following observations from these plots.

1. The overall accuracy of different methods ranges from
26%–41% for Twitter and 27–47% for Pokec. The vari-
ation in the overall accuracy of different methods is not
of consequence because even the maximum is too low
to be useful in practice.

2. If we focus on accuracy among the top 1% to 20%
predictions we get a more positive story. Many meth-
ods provide high accuracy in this selected set, which
touches 95% with the top 1–3% predictions. As we
compare graphs from left to right for increasing k, we
see that the top accuracy increases with k.

3. The best selective accuracy is provided by our decou-
pled approach NCL+Conf. In all cases, NCL+Conf
dominates all other methods for top-20% predictions
even though its overall accuracy is the same. For exam-
ple, with 5% observed nodes if our goal is 85% accuracy
we can find four and 2.1 times more predictions than
any other method on Twitter and Pokec respectively.
The gain of NCL+Conf is statistically significant with
p-value < 10−27 for all six cases.

4. Between the two graphical model approaches, NCL
provides better calibration than JL, even though the

4The ICA-NoLoop and ICA methods were superseded by
ICA-Soft and LR and were not plotted to reduce clutter.

O % NCL+Conf NCL ICA-Soft LR
Twitter

2 0.0/6.0 0.0/0.6 0.0/1.4 0.0/1.2
5 1.5/18.1 0.0/5.1 0.08/3.5 0.15/4.6
10 4.3/24.8 0.0/10.2 0.2/7.7 0.3/10.1

Pokec
2 3.5/15.3 0.0/0.1 0.0/2.6 0.0/4.6
5 8.8/23.1 0.0/7.0 0.0/0.03 2.1/14.4
10 8.0/23 0.02/18.7 0.02/14.4 6.8/22.6

Table 3: % of nodes selected at accuracy 90% (above the slash)
& at accuracy 80% (below the slash) for Twitter and Pokec.

40

50

60

70

80

90

1 10 100

A
cc

u
ra

cy

% Users

Twitter: 5%

JL
JL+Conf
NCL
NCL+Conf

40

50

60

70

80

90

1 10 100

A
cc

u
ra

cy

% Users

Pokec: 5%

JL
JL+Conf
NCL
NCL+Conf

Figure 6: PR curves to compare gain of second stage on JL and
NCL on Twitter and Pokec datasets with k = 5%.

overall accuracies are comparable. See for example,
Pokec 5%. This confirms that conditional likelihood
is a better objective for selective prediction. The gain
of NCL over JL is statistically significant with p-value
< 10−4 in all cases except Pokec-10% where it is 0.04.

5. The method closest to NCL from the existing liter-
ature, PL-EM, does not provide good calibration for
k = 2, 5% but is okay for larger k, corroborating the
conclusion of [29] that PL-EM is good with many ob-
served nodes. On overall accuracy PL-EM is com-
petive with JL as observed in [29], but on the top-10%
accuracy, JL scores over PL-EM in all cases.

6. Among the iterative classification methods, ICA-Soft
that conditions on marginal probability provides steadily
better results than ICA that conditions on hard predic-
tions. ICA-Soft is comparable to JL — slightly better
than it for 2% but worse for 5% and 10%. ICA-Soft is
worse than NCL in most cases.

7. The LR method is good in a narrow range but degrades
rapidly, particularly for 2% observations. This is be-
cause for the few nodes with many observed neighbors
the classifier is able to assign high confidence. But,
there is no generalization beyond this narrow set.

As further evidence of the effectiveness of NCL+Conf for
selective prediction, in Table 3 we show the fraction of nodes
selected at two target accuracy values (80% and 90%) via
four methods for 2, 5, and 10% observed nodes. We see that
NCL+Conf is able to make selective predictions on signifi-
cantly more nodes than others, particularly when size of O is
small. For example, on Pokec 2% when the target accuracy
is 90%, we are able to select 3.5% nodes whereas none of the
other approach can select any node. For a target accuracy of
80%, NCL+Conf can select between 2k and 7k nodes where
k is the size of O.

6.3.1 Efficacy of our confidence estimator
Since our main gain is from the second stage confidence

model, we perform two experiments to analyze this stage

60

70

80

90

1 10

A
cc

u
ra

cy

% Users

Twitter

NCL+Conf 5%

NCL+Split 5%

NCL+Conf 2%

NCL+Split 2%
70

80

90

1 10

A
cc

u
ra

cy

% Users

Pokec

NCL+Conf 5%

NCL+Split 5%

NCL+Conf 2%

NCL+Split 2%

Figure 7: Comparing two different methods of training the sec-
ond stage model: (1) our leave one out strategy (NCL+Conf) and
(2) 70-30 split of labeled data across the two stages (NCL+Split)
for k=5% and 2%.

Method
2% Twitter 5% Twitter 5% Pokec
Learn Infer Learn Infer Learn Infer

LR 0.1 42.9 0.2 48.4 0.2 42.1
ICA-Soft 601 3971 19 216 163 14717
PL-EM 16 1265 3416 4380 4533 13115
JL 227 2378 69 2749 198 14621
NCL 846 4584 696 4994 5334 909
NCL+Conf 1414 4627 2701 5042 11771 950

Table 4: Learning and inference time in seconds.

further. First, we check whether the lift in top-accuracy
of NCL due to the second stage, holds for other methods
too, e.g. JL. In Figure 6 we show PR curves for JL and
JL+Conf for Twitter and Pokec with k = 5%. We observe
that JL+Conf is indeed much better than JL although on
Pokec it continues to be worse than NCL+Conf because on
that dataset even JL is much worse than NCL. Second, we
check the gain due to our specific method of creating an
unbiased training set over all observed nodes through our
novel mini-graph inference method. We compare with the
standard practice of splitting the observed nodes over the
two stages. In Figure 7 we measure accuracy of NCL+Conf
with NCL+Split which uses 70% of O as observed nodes
for NCL inference and 30% for training the second stage.
We observe that NCL+Conf shows a statistically significant
gain over NCL+Split for both k = 2% and 5%.

6.3.2 Running time
In Table 4 we show the time taken for learning and infer-

ence using various methods on a sequential program on a 2.5
GHz Intel Xeon linux server with 8 GB RAM. As expected,
the plain LR model is the fastest because it only looks at
the small number of observed nodes during training. The
running time for all graphical model-based methods show
a lot of variability because the convergence of inference is
dependent on the potentials, the observed nodes, and edge
density. Roughly, learning+inference on Twitter takes an
hour, whereas on Pokec it is three hours. The training time
for NCL+Conf is two to four times more than NCL and most
of it goes in computing the mini-graph instances. However,
this part of the code is trivially parallelizable.

6.3.3 Pruning efficiency
In this section we analyze the running time versus accu-

racy trade offs due to our pruning strategy. In Figure 8 we
plot average error in the probability of the true label and
average inference time (log-scale) over hundred nodes for in-
creasing sizes of the mini-graph. The X-axis varies from a
minigraph size of 5 nodes to the full graph. We observe that

0.0001

0.01

1

100

10000

0.000

0.005

0.010

0.015

0.020

0.025

5 5000

Ti
m

e
in

 s
ec

 (
lo

g)

Er
ro

r

Mini-graph Size

Twitter: 2%

Error

Time

0.0001

0.01

1

100

10000

0.000
0.002
0.004
0.006
0.008
0.010
0.012
0.014

5 500 50000

Ti
m

e
in

 s
ec

 (
lo

g)

Er
ro

r

Mini-graph Size

Twitter: 5%
Error
Time

0.0001

0.01

1

100

0.000

0.005

0.010

0.015

0.020

0.025

5 500 50000

Ti
m

e
in

 s
ec

 (
lo

g)

Er
ro

r

Mini-graph Size

Pokec: 2%

Error
Time

0.0001

0.01

1

100

10000

0.000
0.005
0.010
0.015
0.020
0.025
0.030

5 500 50000

Ti
m

e
in

 s
ec

 (
lo

g)

Er
ro

r

Mini-graph Size

Pokec: 5%

Error
Time

Figure 8: Error and inference time for increasingly pruned graph for Twitter and Pokec with 2% and 5% observed nodes.

the running time drops by several orders of magnitude when
we prune mini-graphs so that the error is ≤ 0.002. This
shows that our pruning strategy is effective for the leave one
out inference needed for well-calibrated probabilities.

7. CONCLUSION AND FUTURE WORK
In this paper we defined and motivated the problem of

selective prediction of labels in a social network. Our study
over two large social networks revealed that existing graph-
based prediction algorithms do not provide well-calibrated
probabilities — a pre-requisite for selective prediction. We
proposed a new node conditional likelihood objective for
training a graphical model-based prediction algorithm, and
a decoupled model for confidence estimation based on a
novel unbiased training process. We provided theoretically
sound graph pruning strategies for training the new objec-
tive. These ideas together provide an accurate and practical
mechanism for selective predictions in social networks.

An important outcome of our work is that it raises even
graver privacy concerns, than the ones raised in earlier stud-
ies based on overall accuracy [31]. An interesting area of
future work is understanding the relationship between in-
formation blurring models and selective prediction models.

8. REFERENCES
[1] V. Avadhanula. Selective node labeling in social networks.

Master’s thesis, IIT Bombay, 2013.
[2] A. Azran. The rendezvous algorithm: Multiclass

semi-supervised learning with markov random walks. In
ICML, 2007.

[3] S. Bhagat, G. Cormode, and S. Muthukrishnan. Node
classification in social networks. In SNDA. 2011.

[4] M. Bilgic and L. Getoor. Effective label acquisition for
collective classification. In Proc. ACM SIGKDD, 2008.

[5] S. Chakrabarti, B. Dom, and P. Indyk. Enhanced hypertext
categorization using hyperlinks. SIGMOD Rec.,
27(2):307–318, 1998.

[6] O. Chapelle, B. Schölkopf, and A. Zien, editors.
Semi-Supervised Learning. MIT Press, 2006.

[7] G. Chaudhari. High confidence predictions in social
networks. Master’s thesis, IIT Bombay, 2013.

[8] A. Chechetka and C. Guestrin. Focused belief propagation
for query-specific inference. JMLR, 9:89–96, 2010.

[9] Z. Cheng, J. Caverlee, and K. Lee. You are where you
tweet: a content-based approach to geo-locating twitter
users. In CIKM, 2010.

[10] J. Eisenstein, B. O’Connor, N. A. Smith, and E. P. Xing. A
latent variable model for geographic lexical variation. In
Proc. EMNLP, 2010.

[11] T. Hazan and R. Urtasun. A primal-dual message-passing
algorithm for approximated large scale structured
prediction. In NIPS, 2010.

[12] L. Hong, A. Ahmed, S. Gurumurthy, A. J. Smola, and
K. Tsioutsiouliklis. Discovering geographical topics in the
twitter stream. In Proc WWW, 2012.

[13] D. Koller and N. Friedman. Probabilistic Graphical Models:
Principles and Techniques. MIT Press, 2009.

[14] D. Koutra, T.-Y. Ke, U. Kang, D. H. Chau, H.-K. K. Pao,
and C. Faloutsos. Unifying guilt-by-association approaches:
Theorems and fast algorithms. In ECML/PKDD (2), 2011.

[15] Q. Lu and L. Getoor. Link-based classification. In Machine
Learning, ICML, pages 496–503, 2003.

[16] S. A. Macskassy and F. J. Provost. Classification in
networked data: A toolkit and a univariate case study.
JMLR, 8:935–983, 2007.

[17] J. Mahmud, J. Nichols, and C. Drews. Where is this tweet
from? inferring home locations of twitter users. In Proc.
ICWSM, 2012.

[18] L. K. McDowell, K. M. Gupta, and D. W. Aha. Cautious
collective classification. JMLR, 10:2777–2836, 2009.

[19] A. Mislove, B. Viswanath, P. K. Gummadi, and
P. Druschel. You are who you know: inferring user profiles
in online social networks. In WSDM, 2010.

[20] J. Neville and D. Jensen. Relational dependency networks.
Journal of Machine Learning Research, 8, 2007.

[21] J. Neville and F. Provost. Predictive modeling with social
networks. ICWSM, Tutorial, 2009.

[22] A. Sadilek, H. Kautz, and J. P. Bigham. Finding your
friends and following them to where you are. In WSDM,
2012.

[23] A. G. Schwing, T. Hazan, M. Pollefeys, and R. Urtasun.
Efficient structured prediction with latent variables for
general graphical models. In ICML, 2012.

[24] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Gallagher, and
T. Eliassi-Rad. Collective classification in network data. AI
Magazine, 29(3):93–106, 2008.

[25] M. Szummer and T. Jaakkola. Partially labeled
classification with markov random walks. In NIPS, 2001.

[26] P. P. Talukdar, J. Reisinger, M. Pasca, D. Ravichandran,
R. Bhagat, and F. Pereira. Weakly-supervised acquisition
of labeled class instances using graph random walks. In
EMNLP, 2008.

[27] B. Taskar, E. Segal, and D. Koller. Probabilistic
classification and clustering in relational data. In IJCAI,
2001.

[28] U. Weinsberg, S. Bhagat, S. Ioannidis, and N. Taft.
Blurme: inferring and obfuscating user gender based on
ratings. In RecSys, 2012.

[29] R. Xiang and J. Neville. Pseudolikelihood em for
within-network relational learning. In ICDM, 2008.

[30] R. Xiang and J. Neville. Collective inference for network
data with copula latent markov networks. In WSDM, 2013.

[31] E. Zheleva and L. Getoor. To join or not to join: the
illusion of privacy in social networks with mixed public and
private user profiles. In Proc. WWW, 2009.

[32] D. Zhou, O. Bousquet, T. N. Lal, J. Weston, and
B. Schölkopf. Learning with local and global consistency. In
NIPS, 2003.

