Math of Data Science: Lecture 1

Vlad Kobzar

APAM, Columbia

September 6, 2022

- Course intro

Course intro

Problems involving data analysis:

- Unsupervised learning/dimensionality reduction
- PCA and various other types of matrix factorization and completion
- Problems on graphs, such as clustering
- (Self)supervised learning
- regression (including sparse regression, compressed sensing, kernel methods, regularization techniques)
- classification, including logistic regression and SVM and kernelized SVM
- mathematical aspects of deep learning (including CNNs and models for sequential data and graphs);
- Learning with incomplete information/policies for interaction with the environment
- "bandit" problems, Markov decision processes, mathematical aspects of reinforcement learning
- Combine theory and computation
- Theory tells us about solutions and how to find them
- Computation allows us to find solutions
- They are related: understanding computational methods is a type of theory

Tools

- The main math tools for this course are linear algebra and probability/statistics
- The main computational tool is optimization
- Probability and statistics will come in two forms:
- Randomized models: data is modeled by some unknown distribution; the problem would entail estimating that distribution
- Randomized algorithms, e.g., stochastic gradient descent

Regression example

n data points $\left(a_{1}, b_{1}\right), \ldots,\left(a_{n}, b_{n}\right) \in \mathbb{R}^{d} \times \mathbb{R}$ organized as

- The feature matrix $A=\left[\begin{array}{c}-a_{1}- \\ -a_{2}- \\ \vdots \\ -a_{n}-\end{array}\right] \in \mathbb{R}^{n \times d}$
- The response vector $b=\left[\begin{array}{c}b_{1} \\ b_{2} \\ \vdots \\ b_{n}\end{array}\right] \in \mathbb{R}^{n}$
- E.g., NOAA publishes hourly observation of temperature at various stations across the US
- Can we predict the temperature \hat{b}_{τ} at time τ at Yellowstone from the contemporaneous observations at other stations a_{τ} (e.g., if the Yellowstone sensor fails)?
- Use the observations A and b from the periods when all the sensors were working

OLS: closed form sol'n

- Minimize the least-squares fit between the data and a linear model

$$
\hat{x}=\arg \min _{x} R(x)
$$

where

$$
\begin{aligned}
R(x) & =\sum_{t=1}^{n}\left(b_{t}-\left\langle a_{t}, x\right\rangle\right)^{2}=\|b-A x\|_{2}^{2} \\
& =x^{\top} A^{\top} A x-2 b^{\top} A x+b^{\top} b
\end{aligned}
$$

- If A is full rank and $n \geq d$ ("big data" regime), then $A^{\top} A$ is positive definite
- Using the 2nd deriv test gives

$$
\hat{x}=\left(A^{\top} A\right)^{-1} A^{\top} b
$$

OLS: computational aspects

$$
\hat{x}=\arg \min _{x} R(a)=\left(A^{\top} A\right)^{-1} A^{\top} b
$$

- But if d is large, inverting $A^{\top} A$ is computationally expensive
- Use iterative optimization methods (e.g., conjugate gradient)
- Since R is convex, convergence is guaranteed; can study rates

OLS: stats interpretation

- If

$$
b \sim N\left(A x, \sigma^{2} I\right)=A x+N\left(0, \sigma^{2} I\right)
$$

OLS is the value of x that makes the data most probable, i.e.

$$
\hat{x}=\arg \min _{x} R(a)=\arg \max _{x} L\left(x, \sigma^{2}\right)=x_{M L E}
$$

where

$$
R(x)=\|b-A x\|_{2}^{2}
$$

- Maximize the log of the likelihood fcn L w.r.t. x and σ^{2} :

$$
L\left(x, \sigma^{2}\right)=p\left(b \mid A x, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{\|b-A x\|^{2}}{2 \sigma^{2}}}
$$

- Again use the $2 n d$ deriv test

OLS: geometric interpretation

$$
\hat{x}=\arg \min _{x} R(x)
$$

where

$$
R(x)=\|b-A x\|_{2}^{2}
$$

- $A \hat{x}=U U^{T} b$ - projection of b on the span of the columns of A
- Prove using the SVD: $A=U \Sigma V^{\top}$.

Overfitting

- Small error on the training set, but high error on a test set because \hat{x} will fit the features that may not be relevant (e.g., sensors very far from Yellowstone)
- Can we find a sparse linear model?
- E.g., predict the Yellowstone temperatures based on observations from a small subset of the stations
- This subset is "learned" from the training data

Sparse regression (LASSO)

- Io penalty: $\|x\|_{0}=\#$ of nonzero entries of x
- This regularization enforces sparsity: for $\lambda>0$

$$
x_{0}=\arg \min _{x}\left(R(x)+\lambda\|x\|_{0}\right)
$$

- But is intractable (the objective not convex; I_{0} not a norm)
- Would a "relaxation" to the I_{1} norm also promote sparsity?
- LASSO
- Penalized form

$$
x_{1}=\arg \min _{x}\left(R(x)+\lambda\|x\|_{1}\right)
$$

- Equivalent to constrained form

$$
x_{1}=\arg \min _{\|\times\|_{1} \leq r} R(x)
$$

- Pf. by a Lagrange multiplier-type calculation

LASSO

- Constrained form

$$
x_{1}=\arg \min _{\|x\|_{1} \leq r} R(x)
$$

- By completing the squares,

$$
R(x)=(x-\hat{w})^{\top} A A^{\top}(x-\hat{w})+R(\hat{w})
$$

where the OLS solution \hat{w} of the unconstrained problem is the center of the ellipsoid OLS level sets

Figure: Level sets of $R(x)$ in red and the area satisfying $\|x\|_{1} \leq r$ in blue (Fig 13.3 from [2]).

Solving LASSO numerically

- No general closed form solution
- Even for OLS, the closed form solution is not used for large data sets due to computation cost of matrix inversion
- Since LASSO can be reduced to a convex optimization problem (QP), can use standard iterative solvers
- Can be more efficient to use other methods that exploit the structure of the lasso objective, e.g., the linear separability of the I^{1} norm

Sparse inverse problems

- If b in column space of A and $n<d$ ("inverse problem" regime, e.g. MRI), then $A x=b$ is an underdetermined system.
- But with sparsity and other technical assumptions, I_{1} minimization can exactly recover a sparse vector x.
- (Candes, Tao, Donoho) For

$$
\begin{gathered}
x^{*}=\arg \min \|x\|_{1} \\
\text { s.t. } b=A x
\end{gathered}
$$

if the row of A are not too localized so that they won't miss the entries of S-sparse x and if there is enough data $n \geq O(S \log d)$

- key idea entails recovering the support of x (i.e., indices of nonzero entries) and therefore reducing it to a well-posed problem.

Matrix completion

- Low rank models are common when only a few factors explain the variance in data organized in the matrix.
- Motivation: Netflix competition

	Bob	Molly	Mary	Larry
The Dark Knight				
Spiderman 3				
Love Actually				
Bridget Jones's Diary				
Pretty Woman				
Superman 2				

-7 \& -10 \& 8 \& 10

8 \& 10 \& -5 \& -9

10 \& 4 \& -6 \& -10

8 \& 9 \& -9 \& -4

-9 \& -8 \& 9 \& 10\end{array}\right):=A\),

- To make a recommendation, estimate missing entries

Bob Molly Mary Larry
X-Men 7: Mutant Mosquito (-10 ? $8 \quad 10$)

- Fit a low rank model using the SVD: $A=U \Sigma V^{T}$
- a truncated rank-k SVD is the best rank-k approximation of A

Matrix completion

- Low rank structure implies correlation between entries
- Netflix problem: How do we exploit it to predict missing entries?
- E.g. where a user is going to like a new movie
- E.g., if the below matrix is rank 1 , then we must have 1 in place of the missing entry.

$$
\left(\begin{array}{lll}
1 & ? & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right)=\mathbb{1}^{T}
$$

- This seems like an easy matrix to complete.

Matrix completion

- On the other hand, if a matrix is sparse or its rows correlate with the canonical basis, it seems much harder to complete

$$
\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & ?
\end{array}\right)=\left[\begin{array}{l}
0 \\
0 \\
?
\end{array}\right]\left[\begin{array}{lll}
0 & 0 & ?
\end{array}\right]
$$

Therefore differences in the structure of a low rank matrix may determine how hard or difficult it is to complete.

- Coherence (or localization of rows and columns) introduced previously is relevant here: for $A=U \Sigma V^{T}$
- For example, if the left singular vectors (columns of U) correlate with the canonical basis vectors, matrix will hard to complete.

Nuclear norm minimization

- Since rank is not a convex function, minimization of the rank subject to known entries $A_{0}=\left\{(i, j), a_{i j}\right\}$ is not computationally tractable.

$$
\begin{array}{ll}
(N) \quad & \min \operatorname{rank}(A) \\
& A \in \mathbb{R}^{m \times n} \\
& A_{i j}=a_{i j} \text { for }(i, j) \in A_{0}
\end{array}
$$

- Note that rank is an I_{0} "norm" of Σ for $A=U \Sigma V^{T}$.

Nuclear norm minimization

- Instead use a "convex relaxation" based on minimization of the nuclear norm:

$$
\begin{array}{ll}
(N) & \min \|A\|_{N} \\
& A \in \mathbb{R}^{m \times n} \\
& A_{i j}=a_{i j} \text { for }(i, j) \in A_{0}
\end{array}
$$

where

$$
\|A\|_{N}=\sum_{i=1}^{r} \sigma_{i}
$$

and σ_{i} are singular values and r is rank of A

- Note that rank is an I_{1} "norm" of Σ.

Movie ratings - policies for interacting with the environment

- Let a feature vector x describe a user
- We choose 1 out of 5 hit movies and recommend it to x
- We only get the feedback on the recommended movie
- Let's say the feedback is 3 out of 5 stars
- Next time we have a similar user $x^{\prime} \approx x$, should we recommend the same movie?
- Or try a different one hoping to get 5 stars?

k-armed bandit

In each $t \in[T]$,

- Environment samples reward $\left(X_{t}, R_{t}\right) \in \mathcal{X} \times \mathbb{R}^{k}$ from a fixed k-dimensional distribution P i.i.d.
- X_{t} is revealed to the player
- The player selects $A_{t} \in[k]$ based on history

$$
\mathcal{D}_{t}=\left(A_{1: t-1}, R_{1: t-1}, X_{1: t}\right)
$$

- Player receives the reward $R_{t}\left(A_{t}\right)$
- $R_{t}(a)$ for $a \neq A_{t}$ ("counterfactuals") are not revealed to the player
- A_{t} is not independent from R_{t} - information about R_{t} can propagate to A_{t} through X_{t}
- But A_{t} is conditionally independent from R_{t} given $X_{t}-R_{t}$ is not revealed to the player when it selects A_{t}.

Optimal policy

- Suppose we knew

$$
r(x, a)=\mathbb{E}[R \mid A=a, X=x]
$$

which gives the expected reward for each action.

- Then the optimal policy would be

$$
\pi_{t}^{*}\left(a \mid X_{t}, \mathcal{D}_{t}\right)=\mathbb{1}\left[a=\arg _{a} \max r\left(X_{t}, a\right)\right]
$$

- Here choosing an action according to policy π_{t} means choosing A_{t} randomly s.t.

$$
P\left(A_{t}=a\right)=\pi_{t}\left(a \mid X_{t}, \mathcal{D}_{t}\right)
$$

- Of course we don't know $r(x, a)$, but can we estimate it?

Next steps

- Review of linear algebra, probability and optimization
- PCA, least squares

References I

［1］Carlos Fernandez－Granda，DS－GA 1013 ／MATH－GA 2821 Mathematical Tools for Data Science，Lecture Notes， 2020
國［2］Kevin P．Murphy，Machine Learning：a Probabilistic Perspective，MIT Press， 2012

嗇［3］David Rosenberg，DS－GA 1003 Machine Learning and Computational Statistics，Lecture Notes， 2017

囦［4］David Rosenberg，DS－GA 3001：Tools and Techniques for Machine Learning，Lecture Notes，NYU Fall 2021， https：／／github．com／davidrosenberg／ttml2021fall
［5］Hastie，Tibshirani，Wainwright，Statistical Learning with Sparsity：The Lasso and Generalizations，Chapman \＆ Hall／CRC Monographs on Statistics and Applied Probability， 2015

