Math of Data Science: Lecture 2

Vlad Kobzar

APAM, Columbia

September 8, 2022

- Last time - course intro
- Today - linear algebra review: diagonalization, projections

Linear algebra - motivation

- Data is naturally represented by linear algebra objects
- vectors represent, e.g., features of the data or biases of a neural network
- matrices represent multiple observations of the features or weights of a neural network
- Understanding the structure of a matrix can reveal structure in the data, e.g, PCA
- Projections allow us to reduce dimensionality/denoise the data
- Numerical linear algebra allows us to perform matrix computations

Eigendecomposition

An eigenvector x of a square matrix A satisfies

$$
A x=\lambda x
$$

for scalar λ which is the corresponding eigenvalue. Even if A is real, in general its eigenvectors and eigenvalues can be complex.

Eigendecomposition

If a square matrix $A \in \mathbb{R}^{n \times n}$ has n linearly independent eigenvectors x_{1}, \ldots, x_{n} (with eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$), it can be expressed in terms of a matrix X, whose columns are the eigenvectors, and a diagonal matrix containing the eigenvalues,

$$
\begin{aligned}
A & =\left[\begin{array}{llll}
x_{1} & x_{2} & \cdots & x_{n}
\end{array}\right]\left[\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
& & \cdots & \\
0 & 0 & \cdots & \lambda_{n}
\end{array}\right]\left[\begin{array}{llll}
x_{1} & x_{2} & \cdots & x_{n}
\end{array}\right]^{-1} \\
& =X \wedge X^{-1}
\end{aligned}
$$

Pf:

$$
\begin{aligned}
A X & =\left[\begin{array}{llll}
A x_{1} & A x_{2} & \cdots & A x_{n}
\end{array}\right] \\
& =\left[\begin{array}{llll}
\lambda_{1} x_{1} & \lambda_{2} x_{2} & \cdots & \lambda_{n} x_{n}
\end{array}\right] \\
& =X \Lambda
\end{aligned}
$$

Example: computing matrix powers

Assume that we want to compute

$$
\begin{equation*}
A A \cdots A x=A^{k} x \tag{1}
\end{equation*}
$$

If A has an eigendecomposition,

$$
\begin{aligned}
A^{k} & =X \wedge X^{-1} X \wedge X^{-1} \cdots X \wedge X^{-1} \\
& =X \wedge^{k} X^{-1} \\
& =X\left[\begin{array}{cccc}
\lambda_{1}^{k} & 0 & \cdots & 0 \\
0 & \lambda_{2}^{k} & \cdots & 0 \\
0 & 0 & \cdots & \\
0 & \cdots & \lambda_{n}^{k}
\end{array}\right] X^{-1}
\end{aligned}
$$

Computing eigenvalues

- In your linear algebra course, you probably computed eigenvalues by solving the characteristic polynomial

$$
\operatorname{det}(A-\lambda I)=0
$$

- In practice, this is not feasible due to numerical stability issues
- Let $g(\lambda)=\operatorname{det} A$, and note that $g^{\prime}(\lambda)=\frac{\operatorname{det} A}{\lambda}$. Then a linear approximation of the determinant:

$$
\Delta x=\operatorname{det}(A-(\lambda+\Delta \lambda) I) \approx \operatorname{det} A-(\lambda+\Delta \lambda) \frac{\operatorname{det} A}{\lambda}
$$

- Thus if we have a numerical error of Δx when we evaluate the characteristic polynomial, it translates into error

$$
\Delta \lambda=-\frac{\lambda}{\operatorname{det} A} \Delta x
$$

for the particular eigenvalue, which is blows up if the other eigenvalues are small.

Computing eigenvectors - power method

- Let $A \in \mathbb{R}^{n \times n}$ be a matrix with eigendecomposition $X \wedge X^{-1}$ and let v be an arbitrary vector in \mathbb{R}^{n}.
- Since the columns of X are linearly independent, they form a basis for \mathbb{R}^{n}, so

$$
\begin{equation*}
v=\sum_{i=1}^{n} c_{i} X_{: i}, \quad c_{i} \in \mathbb{R}, 1 \leq i \leq n \tag{2}
\end{equation*}
$$

- Then,

$$
A^{k} v=\sum_{i=1}^{n} c_{i} A^{k} X_{: i}=\sum_{i=1}^{n} c_{i} \lambda_{i}^{k} X_{: i}
$$

- Assume that $\left|\lambda_{1}\right|>\left|\lambda_{2}\right| \geq \ldots$, and $c_{1} \neq 0$ (the latter happens with probability 1 if we draw a random v)
- Then as k grows, the term $c_{1} \lambda_{1}^{k} X_{: 1}$ will dominate the other terms.

Power method

- $c_{1} \lambda_{1}^{k} X_{: 1} \rightarrow \infty$ or 0 unless we normalize before applying A.

Algorithm 1: Power method

Input: A matrix A.

Output: An estimate of the eigenvector of A corresponding to the largest eigenvalue.
Initialization: Set $v_{1}:=v /\|v\|_{2}$, where v contains random entries.
For $i=1, \ldots, k$, compute

$$
v_{i}:=\frac{A v_{i-1}}{\left\|A v_{i-1}\right\|_{2}} .
$$

- This method has been reportedly used in Google's PageRank algorithm and industrial recommendation systems
- Mainly used for non-symmetric matrices

Symmetric matrices

- $S \in \mathbb{R}^{n \times n}$ is symmetric if $S^{\top}=S$ (or equivalently $S_{i j}=S_{j i}$.
- These matrices arise naturally in data science
- If, for example, $S_{i j}$ corresponds to some similarity measure, like covariance or distance between features i and j.

Symmetric matrices: eigendecomposition

If $S \in \mathbb{R}^{n \times n}$ is real symmetric, then it has an eigendecomposition of the form

$$
\begin{equation*}
S=Q \wedge Q^{T} \tag{3}
\end{equation*}
$$

where Λ is a real diagonal matrix and $Q=\left[\begin{array}{llll}q_{1} & q_{2} & \cdots & q_{n}\end{array}\right]$ is an orthogonal matrix.

- It turns out that every $n \times n$ symmetric matrix has n linearly independent vectors.
- The proof of this fact is not very instructive, so we'll just assume it as true.
- Then we can show that the eigenvalues are real and the eigenvectors are real and orthonormal

Symmetric matrices: real eigenvalues

- The conjugate transpose of a complex vector is $x^{*}:=\bar{x}^{\top}$, i.e., the imaginary part of each component of the transpose x^{\top} of x is negated.
- One can see that $x^{*} x=\langle x, x\rangle=\|x\|_{2}^{2}$.
- Conjugation distributes over multiplication, e.g., $(\lambda x)^{*}=\bar{\lambda} x^{*}$
- Assuming an eigenvector x has norm 1

$$
x^{*} S x=\lambda x^{*} x=\lambda
$$

and at the same time

$$
x^{*} S x=(S x)^{*} x=(\lambda x)^{*} x=\bar{\lambda}
$$

- Thus, $\lambda=\bar{\lambda}$ and therefore its imaginary part is zero

Symmetric matrices: real eigenvalues

- If an eigenvector is complex, then its real and/or imaginary parts $y, z \in \mathbb{R}^{n}$ are also eigenvector(s) to the extent they are nonzero

$$
S(y+i z)=\lambda(y+i z) \rightarrow S y=\lambda y, S z=\lambda z
$$

- And at least one of them must be nonzero since the complex eigenvector is nonzero

Symmetric matrices: eigenvectors are orthonormal

- If m linearly independent eigenvectors correspond to the same eigenvalue λ, then their linear combination is also an eigenvector corresponding to λ.
- Therefore, they can be orthonormalized by Gram-Schmidt (see p. 128 of Strang)
- The resulting orthonormal set will also be m linearly independent eigenvectors corresponding to λ

Symmetric matrices: eigenvectors are orthonormal

- If two eigenvectors correspond to different eigenvalues, first assume one of them is zero and the other λ is not:

$$
S x=\lambda x \text { and } S y=0
$$

- For any matrix A, the nullspace $\mathrm{N}(A)$ is orthogonal to the column space $C\left(A^{T}\right)$ of its transpose (see, e.g., p. 31 of Strang)
- And for a symmetric matrix $S, C\left(S^{T}\right)=C(S)$
- Since $x \in C(S)$ and $y \in N(S)$, we have $x \perp y$.

Symmetric matrices: eigenvectors are orthonormal

- If two eigenvectors correspond to two different nonzero eigenvalues:

$$
S x=\lambda x \text { and } S y=\alpha y
$$

then

$$
(S-\alpha I) y=0
$$

and

$$
(S-\alpha I) x=(\lambda-\alpha) x
$$

for $\lambda-\alpha \neq 0$

- Since $x \in C(S-\alpha I)$ and $y \in N(S-\alpha I)$, we again have $x \perp y$.

Eigendecomposition of S as an optimization problem

- The eigenvalues $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{n}$ of a symmetric matrix S, determine the quadratic form:

$$
\begin{equation*}
f(x):=x^{T} S x=x^{T} Q \wedge Q^{T} x=\sum_{i=1}^{n} \lambda_{i}\left(x^{T} q_{i}\right)^{2} \tag{4}
\end{equation*}
$$

- λ_{1} is the maximum attained by f if $\|x\|_{2}=1$
- λ_{2} is the maximum if we restrict x to be normalized and orthogonal to the first eigenvector q_{1}, and so on.

Eigendecomposition of S as an optimization problem

Theorem
For any symmetric matrix $S \in \mathbb{R}^{n}$ with normalized eigenvectors $q_{1}, q_{2}, \ldots, q_{n}$ with corresponding eigenvalues $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{n}$

$$
\begin{align*}
& \lambda_{1}=\max _{\|q\|_{2}=1} q^{T} S q, \tag{5}\\
& q_{1}=\arg \max _{\|q\|_{2}=1} q^{T} S q, \tag{6}\\
& \lambda_{k}=\max _{\|q\|_{2}=1, q \perp q_{1}, \ldots, q_{k-1}} q^{T} S q \tag{7}\\
& q_{k}=\arg \max _{\|q\|_{2}=1, q \perp q_{1}, \ldots, q_{k-1}} q^{T} S q . \tag{8}
\end{align*}
$$

Eigendecomposition of S as an optimization problem

- The eigenvectors are an orthonormal basis (they are mutually orthogonal and we assume that they have been normalized)
- so we can represent any unit-norm vector h_{k} that is orthogonal to q_{1}, \ldots, q_{k-1} as

$$
\begin{equation*}
h_{k}=\sum_{i=k}^{n} \alpha_{i} q_{i} \tag{9}
\end{equation*}
$$

where

$$
\begin{equation*}
\left\|h_{k}\right\|_{2}^{2}=\sum_{i=k}^{n} \alpha_{i}^{2}=1 \tag{10}
\end{equation*}
$$

Note that h_{1} is just an arbitrary unit-norm vector.

Eigendecomposition of S as an optimization problem

- Now we will show that the value of $f\left(h_{k}\right)$ when the normalized h_{k} is restricted to be orthogonal to q_{1}, \ldots, q_{k-1} cannot be larger than λ_{k},

$$
\begin{aligned}
h_{k}^{T} S h_{k} & =\sum_{i=1}^{n} \lambda_{i}\left(\sum_{j=k}^{m} \alpha_{j} q_{i}^{T} q_{j}\right)^{2} \quad \text { by }(4) \text { and (9) } \\
& =\sum_{i=1}^{n} \lambda_{i} \alpha_{i}^{2} \quad \text { because } q_{1}, \ldots, q_{m} \text { is an orthonormal basis } \\
& \leq \lambda_{k} \sum_{i=k}^{m} \alpha_{i}^{2} \quad \text { because } \lambda_{k} \geq \lambda_{k+1} \geq \ldots \geq \lambda_{m} \\
& =\lambda_{k}, \quad \text { by }(10) .
\end{aligned}
$$

Eigendecomposition of S as an optimization problem

- To prove the theorem we just need to show that q_{k} achieves the maximum:

$$
\begin{aligned}
q_{k}^{T} S q_{k} & =\sum_{i=1}^{n} \lambda_{i}\left(q_{i}^{T} q_{k}\right)^{2} \\
& =\lambda_{k}
\end{aligned}
$$

Projections - motivation

- Data is naturally represented by vectors and matrices
- Projections allow us to:
- reduce dimensionality/denoise data;
- use iterative optimization methods to minimize a function subject to constraints

Projections

- Any matrix $U \in \mathbb{R}^{k \times m}$ can be viewed as a "projection"
- It is linear transformation $U: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$
- Any matrix $P \in \mathbb{R}^{m \times m}$ that satisfies $P^{2}=P$ is called a projection matrix.
- It's image or $C(P)$ is a k-dimensional linear subspace of \mathbb{R}^{m}, e.g., a line, plane or hyperplane
- A projection Π (satisfying $\Pi^{2}=\Pi$) to a non-linear subset, e.g.
I^{2} unit ball, won't be given by a matrix

Orthogonal projections

- If $U \in \mathbb{R}^{k \times m}$ has orthonormal rows (can happen only if $k \leq m$), then $U U^{T}=I$
- $P=U^{T} U$ is a symmetric projection matrix

$$
P^{2}=\left(U^{T} U\right) U^{T} U=U^{T} I U=P
$$

- The basis of the subspace is given by rows of U.
- Example $U=[\cos \theta \sin \theta]$.

Orthogonal projections

- Strang defines orthogonal projection as follows: "If

$$
P^{2}=P=P^{T}
$$

then $P b$ is the orthogonal projection of b on the column space of P."

- Would this definition be equivalent if $P=U^{T} U$ for some $U \in \mathbb{R}^{k \times m}$ with orthonormal rows instead of $P^{T}=P$? (One direction is shown on the previous page).

Orthogonal projections

- We can prove the other direction: i.e.,

$$
P^{2}=P \text { and } P^{T}=P \Rightarrow P=U^{T} U
$$

for some $U \in \mathbb{R}^{k \times m}$ with orthonormal rows

- $P^{T}=P$ implies that $P=V^{T} \wedge V$ for an orthogonal $V \in \mathbb{R}^{m}$
- $P^{2}=\left(V^{T} \wedge V\right) V^{T} \wedge V=V^{T} \Lambda^{2} V=V^{\top} \wedge V=P$,
- This in turn implies that $\Lambda^{2}=\Lambda$
- Therefore, Λ can only have 0 and 1 entries on the diagonal
- Take U to be V after removing the rows in the position corresponding to the zero eigenvalues
- Then: $P=U^{T} U$

Projections

Theorem (Properties of orthogonal projections)
Every vector $x \in \mathbb{R}^{m}$ has a unique orthogonal projection Px onto any subspace $\mathcal{S} \subseteq \mathbb{R}^{m}$ of finite dimension. In particular x can be expressed as

$$
\begin{equation*}
x=P x+(I-P) x \tag{11}
\end{equation*}
$$

- One can prove that $(I-P)$ is also an orthogonal projection
- And it's a projection on the orthogonal complement \mathcal{S}^{\perp}

Projections

- Assume $x_{1}^{\prime} \in \mathcal{S}, x_{2}^{\prime} \in \mathcal{S}^{\perp}$ such that $x=x_{1}^{\prime}+x_{2}^{\prime}$
- Since $\left(x_{1}-x_{1}^{\prime}\right)+\left(x_{2}-x_{2}^{\prime}\right)=0,\left\|\left(x_{1}^{\prime}-x_{1}\right)+\left(x_{2}-x_{2}^{\prime}\right)\right\|=0$
- Then $x_{1}-x_{1}^{\prime} \in \mathcal{S}$ and $x_{2}-x_{2}^{\prime} \in \mathcal{S}^{\perp}$ implies

$$
\left\|\left(x_{1}^{\prime}-x_{1}\right)+\left(x_{2}-x_{2}^{\prime}\right)\right\|^{2}=\left\|\left(x_{1}^{\prime}-x_{1}\right)\right\|^{2}+\left\|\left(x_{2}-x_{2}^{\prime}\right)\right\|^{2}
$$

- so the above expression is zero, i.e., orthogonal projection is unique.

Projections as optimization

Theorem
The orthogonal projection $P \times$ of a vector x onto a subspace \mathcal{S} is the closest vector to x in the I^{2} norm that belongs to \mathcal{S} in , i.e. P_{x} solves the optimization problem

$$
\begin{array}{lr}
\underset{u}{\operatorname{minimize}} & \|x-u\| \\
\text { subject to } & u \in \mathcal{S} .
\end{array}
$$

Projections as optimization

Proof.

- Take any point $u \in \mathcal{S}$ such that $u \neq P x$

$$
\begin{align*}
\|x-u\|^{2} & =\|(I-P) x+P x-u\|^{2} \tag{12}\\
& =\|(I-P) x\|^{2}+\|P x-u\|^{2}+2\langle(I-P) x, P x-u\rangle \tag{13}\\
& =\|(I-P) x\|^{2}+\|P x-u\|^{2} \tag{14}
\end{align*}
$$

where (14) follows because $(I-P) \times$ belongs to S^{\perp} and $P x-u$ to S.

- If $u \neq P x$, then $\|P x-u\|^{2}>0$.
- Therefore, the optimal $u=P x$.

Next steps

- Finish review of linear algebra: SVD
- Review probability and optimization
- PCA

References I

囲 [1] Strang, Linear Algebra and Learning from Data, Wellesley Cambridge Press, 20192012
[0] [2] Carlos Fernandez-Granda, DS-GA 1013 / MATH-GA 2821 Mathematical Tools for Data Science, Lecture Notes, 2020
[3] Carlos Fernandez-Granda, Probability and Statistics for Data Science, Lecture Notes, 2017 https://cims.nyu.edu/ ~cfgranda/pages/stuff/probability_stats_for_DS.pdf

