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Math of Data Science: Lecture 3

Vlad Kobzar

APAM, Columbia

Sept. 13, 2022
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Course progress

I Last time - diagonalization of square matrices, projections

I Today - singular value decomposition (SVD)



3/19

SVD - motivation

I Last time we studied diagonalization (eigendecomposition) of
symmetric square matrices

S = QΛQT

I Non-symmetric square matrices
I can be also diagonalized if they have n linearly independent

eigenvectors,
A = XΛX−1

I but eigenvectors may not be orthogonal and the
eigenvalues/eigenvectors may be complex-valued

I To avoid these issues use SVD

I More generally use SVD for A ∈ Rm×n of arbitrary dimension

A = UΣV T

where U ∈ Rm×m and V ∈ Rn×n are orthogonal and
Σ ∈ Rm×n is “diagonal”.
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Background - LU factorization
I Previously encountered other factorizations of nonsquare

matrices.
I For A ∈ Rm×n with m ≤ n, Ax = b can be solved by LU

factorization
I Elimination leads to Ux = L−1x = c where L ∈ Rm×m is the

lower triangular matrix of multipliers of pivot rows,

L =


1 0 0 0
l21 1 0 0
l31 l32 1 0
l41 l42 l43 1


and l21 = a21/a11, l21 = a21/a11, l41 = a41/a11, etc., and
U ∈ Rm×n is an upper triangular matrix of pivot rows.

I Backsubstitution of Ux = c leads to x
I We have factored A = LU

I Not commonly used in practice when the system is
underdetermined (m < n).
I Instead use regularization (will study later) to fix a solution
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Background - QR factorization

I A full rank A = QR where Q ∈ Rm×m is orthogonal
andR ∈ Rm×m is triangular

I Achieved by orthogonalizing col(A) (Gram-Schmidt)
I q1 = a1
I q̂i = ai −

∑i−1
j=1〈qj , ai 〉qj

I qi = q̂i/‖q̂i‖
I Therefore, each ai is a linear combination of q1, . . . , qi−1, i.e.

R is upper triangular

I QR factorization can be generalized to nonsquare matrices

I Commonly used for least squares and related problems (if A is
sparse, there are better algorithms) - will also study later
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SVD -reduced form

I Another factorization A = CR with rank r
I The shape of CR is (m by n) = (m by r)(r by n)
I C with r orthogonal columns, and
I R with r orthogonal rows

I Normalization leads to the reduced form of the SVD

A =
[
u1 u2 · · · ur

] 
σ1 0 · · · 0
0 σ2 · · · 0

· · ·
0 0 · · · σr



v1
v2
· · ·
vr


= UrΣrV

T
r

I where C = Ur

√
Σr and R =

√
ΣrV

T
r , and σi > 0

I If you choose σi to be in descending order, then Σr is unique
(but U and V are not necessarily unique)
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Full SVD
I Add the m − r orthogonal vectors that span C (A)⊥ as

columns to Ur

I Add the n − r orthogonal vectors that span N(A) as columns
of Vr

I Add σr+1, ..., σn = 0 to Σr

A =
[
u1 u2 · · · um

]

σ1

σ2 0
. . .

σr
0 0



v1
v2
· · ·
vn


= UΣV T

where Σ is a Rm×n rather than a square Rr×r matrix.
I For symmetric PSD matrices U = V by the

eigendecomposition, so it’s a special case of the SVD
I For other symmetric matrices, the SVD generalizes

eigendecomposition modulo the sign(s) of σi , vi , ui .
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SVD

I The proof of the SVD existence is constructive and based on
the eigendecomposition of symmetric matrices

I ATA and AAT which are positive semidefinite and have the
same nonzero eigenvalues

ATA = VΛV T = (VΣUT )(UΣV T )

AAT = UΛUT = (UΣV T )(VΣTUT )

where σk =
√
λk for λk > 0 and the remaining entries of Σ

are zero.
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SVD

I By the previous page

ATA = VΛV T [= (VΣUT )(UΣV T )]

where σk =
√
λk for λk 6= 0 and the remaining entries of Σ

are zero.

I To determine uk we require Avk = σkuk
I This would imply AV = ΣU, and therefore the existence of

SVD

Avk = σkuk ⇒ uk =
Avk
σk

I Add the m − r orthogonal vectors ur+1, . . . , um that span
C (A)⊥ as columns to U

I And add the n − r orthogonal vectors vr+1, . . . , vn that span
N(A) as columns of V to get the full SVD
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SVD

I To confirm that uk are eigenvectors of AAT , i.e.,

AAT = UΛUT = (UΣV T )(VΣTUT )

we take

AATuk = AAT Avk
σk

= A
ATAvk
σk

= A
σ2kvk
σk

= σ2kuk

I To confirm that uk are orthonormal:

uTj uk =
(Avj
σj

)T Avk
σk

=
vTj (ATAvk)

σjσk
=
σk
σj

vTj vk =

{
1 if j = k

0 if j 6= k
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Geometric interpretation of SVD

I SVD can be represented as rotation x stretching x rotation

Figure: Fig I.10 from [1]

I V or U can also entail reflections along an n − 1 dimensional
hyperplane (if detA < 0)
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SVD and spectral norms

I For any matrix A ∈ Rm×n with left singular vectors
u1, u2, . . . , ur corresponding to the nonzero singular values
σ1 ≥ σ2 ≥ . . . ≥ σr > 0,

σ1 = max
||u||2=1

||ATu||2,

u1 = arg max
||u||2=1

||ATu||2,

σk = max
||u||2=1

u⊥u1,...,uk−1

||ATu||2, 2 ≤ k ≤ r ,

uk = arg max
||u||2=1

u⊥u1,...,uk−1

||ATu||2, 2 ≤ k ≤ r .
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SVD and spectral norms

I Soln: If A = UΣV T is a reduced form SVD then

AAT = UΣV TVΣUT = UΣ2UT ,

where Σ2 is a diagonal Rr×r matrix containing
σ21 ≥ σ22 ≥ . . . ≥ σ2r in its diagonal.

I The result now follows from applying the optimization-based
formulation of eigendecomposition we discussed in Lecture 2
to the quadratic form

uAATu = ||ATu||22.
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SVD is the best k-rank approximation

I Unlike other matrix factorizations, SVD has a property that is
often exploited in data science applications

I Let Ak = σ1u1v
T
1 + ...+ σkukv

T
k .

I It is the best k-rank approximation of A, i.e.,

‖A− Ak‖ ≤ ‖A− B‖

for all B with rank k .
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SVD is the best k-rank approximation in the spectral norm

I Let’s prove this for the spectral, or l2, norm:

‖A‖2 = max
‖x‖=1

‖Ax‖ = σ1

I Note that A− Ak = σk+1uk+1v
T
k+1 + ...+ σrurv

T
r .

I Therefore taking x = vk+1, we have ‖A− Ak‖ = σk+1.

I Now we just need to show that

‖A− B‖ ≤ σk+1

for all B with rank k.
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SVD is the best k-rank approximation in the spectral norm

I The nullspace of B has dim ≥ n − k since B has rank ≤ k .

I Also v1, . . . , vk+1 span a k + 1 dimensional subspace.

I We have ≥ n − k and k + 1 dimensional subspaces in an n
dimensional space.

I Then by standard linear algebra, span(v1, . . . , vk+1) and N(B)
must intersect.
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SVD is the best k-rank approximation

I Choose nonzero unit norm vector in this intersection

x =
k+1∑
i=1

civi ∈ N(B) ∩ span(v1, . . . , vk+1)

I Then since x ∈ N(B) and ‖x‖2 =
∑k+1

i=1 c2i = 1, we have

‖(A− B)x‖2 = ‖Ax‖ = ‖
k+1∑
i=1

ciσiv
T
i ‖2 =

k+1∑
i=1

c2i σ
2
i ≥ σ2k+1

for all B with rank k .
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Next steps

I Review of probability and optimization

I PCA
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