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Math of Data Science: Lecture 4

Vlad Kobzar
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Course progress

I Previously
I Diagonalization of square/symmetric matrices, projections
I SVD and best k-rank approximation

I Today - probability basics
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Probability - motivation

I Probabilistic and statistical methods will come in two forms:
I Probabilisitic models: data is modeled by some unknown

distribution; the problem would entail estimating that
distribution

I Randomized algorithms to sample from large datasets/train
large parameter models, e.g., stochastic gradient descent for
DL
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Probability

I Probability measures the likelihood that an event will occur,
quantified as a number between 0 and 1 (where 0 indicates
impossibility and 1 indicates certainty).

I As with every mathematical model, it is not an exact copy of
the physical world, but is designed to replicate some aspect of
it.

I The simplest model involves phenomena where every outcome
is equally likely, e.g. throwing a dice or flipping coins.

I The probability where every even is equally likely amounts to
counting. You may have previously seen the theory of
counting combinatorial analysis.
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Sample space

I In probability theory, an experiment is any situation which has
several possible outcomes, exactly one of which then happens.

I For example, flipping a pair of coins or order of finish in a
7-horse race.

I Probability tells us how to calculate the probabilities of
different outcomes in an experiment.

I The sample space is the set of all possible outcomes often
denoted by Ω. Conversely an outcome is always an element of
Ω.

I Examples
I Flipping a pair of coins: Ω = {HH,HT ,TH,TT}
I Order of finish in a 7-horse race:

Ω = {all orderings of (1, 2, ..., 7)};
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Sample space

I An experiment is something that can happen in the real world.

I a sample space is a choice that we make about how to model
that experiment.

I Example: Suppose that in a horse race, we care only about
who wins, not the order of the other horses. Then we could
use

Ω = {all orderings of (1, 2, ..., 7)}

as before, or we could use

Ω = {1, 2, ..., 7} (possible numbers of the horse that wins)

I The second is simpler. It is adequate to describe the outcomes
only if we don’t care who comes in second, third, etc.
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Events

I Having chosen the sample space Ω, we will need to discuss
different events that can occur. Formally specifying an event
is equivalent to specifying the outcomes for which that event
occurs.

I An event S is a subset of Ω.
I Two events are ’the same’ if they consist of the same

outcomes, even if they are described in two different ways.
I 7-Horse race:

S = {all orderings of (1, 2, ..., 7) starting with 3} = {horse 3
wins}.

I Flipping a pair of coins: S = {HH,HT} = {first coin lands
heads}.
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Probability space
I Probability space is a triple (Ω,F ,P) consisting of

I A sample space Ω which contains all possible outcomes of an
experiment

I A set of events F
I A probability measure P that assigns probabilities to events in
F .

I The definition of probability measure captures simples ideas:
I 0 ≥ P(S) ≤ 1
I countable additivity: P(∪Si ) =

∑
i P(Si ) is Si are mutually

exclusive (P(Si ∩ Sj) = 0)
I P(∅) = 0 and (unlike other measures, like mass) probability of

the entire sample space is P(Ω) = 1.

I There are also some technical requirements on F (called
σ-algebra). We will just say that they formalizes a few simple
ideas:
I if we assign probability to an event then we must assign

probability to its complement, and
I if we assign probability to individual events then we must

assign probability to their union, etc.
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Random Variables

I For many experiments, we’re not interested in every outcome,
but rather the feature we really care about can be described
by some numerical value

I Given a probability space (Ω,F ,P), what is a random variable
X?
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Random Variables

I (Informal) Given a probability space (Ω,F ,P), a random
variable X is a function X : Ω→ R
I i.e., its value is determined by the outcome of the experiment.

I Then, for S ⊂ R, can study the sample space given by the
image of X .

P(X ∈ S) = P(ω ∈ Ω|X (ω) ∈ S)

I For a fair coin flip, let X given by

X (H) = −1 and X (T ) = 1

I This is sometimes called Radamacher random variable
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Cumulative distribution function (CDF)

I If X is a RV, then its cumulative distribution function (CDF)
is the function

F (a) = P{X ≤ a}

where a ∈ R.

I Then (by the definition of probability, namely countable
additivity)

P{a < X ≤ b} = F (b)− F (a)
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Discrete distributions

I Random variables are intuitively simple

I But special complications arise for RVs that can take
continuous range of possible values

I Let’s start with the simple case

I A random variable X is discrete if there is a (finite or infinite)
list of real numbers x1, x2, ... s.t. X must always take a value
from this list, i.e., the set of values is countable.

I Finite sets, and sets of whole and rational numbers are
countable.

I The set of all real numbers, or even an interval on the real
line, is not countable.
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Probability mass function (PMF)
I If X is a discrete RV, then its probability mass function

(PMF) is the function

p(xi ) = P(X = xi )

where xi ∈ R.

I For a set of real numbers A,

P(X ∈ A) =
∑

{i |xi∈A and p(xi )>0}

p(xi )

I in particular, the CDF of X is given by

F (a) =
∑
{i |xi≤a}

p(xi )

I For a discrete RV, if we know PMF, then we can work out the
probability of any other event that can be described in terms
of X
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Example: binomial random variable

I Binom(n, p) counts the number k of “successes” (“heads” or
H) in n independent coin flips where H occurs with prob. p.

I Given by the PMF

prob(k) =

(
n

k

)
pk(1− p)k−n

I To interpret this, there are

n!

k!(n − k)!
=:

(
n

k

)
ways to choose k successes.
I There are (n − k)! permutations of the failures.
I There are k! permutations of successes.
I pk(1− p)n−k is the probability of getting any particular

ordered sequence of k successes from n trials.
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Expectation (expected value or mean)
I The idea of mean E [X ] is connected to sample mean given by

µn =
X1 + ...+ Xn

n

where X1, ...Xn are n random variables distributed identically
to X , i.e., they are realizations (outcomes) of n experiments.
I µn is also a random variable (but its particular realizations,

i.e., numbers, are also sometimes called sample mean)

I For a discrete RV X with possible values x1, x2, ..., and PMF
p, the expectation (or expected value or mean) is the number

E [X ] =
∑
i

p(xi )xi =
∑

{i | p(xi )>0}

p(xi )xi

I When X only finitely many values x1, ..., xn.

E [X ] = p(x1)x1 + ...+ p(xn)xn

I Since p(x1) + ...+ p(xn) = 1, this is a weighted average of the
possible values of X.

I The relation to the sample mean will be addressed on page 16
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Why is expectation important?

I As with the sample mean, we can think of E [X ] as indicating
where the values taken by X ’typically’ lie (even though E [X ]
may not actually equal any of the possible values of X )

I There are plenty of other quantities that can be used this way
(such as ’median’ and ’mode’ in statistics).

I But the expectation has a better theory and more
computational tools available, making it more useful to solve
problems.

I For example, if the loss function depends on random inputs,
its expectation is is a natural choice of the thing to minimize
in machine learning problems

I Expectations turn out to be directly connected with long-run
averages when we perform an experiment many independent
times

I This will follow from the Law of Large Numbers (LLN).
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Functions of random variables and linearity of expectation
I Suppose that X is a RV, and also that g is some function

from real numbers to real numbers. Then we may define a
new RV g(X ).

I Often, we know something about X , and want to turn that
into information about g(X ): most obviously, its expectation.

I If X is discrete RV with possible values x1, x2, .... and p is its
PMF, then
I g(X ) is discrete with possible values g(x1), g(x2), ... (except

that this list may contain repeats); and
I E [g(X )] =

∑
i p(xi )g(xi ).

I Linearity of expectation: if a and b are constants, then

E [aX + b] = aE [X ] + b

I This result generalizes to sums of several random variables
I Thus,

EX1,...,Xn [µn] = EX1,...,Xn

X1 + ...+ Xn

n
= EX [X ]

i.e., the sample mean is an so-called unbiased estimator of the
mean.
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Variance
I If X1,X2, ...,Xn are n random variables distributed identically

to X and µn is their sample mean, then their sample variance
is the random variable:

S2
n =

n∑
i=1

(Xi − µn)2

n − 1

I It measures how ’spread out’ the samples are around the
mean.

I It is related to variance of X , which is a quantity (number)

σ2(X ) = E (X − E [X ])2

I Alternative formula, which can be derived by computing the
expectation of a function of random variable:

σ2(X ) = E [X 2]− (E [X ])2

I We have
EX1,...,Xn [S2

n ] = σ2

i.e., sample variance is an unbiased estimator of variance.



19/45

Continuous distributions

I Now, we want to model a random quantity, e.g., time when a
train arrives

I A random variable X is continuous if there is an integrable
function (probability density function) p(x) on the real line
such that

P(a ≤ X ≤ b) =

∫ b

a
p(x)dx

I The CDF of X is given by

F (a) =

∫ a

−∞
p(x)dx
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Example: uniform distribution

Unif(a, b) has the PDF

p(x) =
1

b − a

and the CDF

F (x) =


0 x < a
1

b−a(x − a) a ≤ x ≤ b

1 x > b
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Expectation and variance

For a continuous RV X with pdf

E [X ] =

∫
R
p(x)xdx

and

σ2(X ) = E (X − E [X ])2 =

∫
R
p(x)(x − E [X ])2dx
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LLN

I One of our basic intuitions about probability is this: If we
perform an experiment independently many times, and E is an
event that can happen for each performance of the
experiment, then in the long-run average

frequency of occurrence of E ≈ P(E ).

I For instance, if 37% (not a real statistic) of US citizens have
visible dandruff, and we randomly select a few thousand
citizens (a large number, but much less than US population),
then we expect about 37% of those sampled to have visible
dandruff.

I So this is saying that, under these long-run average
conditions, this ’frequency random variable’ settles down, in
some approximate sense, to the fixed value P(E).
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LLN

I Instead of an event E , assume our basic experiment has a
random variable X .

I Independent repeats of the experiment give independent
copies of this random variable, say X1,X2, ....

I In general, a sequence of RVs X1,X2, ... are independent and
identically distributed (’i.i.d.’) if (i) they are independent, and
(ii) they all have the same distribution.

I (Weak Law of Large Numbers, ’WLLN’). In the situation
above, for any ε > 0, we have

P(|µn − E [X ]| ≥ ε)→ 0 as n→∞

where µn is the sample mean defined previously
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Sample mean

I Assume our basic experiment has a random variable X .

I Independent repeats of the experiment give independent
copies of this random variable, say X1,X2, ....

I For instance, if X is 1 with probability of p and 0 otherwise
(Bernoulli(p) trials), then each Xi is the result of the i-th
repeat of the flip.

I In the last lecture we defined the sample mean

µn =
1

n

∑
i

Xi

I If each Xi is a Bernoulli(p) trial, then µn is the fraction of
successes among the first n trials, i.e.,

µn =
1

n
binom(n, p)
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LLN

I (Weak) Law of Large Numbers: If

µn =
1

n

∑
i

Xi

where Xi ’s are i.i.d., for any ε > 0, we have

P(|µn − E [X ]| ≥ ε)→ 0 as n→∞

I A fundamental result that guarantees the convergence of the
sample mean (moving or running average) to the mean.

I To justify this result we need to review independence of
random variables and certain inequalities.
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Inequalities

I So far we have spent a lot of course learning how to compute
exactly with random variables.

I But there are also reasons to study estimates and inequalities
concerning probabilities and random variables.
I Sometimes we don’t have enough information to compute a

probability or expectation exactly
I so we work out a range of possible values which are permitted

given the information we do have.
I Certain basic inequalities are “responsible” for the Limit

Theorems, such the LLN and Central Limit Theorem, which
describe the asymptotic behavior of large collections of RVs as
the size of the collection tends to ∞.
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Inequalities

I The most basic inequality: Let X be a RV such that X ≥ 0:
this means that the value taken by X is always non-negative,
for every outcome of the experiment. Then

E [X ] ≥ 0

I REASON: E [X ]s is a weighted average of the values taken by
X .

I Immediate consequences:

1. If a < b are reals such that a ≤ X ≤ b, then

a ≤ E [X ] ≤ b

2. (monotonicity of expectation) if X and Y are two RVs such
that X ≥ Y , then

E [X ] ≥ E [Y ]
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Markov inequality
I Here is a slightly more subtle consequence of the monotonicity

of expectation.
I If X is a non-negative RV, then for any a > 0 we have

P(X ≥ a) ≤ E [X ]

a
I Let 1X≥a be the indicator variable of the event X ≥ a
I The inequality X ≥ a · 1X≥a holds because

a · 1X≥a =

{
a if X ≥ a

0 if X < a

I How we use the fact that X is a non-negative?
I Thus, E [X ] ≥ aE [1X≥a] = aP(X ≥ a) where the last equality

follows from the def’n of expectation
I So Markov inequality gives us an upper estimate on the

probability that X takes a value above some threshold. But
more often we want to estimate the probability that X takes a
value far away from its expectation.
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Chebyshev inequality

I If X is any random variable with E [X ] = µ and Var(X ) = σ2,
then for any κ > 0 we have

P{|X − µ| ≥ κ} ≤ σ2

κ2

IDEA: Apply Markov to |X − µ|2.

I Observe: Markov requires X ≥ 0, but Chebyshev does not. If
we let κ = kσ for some positive integer k , then Chebyshev
becomes

P{|X − µ| ≥ kσ} ≤ 1

k2

I ’The probability that X takes a value at least k standard
deviations (= σ) away from the mean (= µ) is at most 1

k2 .’

I This justifies the idea that “the variance/standard deviation
indicates how spread out a RV is”.
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Multivariate random variables

I Previously we’ve considered a single random variable
attributable to an experiment (or a sequence of such random
variables)

I We will now consider multiple random variables attributable
to an experiment in a sample space Ω and with probability
values given by P, let’s say a pair X and Y , or a larger
collection X1, ...Xn of potentially different random variables.
I X and Y can represent different features of an experiment.
I For example, if you flip two coins, X can represent the

maximum of their values and Y can represent a minimum (we
denote heads by 0 and tails by 1)



31/45

Multivariate random variables
I You can think of (X ,Y ), or a larger collection (X1, ...Xn) as a

random vector.
I This is one place where probability meets multivariable

calculus and linear algebra
I A general event defined in terms of X and Y is

(X ,Y ) ∈ A

for A ⊂ R2.
I The joint CDF is of X and Y is

F (a, b) = P(X ≤ a,Y ≤ b)

and for discrete RVs the joint PMF is

p(xi , yi ) = P(X = xi ,Y = yi )

and therefore

F (a, b) =
∑

xi≤a,yi≤b
p(xi , yi )



32/45

Multivariate random variables (jointly continuous)

I For continuous RVs with PDF p(x , y), the joint CDF is

F (a, b) =

∫
x≤a,y≤b

p(x , y)dxdy
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Independence and covariance

I If you flip two fair coins independently, then the probability of
every outcome

(0, 0), (0, 1), (1, 0), (1, 1)

is 1/4

I However if you glue them together, facing the same way, then

(0, 0), (1, 1)

have probability 1/2 and the other outcomes (0,1),(1,0) have
probability zero

I The notions of independence and covariance of random
variables capture this distinction
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Independence

I X and Y are independent if

F (a, b) = FX (X ≤ a)FY (Y ≤ b)

I For discrete RVs, this implies that the joint PMF is

p(xi , yi ) = pX (xi )pY (yi )

and for jointly continuous the joint PDF

p(x , y) = pX (x)pY (y)

I So if we’re told about two RVs separately and given their
individuals PDFs or PMFs, and that they are independent, we
can obtain the joint PDF/PMF right away.
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Independence

I (Distribution of sum; discrete case) If X and Y are discrete
with possible values x1, x2, .. and y1, y2, ..., then

P(X + Y = z) =
∑

i ,j :xi+yj=z

p(xi , yj)

for any real value z .

I If they are independent, the event X + Y = z can be written
as a union of disjoint events (X = k ,Y = z − k), 0 ≤ k ≤ z ,
and the summation simplifies

∑
i ,j :xi+yj=z

p(xi , yj) =
z∑

k=0

pX (xk)pY (yz−k)

I For a sum of independent continuous random variables, this
type of an argument leads to the PDF of a sum given by a
convolution of the individual PDFs.
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Independence

I Let X ,Y be independent binom(n, p) and binom(m, p).

I The independence allows us to treat X+Y as the number of
successes in n + m trials, which is binom(n + m, p) by
definition.
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Independence and covariance

I If X and Y are independent, and g and h are any functions
from reals to reals, then

E [g(X )h(Y )] = E [g(X )]E [h(Y )]

I Not true without independence.

I Proof idea: split the 2D integral (or sum if the variables are
discrete) into a product of 1D integrals (or sums).

I Now recall: the variance of a RV X is

σ2(x) = E [(X − E [X ])2]

I It gives a useful measure of how ’spread out’ X is.

I We can generalize it to two RVs X and Y.
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Covariance

I Let X and Y be RVs and let m1 = E [X ] and m2 = E [Y ]. The
covariance of X and Y is

Cov(X ,Y ) = σ12 = E [(X −m1)(Y −m2)]

provided that this expectation converges.
I Another notation we’ll use (somewhat overloaded for

consistency with Strang):
I Cov(X ,Y ) = σ12 for two scalar random variables X and Y or

a random vector (X1,X2)
I Cov(Xi ,Xj) = σij for a random vector X1, ...Xn

I Also Cov(Xi ,Yj) = σij for a pair of random vectors X1, ...Xn

and Y1, ...Ym

I Var(X ) = σ2 = σ11 and Var(Xi ) = σ2
i = σii
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Covariance

I Some properties

1. Symmetry: σ12 = σ21
2. Covariance generalizes variance: for Var(X ) = σ2(X ),

σ11 = σ2(X )

3. Like variance, covariance has a useful alternative formula:

σ12 = E [XY ]− E [X ]E [Y ]

4. So if X and Y are independent, by the result on a previous
slide

σ12 = 0
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Covariance matirx

I The variance and covariance can be the previous results can
be organized into a symmetric matrix

V =

[
σ2(X ) σ12
σ12 σ2(Y )

]
I If X and Y are independent, then σ12 = 0 as note previously

I For the coins glued together, facing the same way

σ12 = E [XY ]− E [X ]E [Y ] =
1

2
− 1

4
=

1

4

σ2(X ) = σ2(Y ) = E [X 2]− E [X ]2 =
1

4
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Sample covariance

I Just like we can estimate the mean and variance by sample
mean and sample covariance, we can estimate covariance
matrix using sample covariance matrix.

I Let X be a d-dimensional random vector with mean X .

I If we repeat the experiment N times, the sample covariance is
a sum of rank-1 matrices

S =
1

N − 1

N∑
i=1

(Xi − X )(Xi − X )T
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Other properties of covariance

I What makes covariance really useful is how it transforms
under sums and products:

1. For any RVs X and Y, and any real value a, we have

σ(aX ,Y ) = σ(X , aY ) = aσ(X ,Y ) = aσ12

(so Var(aX ) = Cov(aX , aX ) = a2Cov(X ,X ) = a2Var(X ))
2. For any RVs X1, ...,Xn and Y1, ...Ym, we have

σ(
n∑

i=1

Xi ,

m∑
j=1

Yj) =
n∑

i=1

m∑
j=1

σ(Xi ,Yj) =
n∑

i=1

m∑
j=1

σij

(so it behaves just like multiplying out a product of sums of
numbers.)
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Other properties of covariance

I In particular, if m = n and Yi = Xi above, we get

Var(
n∑

i=1

Xi ) =
n∑

i=1

Var(Xi ) + 2
∑

1≤i<j≤n
Cov(Xi ,Xj)

=
n∑

i=1

σ2i + 2
∑

1≤i<j≤n
σij

I If X1, ...,Xn are independent, then σ(Xi ,Xj) = 0 whenever
i 6= j , so in this case, we’re left with

Var(
n∑

i=1

Xi ) =
n∑

i=1

Var(Xi ) =
n∑

i=1

σ2i
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Next steps

I Finish probability: LLN and central limit theorem

I Optimization review
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