New Bounds for Geometric-Stopping Version of Prediction with Expert Advice

Vladimir A. Kobzar1, Robert V. Kohn2 and Zhilei Wang2

1NYU Center for Data Science, 2Courant Institute of Mathematical Sciences

\textbf{Prediction with expert advice}

In each \(t \in [T] \),
- the player determines the mix of \(N \) experts to follow - distribution \(p_t \in \Delta_N \);
- the adversary allocates losses to them - distribution \(a_t \) over \([-1, 1]^N \), and
- expert losses \(q_t \sim a_t \), player’s choice of expert \(I_t \sim p_t \); these samples revealed to both parties.

\textbf{Our contribution}

Previously we developed a PDE viewpoint for the fixed horizon (FH) version of the problem where the \textit{stopping time} \(T \) is fixed (COLT 2020)

This paper (MSML 2020) extends this viewpoint to the geometric stopping (GS) version where the \textit{stopping time} \(T \sim G \) and \(G = \text{Geom} (\mu) \)

- Specifically, if an FH adversary does not depend on time (stationary), it can be used for GS
- \textbf{Technically}: Given a FH potential, its Laplace transform gives a GS potential
- \textbf{Intuition}: This transform is the expectation \(w/\mu \) the Exp distribution (limit of \(G \) when \(\delta \to 0 \))
- \textbf{Key result}: Obtain the first lower bounds for general \(N \) associated with a simple randomized strategy

\textbf{Definitions}

- \textbf{Instantaneous regret}: \(r_t = q_t r_t - q_t \)
- \textbf{Accumulated regret}: \(x_t = \sum_{\tau \leq t} r_t \)
- \textbf{Final regret}: \(\text{FH} - \text{FH} = e^{\frac{\pi}{2}} \min_{x_t, x_{t+1}} T \)

GS - \(R(p, a) = e^{\frac{\pi}{2}} \min_{x_t, x_{t+1}} T \)

\textbf{Lower bound potentials/adversaries}

- \textbf{Adversary} a Markovian & “balanced”: \(v_q = \sum_{q'} v_q (q') \)
- Use the value function \(v_q \) for this adversary
- \textbf{Lower bound potential} is a function \(\hat{u} : \mathbb{R} \to \mathbb{R} \) which solves

\[\hat{u}(x) \geq \max_{x_t + \frac{1}{2}, \max_{p \in S_{t+1}} (D^2 \hat{u}(x) \cdot q, q)} \]

\[\hat{u}(x + c) = \hat{u}(x) + \epsilon \]

- The associated player \(p = \nabla \hat{u} \)
- Leads to an upper bound on \(v_q \) if \(\hat{u}(x) - \max x_t \)

is uniformly bounded below
- \textbf{Regret} upper bound since \(v_q (0) = \max_a R(a, p) \)

- \textbf{The associated player} \(p = \nabla \hat{u} \)
- \textbf{Regret} upper bound since \(v_q (0) = \max_a R(a, p) \)

\textbf{Results}

\textbf{Upper bound potentials/players}

A function \(\hat{u} : \mathbb{R}^N \to \mathbb{R} \), nondecr. in \(x_t \), which solves

\[\hat{u}(x) \geq \max_{x_t + \frac{1}{2}, \max_{p \in S_{t+1}} (D^2 \hat{u}(x) \cdot q, q)} \]

\[\hat{u}(x + c) = \hat{u}(x) + \epsilon \]

- The associated player \(p = \nabla \hat{u} \)
- Leads to an upper bound on \(v_q \) if \(\hat{u}(x) - \max x_t \)

is uniformly bounded below
- \textbf{Regret} upper bound since \(v_q (0) = \max_a R(a, p) \)

\textbf{Proof of} \(v_p \leq \hat{u} \): Idea

- \textbf{Issue}: want to use induction backwards (“verification” argument), but don’t know \(T \)
- \textbf{Sol’n}: introduce a new problem, which is the same except that it ends at \(t_0 \) (if it doesn’t end earlier in accordance with the GS condition)
- \textbf{The difference} in regret relative to the original problem \(\to 0 \text{ as } t_0 \to \infty \)
- \textbf{Suffices} to bound the value \(g \) of the new problem.
- \textbf{It is given by} a dynamic program:

\[g(x, t) = \max_{x_t \text{ and } d} g(x_t, d, t = t_0 - 1, \]

\[g(p, a) = \sum_{p \in S_{t+1}} \max_{x_t \text{ and } d} g(x_t, d, t = t_0 - 1) \]

\textbf{Laplace tr.: FH\textrightarrow GS potential}

Illustrated by the exponential weights example: \(\hat{w}(x) = \frac{1}{2} \log (\sum_{x_t} e^{0\mu}) \)

- \(\Phi(x) \geq \max x_t \text{ and } (D^2 \Phi \cdot q, q) \leq \eta \)
- Also \(\Phi(x + c) = \Phi(x) + c \)
- Thus, taking \(k = \frac{1}{2} \frac{1}{2} \) ensures \(\hat{w}(x) \)

satisfies our def’n of a GS upper bound potential
- \textbf{Since} \(\Phi \) is convex, \(0 \leq (D^2 \Phi \cdot q, q) \).
- Thus \(\hat{w}(x) - \max x_t \geq 0 \).

- \textbf{Control increase of} \(\hat{w} \) as the game evolves: the choice \(p = \nabla \hat{u} \)

eliminates the 1st-order Taylor term in this evolution for all \(q \)
- \textbf{Show} \(g \leq \hat{w} \) by induction (and thus \(v_q \leq \hat{u} \))

\textbf{Heat-based adversary}

- \(\Phi \) is a uniform distribution over the following set

\[\text{FH} \{ q \in \{ \pm 1 \}^N \mid \text{Sum}_q q = \pm 1 \} \]

- For \(N \) odd
- \[\text{FH} \{ q \in \{ \pm 1 \}^N \mid \text{Sum}_q q = 0 \} \]

- For \(N \) even
- \textbf{Potential} \(\hat{u} \) is the Laplace transform of the sol’n of the linear heat equation

\[\dot{u} + \alpha u(x, t) = \alpha \int e^{\frac{\pi}{2}} \max_{x_k \text{ and } d} g(x_t, d, t = t_0 - 1) \]

\[u(x, t) = \max_{x_t \text{ and } d} g(x_t, d, t = t_0 - 1) \]

\textbf{Proof of} \(v_p \leq \hat{u} \): “verification” arg.

- Satisfies our def’n of a lower bound potential for a well-chosen \(\kappa \)
- \textbf{The leading order asymptotics} of our lower bound \(\hat{u}(0) = \Omega (\sqrt{N} \max_{x_k \text{ and } d} g(x_t, d, t = t_0 - 1) \)

\textbf{Potential} \(\hat{u} \text{ of the exponential weights upper bound}
- \textbf{Optimal leading order term} for \(N = 2 \)
- Also give a nonasymptotic guarantee

\[\hat{u}(0) - E \leq v_p(0) \]

\textbf{The discretization error} \(E \) is computed explicitly and is \(O(\sqrt{N} \wedge \sqrt{N}) (1 + \log \frac{1}{N}) \)

\textbf{Acknowledgements}

NSF grant DMS-1311833; Moore-Sloan Data Science Environment at NYU