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Abstract

Computational inverse problems entail fitting a mathematical model to data. These
problems are often solved numerically, by minimizing the mismatch between the model
and the data using an appropriate metric. We focus on the case when this metric is the
Wasserstein-p (Wp) distance between probability measures as well as its generalizations
by Piccoli et al., for unbalanced measures, including the Kantorovich-Rubinstein norm.
The recent work of Niles-Weed and Berthet established that Wp is bounded from
below and above by weighted `p norms of the wavelet coefficients of the mismatch,
among other things, relying on the fluid dynamics formulation of Wp. Building on this
research, we establish lower and upper bounds on Wp on the hypercube and flat torus in
terms of weighted `q norms of the Fourier coefficients of the mismatch. In this setting,
for measures uniformly bounded above, the lower bound increases as p increases. Based
on that fact, in our setting, the lower bound resolves the open problem posed by
Steinerberger to prove the existence of a Fourier-based lower bound on Wp that grows
with p. When Wp is used as the mismatch metric in computational inversion, these
bounds allow us to analyze the effects of stopping early the computational minimization
of the mismatch on the resolution of frequencies, and the dependence of the resolution
of frequencies on p. Since the Wp distance is used in a broad range of other problems
in mathematics and computational sciences, we expect that our bounds will also be of
interest beyond inverse problems.

1 Introduction

Optimal transport (OT) is a fundamental problem in mathematics with growing and promis-
ing applications to computational inverse problems. While extensive connections have been
established between OT and many areas of analysis, connections between OT and Fourier
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analysis specifically are still relatively unexplored. We consider the Wasserstein-p distance,
or Wp(µ, ν), which represents the minimum transportation cost between a pair of probability
measures µ and ν using the p-th moment of a distance function (focusing specifically on the
Euclidean distance) as the underlying transportation cost between points in Rd. We assume
that the measures µ and ν as absolutely continuous with respect to the Lebesgue measure
and, therefore, are associated with a pair of probability densities f and g. Accordingly, we
will denote Wp(µ, ν) as Wp(f, g) by reference to the corresponding densities. We also assume
that these densities have a Fourier basis expansion on [0, 1)d. Building on the recent work
applying wavelet analysis of Wp in nonparametric statistics [48], as well as the recent work
applying Fourier analysis to Wp on the circle in the context of measure-theoretic discrepancy
theory [57], we establish upper and lower bounds on Wp(f, g) on the hypercube Hd and flat

torus Td in terms of the weighted `q norm ‖f̂ − ĝ‖q,wr of the Fourier coefficients of the
mismatch between f and g. This norm ‖ · ‖q,wr is given by

‖λ‖q,wr =


(∑

k |wrkλk|q
) 1
q

if q <∞
supk |wrkλk| if q =∞

(1)

where for k ∈ Zd \ 0, the weights wr are1

wrk = 1/(2π‖k‖r). (2)

p ∈ [1,∞), s = 1 p ∈ (1, 2], s ∈ (1,∞] p ∈ (2,∞), s ∈ (1, 2p−2
p−2

]

‖f‖Ls , ‖g‖Ls ≤M d−
1
2‖f̂ − ĝ‖∞,w1 d

1
q
− 1

2M
− 1
p′ ‖f̂ − ĝ‖q,wq′

Table 1: The lower bounds on WT
d

p (f, g) and WH
d

p (f, g) given by Theorem 4.5 in terms of
the weighted `q norms of the Fourier coefficients of f − g where q = p′s/(s− 1) and p′ and
q′ are the Hölder conjugates of p and q.

Table 1 summarizes our lower bounds for WT
d

p and WH
d

p and Table 2 summarizes our

upper bounds for WT
d

p . (On Hd, the corresponding upper bounds contain an additional
term, specified in Lemma 4.9, due to the absence of transport across the boundary.) We
also establish similar bounds for the metrics developed in [50, 51] that generalize Wp to
unbalanced measures; for p = 1 this metric is the classic Kantorovich-Rubinstein norm.

Reference [57] posed proving the existence of a Fourier-based lower bound on Wp that
grows with p, as an open problem. Our lower bound resolves this open problem on Hd and
T
d for measures that are absolutely continuous with respect to the Lebesque measure and

are uniformly bounded above a.e. Moreover, in the context of computational inversion using
Wp as the mismatch metric, these bounds allow us to analyze the resolution of frequencies

1The amplitude of the zero frequency f̂0− ĝ0 is zero because the densities have the same mass. Therefore,
in the case of balanced transport, we do not need to specify wr0. However, we will specify it in the unbalanced
transport setting.
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p = 1, ξ = 0 p ∈ (1, 2], ξ > 0 p ∈ (2,∞), ξ > 0

f ∧ g ≥ ξ ‖f̂ − ĝ‖2,w2 O
(
ξ
− 1
p′ ‖f̂ − ĝ‖2,w2

)
f ∧ g ≥ ξ

O
(√

z‖f̂ − ĝ‖
1
2

∞,w2

)
O
(
ξ
− 1
p′
√
z‖f̂ − ĝ‖

1
2

p′,w2

) O (d 1
2
− 1
pp ξ

− 1
p′ ‖f̂ − ĝ‖p′,wp′

)
‖f − g‖Ḣβ ≤ z

Table 2: The upper bounds on WT
d

p (f, g) given by Theorem 4.7 and Proposition 4.8 in
terms of the weighted `q norms of the Fourier coefficients of f − g where β > d/p− d/2− 1,
and p′ is again the Hölder conjugate of p. (The homogeneous Sobolev norm Ḣβ also has a
Fourier-based representation given by (9).)

and the effects of stopping the minimization process early. As discussed in Section 6.2, recent
work [48] established upper and lower bounds on Wp(µ, ν) in terms of weighted `p norms
of the wavelet coefficients of the mismatch of the corresponding densities. To establish our
Fourier-based lower and upper bounds, in this work we generalize the proof techniques from
reference [48]. Furthermore, we apply these wavelet-based bounds to analyze the resolution
in computational inversion in the wavelet domain.

We consider the classic inverse problem setting: let the function f :M×Ω→ R represent
a model of a given phenomenon (the forward model) where M is the space of the model
parameters, and Ω is the spatial domain, Td or Hd in our case. Accordingly, if we fix a
model m ∈M, f(m) is a function from Ω to R. The inverse problem entails reconstructing
m from the observed data g : Ω→ R, i.e., in the appropriate sense solving

f(m) = g (3)

for m. Even if f is invertible with respect to m, an analytic expression for its inverse typically
does exist. Therefore, this problem is usually solved computationally by minimizing the
mismatch between the model and the data using an appropriate mismatch functional Φ:

m∗ ∈ arg min
m∈M

Φ(f(m), g). (4)

If g is not corrupted with noise and is in the range of f(m), then all metrics will lead to the
same optimal value in (4). However, the metric will make a difference when the data g is
noisy and/or the minimization problem can not be solved accurately [6].

Historically, the L2 norm has been used to minimize the mismatch in computational
inversion. Reference [24] showed that using a Sobolev normHs with s < 0 (which is a weaker
norm than L2) as the mismatch functional Φ would lead to a smoother optimal solution in the
presence of noise. As discussed more fully in Appendix A, W2 is asymptotically equivalent
to a weighted negative order Sobolev norm Ḣ−1, which has a Fourier-based representation
facilitating the analysis of the frequency content of the inversion using the W2 distance; this
equivalence leads to nonasymptotic Fourier-based upper and lower bounds.
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As further discussed in Section 2.1 below, using the Wp distance with other values of p,
most notably p = 1, and its generalizations to unbalanced measures, empirically revealed a
number of attractive features in the context of computational inversion and other applica-
tions. However, there exists limited analysis of computational inversion using Wp for p 6= 2,
and there do not appear to be any other previously known Fourier-based bounds for Wp,
except for measures supported on a finite grid of points when p = 1 and 2 in [5] and measures
supported on a circle T in [57]. These bounds are also discussed in Appendix A.

Standard optimal transport definitions and results: We will now review the stan-
dard optimal transport definitions and results used in this work. For a given cost function
c : Ω × Ω → R+, the optimal transport cost represents the minimal cost of transporting
one probability measure µ ∈ P(Ω) to another ν ∈ P(Ω).2 This cost is formulated as the
Kantorovich problem

KP (µ, ν) := inf
π∈Π(µ,ν)

∫
Ω×Ω

c(x, y)dπ(x, y) (5)

where Π(µ, ν) is the space of all joint distributions π ∈ P(Ω×Ω) (transport plans) with the
marginals matching µ and ν:∫

Ω

π(x, ·) = µ(x), and

∫
Ω

π(·, y) = ν(y).

When Ω is a Polish space, i.e., complete and separable metric space, and c is a lower semi-
continuous function, KP admits a solution [53]. The corresponding dual problem is

DP (µ, ν) := max
φ,ψ∈C(Ω)
φ⊕ψ≤c

∫
Ω

φdµ+

∫
Ω

ψdν = max
φ∈c−conc

∫
Ω

φdµ+

∫
Ω

φcdν (6)

where c − conc refers to the set of c-concave functions and φc refers to a c-transform of φ.
If c is uniformly continuous and bounded on Ω, strong duality KP = DP holds and DP
admits a solution (φ, φc) referred to as potentials or Kantorovich potentials.3

When the cost function c is the p-th moment of a distance function d, the optimal
transportation cost is also a distance, referred to as the Wasserstein-p (Wp) distance:4

W p
p (µ, ν) := inf

π∈Π(µ,ν)

∫
Ω×Ω

dp(x, y)dπ(x, y). (7)

We consider two metric spaces: the first is the hypercube in Rd:

H
d := [0, 1]d (8)

2It is possible to formulate transport over when µ and ν are defined over different domains, but we will
not require this generalization in the present paper.

3A solution to KP may also exist, and strong duality may also hold under weaker assumptions than the
ones set forth in the text accompanying this footnote. See, e.g., [53] for details.

4We use the terms “metric” and “distance” interchangeably, referring to the same mathematical object.
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with dHd(x, y) := ‖x− y‖ where ‖ · ‖ is the standard Euclidean norm. The second space is
the flat d-dimensional torus :

T
d := R

d/Zd.

The elements of Td are equivalence classes [x] = {x + k | k ∈ Zd} where x ∈ [0, 1)d. For
for simplicity, we will denote [x] by x. The metric space over Td is equipped with the
distance dTd(x, y) = mink∈Zd |x − y + k|, which makes Td a Polish space (see, e.g., [27]).
Accordingly, the domain of integration over Td is [0, 1)d, and the set of probability measures
P(Td) is given by Zd periodic measures µ on Rd such that each µ is a probability measure
when restricted to [0, 1)d. Similarly each f : Td → R is identified with Zd periodic function
f : Rd → R (see, e.g., [39]).

Notation: We will refer to Hd and Td collectively as Ω := {Hd,Td}. We will denote
the Wasserstein distance over Hd and Td by WH

d

p and WT
d

p respectively, and when certain

results holds for both WH
d

p and WT
d

p , we will write WΩ
p . We will omit these superscripts

whenever the relevant metric space or spaces are clear from the context.

We will use ‖ · ‖p to denote the `p norm when applied to vectors or sequences (which we
may also denote by ‖ · ‖`p for further clarity), the induced 2-norm when applied to a matrix,
or the Lp norm when applied to a function (which we may also denote by ‖ · ‖Lp). When
p = 2, we may denote the relevant norm by ‖ · ‖ and omit the subscript. To match the
integrand of the Benamou-Brenier formulation of Wp (Theorem 4.1) we also define the Lp
norm of a vector field F : Rd → R

d as follows:5

‖F‖Lp =
(∫

Ω

‖F (x)‖p2dx
) 1
p
.

The symbol ~ represents a convolution, and f̂ represents the Fourier series or Fourier trans-
form of f , whichever is appropriate. For functions on Ω, we will denote the inhomogeneous
and homogeneous Sobolev norms Hβ and Ḣβ by, respectively:

‖f‖Hβ =
(∑

k

(
1 + (2π‖k‖2)2

)β
f̂ 2
k

) 1
2

and ‖f‖Ḣβ =
(∑

k

(2π‖k‖2)2β f̂ 2
k

) 1
2
. (9)

P(Ω) represents the set of probability measures over Ω, and P2(Ω) shall refer to such proba-
bility measures with finite second moments. Cm(Ω) refers to the set of continuous functions
with m continuous derivatives on Ω, Cm

c (Ω) shall refer to such functions with compact sup-
port. We will also use C := C0 to denote the set of continuous functions. The notation
a . b indicates that there exists a positive constant M for which a ≤ Mb holds, and a � b
indicates that a . b and a & b. .p indicates that the constant M may depend on p. In

5Since all norms are equivalent in a finite-dimensional vector space, this norm is equivalent up to a
constant pre-factor to the more standard definition:

‖F‖Lp
=
(∫

Ω

∑
i

|Fi(x)|pdx
) 1

p

.
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the wavelet discussion, this constant may also depend on the specific choice of wavelets and
dimension, which we will not indicate by a subscript. In all other cases, if there is no sub-
script in ., � or &, this will indicate that the constant is uniform in all parameters. If the
region of integration over a d-dimensional domain is omitted, then we will assume that it is
[0, 1)d. R+ refers to the half-line [0,∞) and I refers to the interval [0, 1]. a ∧ b and a ∨ b
refers to, respectively, the minimum and maximum of a and b.

The rest of the paper is organized as follows. In Section 2, we review related work,
including applications of the Wp distance in computational problems and existing Fourier
and wavelet-based bounds on this distance, as well as the fluid dynamics formulation of Wp.
In Section 3, we introduce our approach by establishing elementary Fourier-based bounds for
W1 in one dimension. In Section 4, we establish our Fourier-based upper and lower bounds
on Wp in higher dimension. In Section 5, we extend these bounds to generalized Wp for
unbalanced measures. Using these bounds, we develop wavelet and Fourier-based resolution
analysis in Section 6, and concluding remarks and suggestions for future work are offered
in Section 7.

2 Related work

In this section, we review related work, including applications of the Wp distance in inverse
and certain other computational problems, as well as existing Fourier and wavelet-based
bounds on this distance.

2.1 Wp in computational problems

The Wp distance metricizes weak convergence of probability measures and has a number
of attractive features for inverse and other computational problems. For example, Wp(f, g)
depends continuously on f − g even when the densities f and g have non-overlapping sup-
port. Therefore, the Wp metric allows us to compare such densities more meaningfully than
other popular distances, like the Lp and total variation norms. Currently, Wp is used exten-
sively in machine learning and computer science, such as generative modeling [4] and robust
estimation [47, 46] (see also overview of applications in [32, 56, 7]).

In statistics, the process of fitting a parametric model to data using Wp (instead of, for
example, the Kullback-Leibler divergence used in likelihood maximization) is known as min-
imum Kantorovich distance estimation [9]. The Wp metric is also used in Bayesian statistics
for likelihood-free inference [12, 14] and parameter estimation [8, 55, 13, 45]. However, in
parametric statistics, the underlying problems tend to be low-dimensional. Such problems
are intrinsically different from the high-dimensional inverse problems where reconstructing
high-resolution information of m is a critical objective of the inversion process. On the other
hand, recent work [48] in nonparametric statistics determined the minmax estimation rates
when the error between the target density and its empirical distribution is measured in Wp

using a characterization of Wasserstein distance in terms of weighted `p norms of the wavelet
coefficients. This problem is similar to the high-dimensional inverse problems studied in this
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paper, and we use extensively the ideas and methods from that work.

While the L2 norm, as well as other Lp norms, have been historically used in computa-
tional inverse problems, as noted previously, they do not provide a meaningful comparison
whenever the support of the model and the data do not overlap, which can happen when the
data is shifted relative to the model or when the data lies on a low dimensional manifold.
Also, when the signals are wavelike, using the L2 norm leads to incorrect matching when
the model and the data have a significant phase mismatch (this phenomenon is referred to
as cycle skipping).

The W2 distance was applied and/or analyzed in the context of various inverse prob-
lems, such as the earthquake location problem [18], full waveform inversion [23, 25], and
tomographic reconstruction [1]. In another work, a loss function based on the W4 metric
(which penalizes the outliers more heavily than the W2 metric) was used in the context
of computerized tomography (CT) [2]. Reference [22] introduced the W2 distance as the
mismatch functional in the context of seismic inverse problems. This reference showed
that this distance is convex with respect to translations and dilations, which addresses the
cycle-skipping issue mentioned above; see also [25]. The frequency content of computational
solutions to inverse problems, as well the convexity of the optimization problems, based
on the W2 metric, have been recently analyzed in [21, 24]. The Fourier-based bounds on
W2 in [49] (discussed in Appendix A) were used in [24] to analyze the frequency content of
computational solutions to inverse problems using this metric.

TheW1 distance was used in image and language processing [30] and Wasserstein GANs [4].
In the context of inverse problems, the generalization of the W1 distance to general signed
measures with different mass (Kantorovich-Rubinstein norm) was empirically shown to have
attractive properties in the context of inverse problems [34, 41, 42]; see also [44] for a survey
of results and numerical experiments indicating the attractive properties of this norm specif-
ically in the full waveform inversion setting. A number of fast algorithms were developed to
solve optimal transport based on the W1 distance [37] and its variants such as entropy reg-
ularized W1 [35, 36] and unbalanced W1 [33]. Lastly, [29] developed a data-driven denoiser
for inverse problems related to the W1 metric; see also [60]. We refer interested readers to
reference [17] for various mathematical properties on the W1 metric and to references [52, 54]
and references therein for the development of fast computational algorithms to evaluate the
metric. However, we are not aware of any existing analysis of computational inversion using
W1 or, more generally, Wp for p 6= 2 as the mismatch functional.

3 Elementary Fourier-based bounds for W1 in 1D

Before considering the multi-dimensional case, as a simple exercise to build intuition, let
us develop Fourier-based bounds on W1 in on the interval and circle. We consider the
classic divergence formulation of W1 due to Beckmann (which applies in 1D and higher
dimension) [10], [53, Theorem 4.6]:

W1(µ, ν) = inf
V ∈Md

div

{∫
Ω

‖V (x)‖dx | ∇ · V = F
}
, (10)
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where F := µ−ν andMd
div denotes the space of vector measures on Ω with divergence which

is a scalar measure. In the case of transport on Hd, we additionally impose the boundary
condition V · n|∂Ω = 0, which reduces to V (0) = V (1) = 0 on the interval [0, 1].

W1 on an interval: In the case of transport in 1D, the divergence is simply the derivative.
If f and g, the probability densities associated with µ and ν, have a Fourier expansion (16),
then the Fourier coefficients of V are given by V̂k = F̂k/(2πik) for k 6= 0 where F̂k = f̂k− ĝk.
The constant frequency coefficient

V̂0 = −
∑
k 6=0

1

2πik
F̂k

is determined by the above-mentioned boundary conditions, which require that there shall be
no transport at the endpoints of the interval. Accordingly, this coefficient can be expressed
in terms of the centers of mass of the measures. Let the the center of mass of µ be given by

mµ =

∫ 1

0

x f(x)dx. (11)

Then, the constant frequency coefficient V̂0 of the transport field reflects the signed distance
between the centers of mass of µ and ν:

mµ −mν =

∫ 1

0

xF (x)dx =
∑
k 6=0

F̂k

∫ 1

0

xe2πikxdx =
∑
k 6=0

1

2πik
F̂k = −V̂0.

Accordingly, in the case of W1 on the interval, the optimal V can be determined explicitly in
terms of the Fourier coefficients of F . Then, by Hölder’s inequality and Parseval’s identity:

W1(f, g) =

∫ 1

0

|V (x)|dx ≤
(∫ 1

0

|V (x)|2dx
) 1

2
=
(
|V̂0|2 + ‖F̂‖2

2,w1

) 1
2 . (12)

where w1 is given by (2). A lower bound follows from another elementary computation: for
any k

|V̂ (k)| =
∣∣∣ ∫ 1

0

V (x)e−i2πkxdx
∣∣∣ ≤ ‖V ‖1 = W1(f, g). (13)

Therefore
max

(
|V̂0|, ‖F̂‖∞,w1

)
≤ W1(f, g) (14)

In higher dimensions, the divergence constraint in (10) implies that 2πi〈k, V̂k〉 = F̂k.
Therefore, the divergence operator has a nontrivial kernel, and the projection of V onto the
kernel is determined as a result of the optimization in (10). Specifically,

V̂k =

{
k

2πi‖k‖2 F̂k + Q̂k if k 6= 0

Q̂0 if k = 0
(15)

where Q̂k ∈ Cd, and, for k 6= 0, Q̂k ∈ k⊥; these vectors Q̂k parametrize the kernel of the
divergence operator in the Fourier domain (subject to V being a real-valued vector field, and
in the case of transport on Hd also subject to the boundary condition). We are not aware

of an explicit representation of the optimal Q̂k’s solving (10) in dimension higher than 1.
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4 Fourier-based bounds for Wp

In this section, we establish our main results: lower and upper bounds on Wp(f, g) on Hd

and Td, expressed in terms of the weighted `q norms for the Fourier coefficients of f − g.
As noted previously, we assume that µ and ν are absolutely continuous with respect to the
Lebesgue measure and the associated densities f and g have a Fourier series expansion in
L2(Ω)

f =
∑
k

f̂kψk and g =
∑
k

ĝkψk (16)

where the Fourier basis functions are

ψk(x) := e2πi〈k,x〉 =
d∏
i=1

ψki(xi) (17)

and ψki(xi) := e2πikixi for k ∈ Zd. We will refer by Ψ to the set of the Fourier basis functions
ψk for k ∈ Zd.

Note that the Fourier basis functions do not satisfy all the wavelet assumptions in Sec-
tion 6.2; in particular, they fail Assumptions 4 (Locality) and 5 (Norm). Nevertheless, we
can generalize the proofs in reference [48] to obtain Fourier-based bounds on Wp, as discussed
below.

For p = 1, we will use the Beckman formulation (10) to obtain the upper bound and the
dual formulation of W1

W1 = sup
‖∇h‖∞≤1

∫
Ω

hd(µ− ν) (18)

to obtain the lower bound. Similarly to [48] for p > 1, we will use the following fluid-
dynamics characterization of W p due to [11],[16] to obtain lower and upper bounds. We
denote by KΩ the set of pairs of measures (ρ, E) on Ω× [0, 1] where ρ is scalar-valued and E
is vector-valued. In the case of transport on Hd, E must also satisfy the boundary condition
E · n = 0 on ∂Hd × [0, 1].

Theorem 4.1 (Benamou-Brenier). For any measures µ and ν on Hd and p ∈ (1,∞)

W p
p (µ, ν) = inf

(ρ,E)∈KΩ

{Bp(ρ, E) : ρ(·, 1) = µ, ρ(·, 0) = ν, ∂tρ+∇x · E = 0} (19)

where

Bp(ρ, E) :=

{∫
Ω×[0,1]

‖dE
dρ

(x, t)‖pdρ(x, t) if E � ρ

+∞ otherwise.

Remark 4.2. The preceding theorem has been generalized to the transport on Td (Theorem
1.6.4 in [15] and references cited therein).
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4.1 Lower bounds

We will use the conjugate exponent p′ of p given by

1

p
+

1

p′
= 1. (20)

When p ∈ [1, 2], we can control the Lp′ norm by the `p norm of the Fourier coefficients using
the Hausdorff-Young inequality; see, e.g., Theorem 4.27 in [26].

Theorem 4.3 (Hausdorff-Young inequality). If p ∈ [1, 2] and f̂ ∈ `p, then for a function f
on [0, 1)d represented by the Fourier series (16),∥∥∥∑

k

f̂kψk

∥∥∥
Lp′
≤ ‖f̂‖p. (21)

We use the following lemma from reference [40] (Remark following Lemma 3.5). This
lemma is based on the divergence formulation of W1 in (18) when p = 1 and fluid dynamic
formulation (19) of Wp for p > 1, which as discussed in Remark 4.2, extends to WT

d

p .
Therefore, the lemma holds for Wp on Td as well Hd.

Lemma 4.4. For all h ∈ W 1,q(Ω),6 if µ and ν ∈ P(Ω) ∩ Ls(Ω) and ‖ν‖Ls , ‖ν‖Ls ≤M and

1

q
+

1

p
+

1

s
= 1 +

1

ps
, (22)

then ∫
Ω

h d(µ− ν) ≤M1/p′‖∇h‖Lq(Ω)Wp(µ, ν). (23)

To prove our lower bound, we construct a function h from the Fourier coefficients of
f − g. We will control ‖∇h‖Lq(Ω) using the Hausdorff-Young inequality, which requires that
q ∈ [2,∞]. Accordingly, if p = 1, by (18), q = ∞. If p > 1, then by (22) q = ps

(p−1)(s−1)
=

p′s
(s−1)

. If 1 < p < 2, then for all s ≥ 1, we have q ≥ 2. On the other hand, if p > 2, then q ≥ 2

for all s ∈ [1, 2p−2
p−2

]. Based on this calculation, in Appendix B, we establish the following
lower bound.

Theorem 4.5. If f and g ∈ P(Ω) have a Fourier expansion (16), then for p ∈ [1,∞),

Wp(f, g) ≥ d−
1
2‖f̂ − ĝ‖∞,w1 .

Furthermore, if 1 < p ≤ 2 and ‖f‖Ls , ‖g‖Ls ≤ M for any s ∈ (1,∞], or if 2 < p and
‖f‖Ls , ‖g‖Ls ≤M for s ∈ (1, 2p−2

p−2
], then

Wp(f, g) ≥ d
1
q
− 1

2M
− 1
p′ ‖f̂ − ĝ‖q,wq′

where q = p′s
s−1

. In each case, the bounds hold on Hd and Td, p′ and q′ are the conjugate

exponents of p and q respectively given by (20) and the weights wq
′

are given by (2).

6W 1,q(Ω) denotes the Sobolev space of Lq functions whose gradient is also in Lq(Ω).
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As a shorthand, the preceding bounds can be combined into a single expression:

Wp(f, g) ≥ d
1
q
− 1

2M
− 1
p′ ‖f̂ − ĝ‖q,wq′

where

q :=


∞ if p ∈ [1,∞)
p′s
s−1

if p ∈ (1, 2] and s ∈ (1,∞]
p′s
s−1

if p ∈ (2,∞) and s ∈ (1, 2p−2
p−2

].

(24)

Note that d−
1
2 ≤ d

1
q
− 1

2 ≤ 1 for q ≥ 2. Therefore, if necessary, we can eliminate the
dependence on q from the lower bound.

4.2 Upper bounds

We construct a vector field V : Ω→ R
d

V :=
∑
k

(f̂k − ĝk)Vk.

satisfying ∇ · V = f − g. This field is used to construct a feasible point for the divergence
formulation (10) of W1, as well as, together with ρ defined in the proof of Theorem 4.7 in
Appendix D, for the fluid dynamics formulation (19) of Wp when p > 1.

On the torus: On Td, we take

(Vk)j :=

{
cj,k
i2πkj

ψk if kj 6= 0

0 if kj = 0
(25)

for the standard Fourier basis functions ψk in (17). For each Fourier frequency k ∈ Zd \ 0,
taking c1,k, . . . , cd,k such that

∑
j:kj 6=0 cj,k = 1, ensures that

∇ · Vk = ψk on Ω (26)

since

∂

∂j
(Vk)j =

{
cj,kψk if kj 6= 0

0 if kj = 0

Specifically, for cj,k =
k2
j

‖k‖22
, the Fourier coefficients V̂k match those of the inverse (15) of the

divergence operator acting on f−g with the projection on the operator’s kernel (represented
by Q̂k’s) equal to zero. In Appendix C, we prove the following upper bound on the Lp norm
of V .

11



Lemma 4.6. For p ∈ [1,∞) and the weights wζ given by (2):

‖V ‖Lp ≤ Cd,p‖f̂ − ĝ‖ζ,wζ (27)

where the Hölder conjugate p′ is given by (20),

ζ =

{
2 if p ∈ [1, 2]

p′ if p ∈ (2,∞)
and Cd,p =

{
2
− 1
p′ if p ∈ [1, 2]

2
− 1
p′ d

1
2
− 1
p if p ∈ (2,∞)

(28)

Based on this bound, in Appendix D, we establish a Fourier-based upper bound on Wp

(that parallels Proposition 1 in [48] establishing a similar wavelet-based bound).

Theorem 4.7. For p = 1, we have

WT
d

1 (f, g) ≤ ‖f̂ − ĝ‖2,w2

and for p > 1, if for almost every x ∈ Td,

f(x) ∧ g(x) ≥ ξ > 0 (29)

then

WT
d

p (f, g) ≤ Cd,p p ξ
−1/p′‖f̂ − ĝ‖ζ,wζ

where ζ and Cd,p are given by (28).

Again, as a shorthand, the preceding bounds can be combined as

WT
d

p (f, g) ≤ Cd,p p ξ
−1/p′‖f̂ − ĝ‖ζ,wζ (30)

If f − g belongs to the Sobolev space Ḣβ for sufficiently large β, then (27) can be upper
bounded using the square root of product of this norm and the weighted `p′ for p′ ∈ (2,∞].
We prove the following result in Appendix E.

Proposition 4.8. If f − g ∈ Ḣβ and

β >
d

p
− d

2
− 1, (31)

for p ∈ [1, 2), then

‖f̂ − ĝ‖2,w2 . ‖f − g‖
1
2

Ḣβ
‖f̂ − ĝ‖

1
2

p′,w2 (32)

where the weights w2 are given by (2).

If ‖f(m) − g‖Ḣβ is bounded uniformly in m over the feasible set of parameters of the
forward model, this proposition leads to an upper bound on Wp in terms of the weighted `p′
norm instead of the weighted `2 norm upper bound. The latter norm matches the norm in
a lower bound given by Theorem 4.5 when p = 1 or p ∈ (1, 2].
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On the hypercube: In the case of transport on Hd, the vector field V also needs to
satisfy the boundary condition V · n = 0 on ∂Ω. Let Ṽk be given by Vk in (25) except that
each (Vk)j is evaluated on the boundary xj = 0:

(Ṽk)j(x) := (Vk)j(x1, . . . , xj−1, 0, xj−1, . . . , xd) = 0 (33)

We also let V ′k denote Vk modified by subtracting its boundary value:

(V ′k)j(x) := (Vk)j(x)− (Ṽk)j(x)

=

{
cj,k
i2πkj

(ψkj(xj)− 1)
∏

m6=j ψkm(xm)) if kj 6= 0

0 if kj = 0

Note that Ṽk is in the kernel of the divergence operator, and therefore, (26) holds with
respect to V ′k instead of Vk. If we take cj,k = k2

j/‖k‖2
2, as we did previously section, enforcing

the boundary condition will lead to a mixing of frequencies that appears difficult to analyze.
However, if we take ck,j = 1 if j is the index of the component of k with the largest absolute
value, i.e. |kj| = ‖k‖∞, and zero otherwise, the analysis becomes more tractable. If there
are multiple such cj,k, we can set any one of them, e.g., the smallest one, to 1 and set the
remaining ones to zero. Specifically,

ck,j =

{
1 if j = arg mini s.t. |ki|=‖k‖∞ i

0 otherwise
.

Given (k1, . . . , kj−1, kj+1, . . . , kd), let kj denote a set of all frequencies kj such that |kj| =
‖k‖∞ for each k ∈ kj:

kj =
{

(k1, . . . , kj−1, kj, kj+1, . . . kd) | kj ∈ Z s.t. |kj| ≥ max
m6=j
|km|

}
.

We let f̂kj denote a sequence of Fourier coefficients corresponding to each kj ∈ kj. Ac-
cordingly, in the present discussion, summation over kj denotes summation over all possible
combinations of k1, . . . , kj−1 and kj+1, . . . , kd while summation over kj entails summation
over the elements of kj given a specific k1, . . . , kj−1 and kj+1, . . . , kd. Based on that, we

can obtain an upper bound for WH
d

p that contains an additional term attributable to the

boundary conditions relative to the upper bound for WT
d

p in (30).

Lemma 4.9. For p ∈ [1,∞),

‖V ′‖Lp ≤ Cd,p

(
‖f̂ − ĝ‖ζ,wζ +

(∑
j

∑
kj

‖f̂kj − ĝkj‖ζ1,w∞
) 1
ζ
)

(34)

where ζ and Cd,p are given by (28) and the weights wζ and w∞ are given by (2).

Remark 4.10. Theorem 4.7 shall also apply to WH
d

p (f, g) as modified by replacing the
right-hand side of (30) with

Cd,p p ξ
− 1
p′
(
‖f̂ − ĝ‖ζ,wζ +

(∑
j

∑
kj

‖f̂kj − ĝkj‖ζ1,w∞
) 1
ζ
))
.
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5 Unbalanced transport

In this section, we extend the foregoing bounds to generalized Wp for unbalanced positive
measures and generalized W1 for signed measures.

5.1 Generalized Wp for positive measures

We consider the unbalanced W a,b
p metric introduced in [50]:

W a,b
p (µ, ν) :=

(
T a,bp (µ, ν)

) 1
p

where
T a,bp (µ, ν) := inf

µ̃,ν̃∈M(Ω)
|µ̃|=|ν̃|

ap(|µ− µ̃|+ |ν − ν̃|)p + bp W p
p (µ̃, ν̃),

M(Ω) is the space of positive Borel regular measures on Ω with finite mass, and a, b > 0.7

In this section, we develop Fourier-based upper and lower bounds for W a,b
p on Td and Hd.

Proposition 2 in [50] guarantees that there exist optimal µ̃ and ν̃ such that µ̃ ≤ µ and
ν̃ ≤ ν. Therefore, ‖µ̃‖Ls ≤ ‖µ‖Ls and ‖ν̃‖Ls ≤ ‖ν‖Ls . Based on this, in Appendix G, we
generalize Lemma 4.4 to the unbalanced metric.

Lemma 5.1. For all h ∈ W 1,q(Ω), if µ and ν ∈ M(Ω) ∩ Ls(Ω), ‖µ‖Ls , ‖ν‖Ls ≤ M , q
satisfies (22), and

‖h‖∞ ≤ a and d
1
2
− 1
qM1/p′‖∇h‖q ≤ b,

then ∫
Ω

h d(µ− ν) ≤ 2
p−1
p W a,b

p (µ, ν).

We again assume that the measures µ and ν are absolutely continuous with respect to
the Lebesgue measure and, therefore, are associated with a pair of positive densities f and
g. We will denote W a,b

p (µ, ν) as W a,b
p (f, g) by reference to the corresponding density. In

Appendix H we use this lemma to adjust the construction of the test function h from the
proof of Theorem 4.5 in Appendix B. This generalizes our previous lower bound to the
unbalanced setting.

Theorem 5.2. If f and g are positive functions that have a Fourier expansion (16), then
for p ∈ [1,∞),

W a,b
p (f, g) ≥ d−

1
2 b‖f̂ − ĝ‖∞,w1 ∧ a.

Furthermore, if p ∈ (1, 2] and ‖f‖Ls , ‖g‖Ls ≤M for s ∈ (1,∞], or if p > 2 and ‖f‖Ls , ‖g‖Ls ≤
M for s ∈ (1, 2p−2

p−2
], then

W a,b
p (f, g) ≥ 2(1−p)/p

((
d

1
q
− 1

2M−1/p′b
)
∧

(
a

‖(f̂ − ĝ)
1
p‖q,wq′

))
‖f̂ − ĝ‖q

q,wq′

7The Wasserstein metric is a well-defined distance for an arbitrary pair of positive measures f and g of

equal mass since it is homogeneous under scalar multiplication: Wp(µ, ν) := cWp

(
1
cµ,

1
cν).
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and q = p′s
s−1

. In each case, the bounds hold on Hd and Td, p′ and q′ are the conjugate

exponents of p and q respectively given by (20) and the weights wp and wq
′

are given by (2)

for k ∈ Zd \ 0 while the weight associated with the zero’s frequency f̂0 − ĝ0 is wq
′

0 = 1.

As a shorthand, the preceding bounds can be combined into a single expression:

W a,b
p (f, g) ≥ 2(1−p)/p

((
d

1
q
− 1

2M−1/p′b
)
∧

(
a

‖(f̂ − ĝ)
1
p‖q,wq′

))
‖f̂ − ĝ‖q

q,wq′

where q is given by (24).

For purposes of an upper bound, we assume, without loss of generality, that f̂0 − ĝ0 =∫
Ω

(f − g) ≤ 0. To preserve the positivity of the measures, we take f̃ = f − f̂0 + ĝ0 and

g̃ = g. Note that all the Fourier amplitudes of f̃ and f are the same except for the one
corresponding to the frequency k = 0. Therefore, by a standard result Equation (76)

W a,b
p (f, g) ≤

(
ap|f − f̃ |p + bpW p

p (f̃ , g)
) 1
p

(35)

≤ 2
1
p
− 1
ζ

(
aζ |f̂0 − ĝ0|ζ + bζWp(f̃ , g)ζ

) 1
ζ
. (36)

Based on that, we extend our previous upper bounds to the unbalanced case as follows.

Remark 5.3. Theorem 4.7 applies to W a,b
p (f, g) on Td provided that the bound (30) shall

be replaced with

W a,b
p (f, g) ≤ 2

1
p
− 1
ζCd,pp b ξ

− 1
p′ ‖f̂ − ĝ‖ζ,wζ

where ζ is given by (28) and the weighted `ζ norm shall include the weight wζ0 = a/(bCd,pp ξ
− 1
p′ )

associated with the zero’s frequency f̂0 − ĝ0.

Remark 5.4. Proposition 4.8 extends to W a,b
p (f, g) provided that in such case, (32) shall be

replaced with

‖f̂ − ĝ‖2,w2 . 2
1
p
− 1
ζ

(
aζ |f̂0 − ĝ0|ζ + bζ‖f − g‖

ζ
2

Ḣβ
‖f̂ − ĝ‖

ζ
2

p′,w2

) 1
ζ

where for purposes of computing the weighted `p′ norm we exclude the zero’s frequency.

In the case of p = 1, on Td, we have

W a,b
1 (f, g) ≤

√
2b‖f̂ − ĝ‖2,w2 (37)

where for purposes of computing the weighted `2 norm, we include the zero’s frequency
f̂0 − ĝ0 with the weight a/b. If f − g ∈ Ḣβ for β > d/2− 1, then also

W a,b
1 (f, g) . a|f̂0 − ĝ0|+ b‖f − g‖

1
2

Ḣβ
‖f̂ − ĝ‖

1
2

∞,w2 (38)

where for purposes of computing the weighted `∞ norm we exclude the zero’s frequency.
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5.2 Generalized W1 for signed measures

For general (potentially unbalanced) signed measures µ and ν that can be decomposed into
positive measures:

µ = µ+ − µ− and ν = ν+ − ν−,
references [3] and [51] generalized the W1 metric as follows:8

Wa,b
1 (µ, ν) := W a,b

1 (µ+ + ν−, µ− + ν+)

Reference [51] also showed that for a = b = 1, this metric is equivalent to the Kantorovich-
Rubinstein norm [28], also called bounded Lipschitz distance or Fortet–Mourier distance
[59]:

W 1,1
1 (µ, ν) = sup

{∫
φ d(µ− ν) : φ ∈ C0, ‖φ‖∞ ≤ 1, ‖φ‖Lip ≤ 1

}
where C0 is a set of continuous real-valued functions on Rd; see also [50]. The Kantorovich-
Rubinstein norm was used in seismic inversion in references [34, 41, 42, 44] mentioned
previously. Accordingly, the Fourier-based bounds in the previous section for W a,b

1 (f+ +
g−, f− + g+) apply immediately to Wa,b

1 (f, g).

6 Resolution in computational inversion

In this section, we study the implication of the Fourier-based bounds, as well as the existing
wavelet-based bounds established in [48], in the resolution analysis of computational inver-
sion methods based on the Wp metrics. We focus on the case when the forward operator
is linear (when f is nonlinear, our case can represent the linearization of f around some
estimated solution m0). Our analysis mirrors the resolution analysis in [6] and [24] with
respect to the L2 and Hs norms, respectively.

Let M and G be two function spaces and A :M 7→ G a linear map between them. We
are interested in solving the linear problem of the form

Am = g. (39)

We assume that A is invertible and solve this problem by finding mδ such that Wp(Amδ, g) ≤
δ. We denote the noisy signal by gδ := Am and the noise by the function n : Ω→ R

n := gδ − g. (40)

In the settings we consider in this paper, the noise is either attributed to the early stopping
of the minimization of the Wp distance (optimization error) or inaccurate measurements
(estimation error). We assume that n is in the range of A and∫

Ω

n(x)dx = 0. (41)

8Reference [3] showed that this procedure fails to yield a distance for p 6= 1 since the resulting mismatch
functional fails to satisfy the triangular inequality.
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Since A is invertible, we denote the solution recovered from the noisy data by

mδ = A−1gδ.

6.1 Resolution of frequencies

Let the function n defined by (40) be represented by a Fourier series n̂, and denote its
weighted `q norm by

δq := ‖n̂‖q,w2 (42)

where q will be specified later. (Equation (41) guarantees that n̂0 = 0.) Let B represent a
bandwidth-limited approximation of A−1 given in the Fourier domain by

(̂Bg)k �

{
(̂A−1)gk if ‖k‖2 ≤ kc

0 if ‖k‖2 > kc

and let mc
δ represent the bandwidth-limited approximation of mδ given by

mc
δ := Bgδ.

The following elementary theorem, proved in Appendix I, provides an upper bound on
the reconstruction error of B in terms of δq.

Theorem 6.1. For m, mc
δ and n, as defined above, if m ∈ Ḣr,

‖m−mc
δ‖L2 ≤ (2πkc)

−r‖m‖Ḣr + ‖Bn‖L2 (43)

De-smoothing inversion: We assume that ‖B‖`q,w2→L2 . kαc for some α > 0 where

‖ · ‖`q,w2→L2 is the operator norm of a map from the weighted `q space of Fourier coefficients

to L2. We shall refer to the corresponding B as a de-smoothing inverse operator.9 Then, if
r > 0, the upper bound (43) is minimized by

kα+r
c .

(2π)−rr

α
· ‖m‖Ḣr

δq
.

On the other hand, if r ≤ 0, then the optimal cut-off frequency kc = 0, i.e., no recovery is
possible. Also, if ‖B‖`q,w2→L2 is bounded from above uniformly in kc, then, if r ≥ 0 these
upper bounds are minimized by setting kc →∞ and reconstructing all the frequencies, while
if r < 0, then the optimal cut-off frequency is again kc = 0.

If ‖n‖Ḣβ ≤ z, then one can consider the operator norm of B as a map to L2 from the
weighted `q space of Fourier coefficients, restricted to coefficients of functions whose Ḣβ

norm is bounded by z. In this case let us assume that that ‖Bn‖L2 � kα
′

c h(z)δεq for some
constants α′, ε > 0 and function h. Then, if r > 0, the upper bound (43) is minimized by

kα
′+r

c .
(2π)−rr

α′
· ‖m‖Ḣr
h(z)δεq

.

9It is also possible to find optimal kc by a similar computation if r > 0 and ‖B‖`q,w2→L2 is proportional

to another increasing function of kc, e.g. if ‖B‖`q,w2→L2 � log kc, then the upper bound (43) is minimized

when krc � r‖m‖Ḣr/(δq). On the other hand, if r ≤ 0, then the optimal kc = 0.
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Early stopping of Wp minimization: Since A is invertible and g is in its range, the
same exact solution m is obtained by minimizing to zero the mismatch between Am and g
using Wp or any other metric. However, the present model allows us to specifically analyze
computational inversion when the minimization

min
m

Wp(Am, g) (44)

s.t. Am ∈ Ki

is subject to the early stopping condition Wp(Am, g) ≤ δ. In such case, let mδ denote the
approximate solution; we denote the exact solution by m∗, such that g = Am∗. We define
the noisy data by reference to the early stopping solution gδ := Amδ. Then, the “noise”
attributable to the early stopping is

n = gδ − g = Amδ − g.

p [1,∞) (1, 2] (2,∞)

s 1 (1,∞]
(
1, 2p−2

p−2

]
Ks : ‖Am‖Ls , ‖g‖Ls ≤M kα+r

c . d
1
2

(2π)−rr
α
· ‖m‖Ḣr

δ
kα+r
c .M d

1
2
− 1
q

(2π)−rr
α
· ‖m‖Ḣr

δ

Table 3: The upper bounds on the resolution of frequencies kc when the minimization in
(44) is subject to the early stopping threshold δ, α is given by (47) and the optimization
constraint is Ks, which holds automatically for s = 1 since we assume that Am and g are
probability densities.

We assume that the data g is probability density P(Td) or P(Hd) and the constraint
Ki also requires Am to be a probability density. For purposes of the upper bound on kc,
we can consider transport on the flat torus or hypercube (where that the Fourier-based
Wp lower bounds are the same). For purposes of the lower bound on kc, to simplify the
calculations, we consider the torus only. If g belongs to Ls for s ∈ (1,∞] when p ∈ [1,∞) or
s ∈ (1, (2p− 2)/(p− 2)] when p ∈ (2,∞), then we can include a constraint requiring that
Am shall belong to

Ks := {f ∈ P(Ω) | ‖f‖Ls ≤M}

where M := ‖g‖Ls . (K1 = P(Ω) holds trivially.) For purposes of the lower bound we include
the constraint requiring that Am shall belong to:

Kξ := {f ∈ P(Td) | f ≥ ξ a.e. on Td}

where ξ satisfies

g ≥ ξ a.e. in Td. (45)
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(We can always take ξ = 0 since g ∈ P(Td).) Moreover, if p ∈ [1, 2] and g ∈ Ḣβ where β
satisfies the hypothesis of Proposition 4.8, then we can take

Kξ,z := {f ∈ P(Td) | f ≥ ξ a.e. on Td, ‖f − g‖Ḣs ≤ z}

where z > 0 is some constant and ξ is given by (45). Using the lower and upper bounds
in Theorem 4.5 and Theorem 4.7, we obtain upper and lower bounds on the resolution kc
corresponding to each function class. These upper and lower bounds are set forth in Table 3
and Table 4, respectively. In the remainder of this discussion, we assume that α > 0 and
α′ > 0 and r ≤ 0. We will refer to ‖m‖Ḣr/δq and ‖m‖Ḣr/

√
zδq as the signal-to-noise ratios.

We observe that, holding the early stopping threshold δ constant, for the sufficiently large
signal-to-noise ratio, the leading order behavior of kc as a function of p, s and d will be
determined by α + r and, if applicable, α′ + r, h and ε.

p = 1, ξ = 0 p ∈ (1, 2], ξ > 0 p ∈ (2,∞), ξ > 0

Kξ : Am ∧ g ≥ ξ kα+r
c & (2π)−rr

α
· ‖m‖Ḣr

δ
kα+r
c &ξ

(2π)−rr
α
· ‖m‖Ḣr

δ
kα+r
c

Kξ,z : Am ∧ g ≥ ξ kα
′+r

c kα
′+r

c &ξ
1
p
d

1
p′−

1
2 (2π)−rr

α
· ‖m‖Ḣr

δ

‖Am− g‖Ḣβ ≤ z & (2π)−rr
α′
· ‖m‖Ḣr
h(z)δε

&ξ
(2π)−rr
α′
· ‖m‖Ḣr
h(z)δε

Table 4: The lower bounds on the resolution of frequencies kc when the minimization in
(44) is subject to the early stopping threshold δ.

Diagonal operators in the Fourier domain: The exponent α may depend on the
dimension d and the exponent q, in addition to the intrinsic properties of the forward
map A. To illustrate this, consider A that is diagonal in the Fourier domain and decays
algebraically:

Âk = ‖k‖−γ2 . (46)

While it might be too simplistic to assume that the operator is diagonal in the Fourier
domain, i.e, that there is no mixing of frequencies, the decay behavior is universal in many
inverse problems for physical models, such as inverse coefficients problems for partial differ-
ential equations [31]. In such problems, the forward operators are often smoothing operators
with the degree of smoothing parameterized by γ. Moreover, unless the forward model has a
truly significant mixing across a wide band of frequencies, the asymptotic resolution analysis
we perform here (in the high-frequency regime, as the noise is mainly assumed to be of high
frequency) should still provide useful insight in the context of more complicated forward
operators.

Our bandwidth-limited approximation B of A−1 is given in the Fourier domain by

B̂k =

{
‖k‖γ2 if ‖k‖2 ≤ kc

0 if ‖k‖2 > kc
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Then we obtain the following bound, shown in Appendix J.

Remark 6.2. When A is diagonal in the Fourier domain, as described above, q ∈ [1,∞],
and α given by

α =

{
1 + γ + d

2
− d

q
if γ > −1

d
2
− d

q
if γ ≤ −1

. (47)

is strictly positive, we have
‖B‖`q,w2→L2 . kαc

Furthermore if ‖n‖Ḣβ ≤ z, then

‖Bn‖`1,w2→L2 . kα
′

c

√
zδq.

where

α′ =

{
1 + 2γ − β + d

2
− d

q
if γ > β/2− 1/2

d
2
− d

q
if γ ≤ β/2− 1/2

(48)

We assume that γ, d and q and if applicable β are such that α > 0 or α′ > 0. Plugging
these expressions of α and α′ in Table 3 and Table 4, respectively, we observe that, holding
the early stopping threshold δ constant, for the sufficiently large signal-to-noise ratio:

• For all p in Wp, the bounds on the resolution kc of mc
δ will either remain constant or

increase if we increase p (depending on regularity of g);

• For p ∈ [1, 2], the bounds on the resolution kc will either remain constant or decrease
if we increase the dimension d; and

• For p ∈ (2,∞), the bounds on the resolution kc will increase if we increase the dimen-
sion d.

Optimal resolution with fixed noise: In contrast to the previous discussion where we
held the early stopping threshold δ constant as we changed p, if we hold the noise n constant
as we decrease p, by the monotonicity of the `q norm, δq and δp′ given by (53) will decrease.
In this setting, we show that the resolution may increase when we decrease p by constructing
a specific example of high-frequency noise.

We focus on the case when ‖g‖∞ = M <∞, and g ≥ 2ξ > 0 a.e. on Td. In this setting,
the observed data gδ = g + ñ is corrupted with high-frequency bandwidth-limited noise ñ
constructed as follows. We start with the function n given by

n̂k =


0 if ‖k‖2 < kn

‖k‖−η2 if kn ≤ ‖k‖2 ≤ bkn

0 if ‖k‖2 > bkn

(49)
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for some constant b > 1. As shown in Appendix K taking η > 0 satisfying

d < η (50)

guarantees ‖n‖L∞ ≤ Cη,d uniformly in kn for a fixed b. Then, we rescale the noise

ñ :=
ξ

Cη,d
n (51)

which ensures that ‖ñ‖L∞ ≤ ξ and therefore gδ = g+ ñ ≥ ξ a.e. on Td. By the monotonicity
of Lp(Td), ‖ñ‖Ls ≤ ξ for all s ∈ [1,∞). When p ∈ [1, 2), for β > d

p
− d

2
− 1, we also bound

‖ñ‖Ḣβ ≤ Cβ,d,η uniformly in kn. As shown in Appendix K, this result is guaranteed by (50)

as long as d
p
− d

2
≤ β. The following proposition allows us to determine different regimes

when resolution kc may increase or decrease when we decrease p. For simplicity, we assume
that the exponent γ in the forward operator equals to the exponent β in the Hβ of the norm
of the noise, and therefore 1+2γ−β = 1+γ. Let us also assume that γ > −1, and therefore
the bracketed terms will be present according to (47) and (48).

Proposition 6.3. In the setting described above, if p ∈ [1, 2],

δp′ = ‖n̂‖p′,w2 � k
−η−1+d− d

p
n (52)

and the resolution kc corresponding to (44) with the hypothesis classes Ks for s = ∞ and
Kξ,z is bounded as follows

k

1+η+ d
p−d

2(1+γ+ d
p−

d
2 +r)

n .ξ,z kc .M,d k

1+η+ d
p−d

1+γ+ d
p−

d
2 +r

n .

If, on the other hand, p ∈ (2,∞), then, for q = p′s/(s− 1) and s = 2p−2
p−2

, we have q = 2 for
all p. This leads to the following bounds

δ2 := ‖n̂‖2,w2 � k
−η−1+ d

2
n (53)

and the resolution kc corresponding to (44), with the hypothesis classes Ks for the value of
s specified above and Kξ, is bounded as follows:

k

1+η− d2
1+γ+ d

p−
d
2 +r

n .ξ kc .M,d k
1+η− d2
1+γ+r
n .

Note that the sign of

∂

∂p

(a+ d
p

b+ c
d

)
is given by the sign ac − bd. Accordingly, to determine the relationship between p and
increase/decrease of the lower bounds on kc for all p and the upper bound when p ∈ [1, 2]
we need to consider compare η with

t := r + γ +
d

2
.

Therefore, for sufficiently large kn, as p increases,
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• If p ∈ [1, 2], and t < η, then both upper and lower bounds on kc will increase, and
otherwise t > η, these bounds will decrease.

• If p ∈ (2,∞), then the lower bound on kc will increase.

• If p ∈ (2,∞) then the upper bound on kc will remain constant.

For these purposes, when p ∈ [1, 2], we set the early stopping threshold to be δp′ in (52).
When p ∈ (2,∞), for purposes of the lower bound, the same threshold applies, while for
purposes of the upper bound, this threshold is δ2 in (53).

Generalization of Kantorovich-Rubinstein norm for unbalanced signed measures:
In this section we consider reconstruction using Wa,b

1 (f, g) = W a,b
1 (f+ + g−, f−+ g+), which

generalizes Kantorovich-Rubinstein norm.

min
m
Wa,b

p (Am, g) (54)

s.t. Am ∈ Ki

is subject to the early stopping condition W a,b
p (Am, g) ≤ δ.

First, we observe that our upper and lower bounds on this metric are not conditioned on
any lower or upper bounds on f and g, or their norms. For simplicity, we can assume that
the forward operator A does not change the zero’s frequency, i.e., Â0 = 1. In this setting,
Theorem 6.1, and Remark 6.2 still hold if we define the bandwidth-limited inverse B such
that it never cuts off the zero’s frequency. Accordingly, it will be possible to bound the
resolution of frequencies kc from above and below if α > 0 or α′ > 0 where α and α′ are
given by (47) and (48).

If the feasible set is K1 = P(Td) and the early stopping condition δ ≤ a/b
√
d, then

k
[1+γ]+ d

2
+r

c .
√
d

(2π)−rr

([1 + γ] + d
2
)b
· ‖m‖Ḣr

δ
.

On the other hand, if δ > a/b
√
d, then

k
[1+γ]+ d

2
+r

c .
(2π)−rr

[1 + γ] + d
2

· ‖m‖Ḣr
a

.

In this setting, we have the following lower bound:

(2π)−rr

1 + γ
· ‖m‖Ḣr

δ
. k1+γ+r

c

If g ∈ Ḣβ for β > d
2
− 1, we also obtain the following lower bound:

(2π)−rr

[1 + 2γ − β] + d
2

· ‖m‖Ḣr
δ

1
2

.z k
[1+2γ−β]+ d

2
c .

The bracketed terms 1+γ and 1+2γ−β will appear if γ > −1 or γ > β/2−1/2 respectively,
see Remark 6.2. If 1 + 2γ − δ = 1 + γ, then the upper and lower bounds will match up
modulo a square root.
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6.2 Existing wavelet-based bounds for Wp

A significant body of literature bounding Wp(f, g) by a weighted `p norm of wavelet or
similar multiresolution coefficients of f − g. For example, reference [30] embeds a discrete
distribution supported on a finite number of points in Rd in W 1 into sparse vectors in a
higher dimensional `1(R∆d

) where ∆ is the level of the finest grid. That reference uses this
approach to develop a fast sparse optimization algorithm to match images.

The wavelet-based bounds that are most relevant for our purposes appear in [48] on the
Wp distance given by a weighted `p norm of the wavelet expansion of f − g. They consider
the hypercube Hd in (8) with the Euclidean distance and assume the existence of basis sets
Φ and Ψj for j ≥ 0 satisfying the following standard assumptions of a wavelet basis of
functions in L2(Hd):

1. (Basis) Φ ∪ {∪j≥0Ψj} form an orthonormal basis for L2(Hd);

2. (Regularity) The functions in Φ and Ψj for j ≥ 0 all lie in Cr(Hd) and polynomials of
degree at most r lie in span(Φ).

3. (Tensor construction) Each ψ in Ψj can be expressed as ψ(x) =
∏d

i=1 ψi(xi) for some
univariate functions ψi.

4. (Locality) For each ψ in Ψj, there exists a rectangle Iψ ⊆ Hd such that supp(ψ) ⊆ Iψ,
diam(Iψ) . 2−j, and ‖

∑
ψ∈Ψj

1{x ∈ Iψ}‖∞ . 1.

5. (Norm) ‖ψ‖Lp(Hd) � 2dj(
1
2
− 1
p

) for all ψ ∈ Ψj.

6. (Bernstein estimate) ‖∇f‖Lp(Hd) . 2j‖f‖Lp(Hd) for any f ∈ span
(

Φ ∪ {∪j≥k≥0Ψj}
)

.

See Appendix E in [48] and also [20] and Chapter 2.12 in [19] for additional details regarding
this classic wavelet construction.

Reference [48] assumes following wavelet expansions of the probability densities f, g ∈
Lp(Ω) for p ∈ [1,∞):

f =
∑
φ∈Φ

αφφ+
∑
j≥0

∑
ψ∈Ψj

βψψ and g =
∑
φ∈Φ

α′φφ+
∑
j≥0

∑
ψ∈Ψj

β′ψψ. (55)

where Φ and Ψ are sets of functions satisfying the wavelet assumptions above. The following
upper bound holds if constant functions lie in the span of Φ (Assumption 2 holds with r = 0).

Proposition 6.4 (Prop. 1 in [48]). For p ∈ [1,∞), if for almost every x ∈ Ω, we have

f(x) ∧ g(x) ≥ ξ > 0, (56)

then
Wp(f, g) . ξ−1/p′δup (f − g)
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where

δup (f) :=
(
‖α‖`p +

∑
j≥0

2−j2dj(
1
2
− 1
p

)‖βj‖`p
)

(57)

and the Hölder conjugates p and p′ are given by (20) below.

If the wavelets have at least one continuous derivative (Assumption 2 holds with r = 1),
then the following lower bound holds.

Proposition 6.5 (Prop. 3 in [48]). For p ∈ [1,∞), if for almost every x ∈ [0, 1]d, we have

f(x) ∨ g(x) ≤M, (58)

then
Wp(f, g) &M−1/p′δlp(f − g′)

where

δlp(f) :=
(
‖α‖`p + sup

j≥0

{
2−j2dj(

1
2
− 1
p

)‖βj‖`p
})

(59)

6.3 Resolution of wavelets

In this section, we present a wavelet-based resolution analysis that parallels the Fourier-
based analysis above. We are interested in solving the problem (39) from the noisy data gδ
when the noise n has the wavelet expansion

n =
∑
φ∈Φ

αφφ+
∑
j≥0

∑
ψ∈Ψj

βψψ.

Now B represents a limited-resolution approximation of A−1 given in the wavelet domain
by

(Bg)ψ =

{
(A−1g)ψ if ψ ∈ Ψj for j ≤ jc

0 if ψ ∈ Ψj for j > jc.

(Bg)φ = (A−1g)φ for all φ ∈ Φ

We also let mc
δ := Bgcδ. We consider m given by (39) in Hr(Hd) and assume that our wavelet

basis has regularity greater than |r|, as specified in Section 6.2. According to Theorem 4,
Chapter 3 in [43], given wavelet coefficients αm and βm of m, its Sobolev Hr norm is given
by

‖m‖2
Hr �

∑
φ∈Φ

|αmφ |2 +
∑
j≥0

∑
ψ∈Ψj

4jr|βmψ |2. (60)

We can decompose
m = mΦ +mΨ
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into orthogonal vectors in the span of the father wavelets Φ and mother wavelets Ψ:

mΦ =
∑
φ∈Φ

αmφ φ and mΨ =
∑
j≥0

∑
ψ∈Ψj

βmψ ψ.

The same decomposition will apply to the Hr norm of m:

‖m‖2
Hr � ‖αm‖2

2 + ‖mΨ‖2
Hr . (61)

The following theorem bounds the reconstruction error from above in terms of the
weighted wavelet-based norm of the noise.

Theorem 6.6. Under the assumptions on the wavelet basis in Section 6.2, we have

‖m−mc
δ‖L2 . ‖mΦ‖2 + 4−jcr‖mΨ‖Hr + ‖B‖δp→L2δq(n) (62)

where δp(n) represents the weighted `p norm of wavelet coefficients of the noise n given by
(57) or (59), and ‖ · ‖δp→L2 refers to the operator norm of a map from the normed space of
such coefficients to L2.

De-smoothing inversion (wavelet domain): We assume that ‖B‖δp→L2 �d,p 4jch for
some h > 0, and we shall refer to the corresponding B as a de-smoothing inverse operator.10

Then, if r > 0, the upper bound (43) is minimized when

4jc(h+r) �d,p
(
‖m‖Hr
δq

)
.

.

On the other hand, if r ≤ 0, then the optimal kc = 0, i.e., no recovery is possible in the
de-smoothing inversion setting. Also, if ‖B‖δp→L2 is upper bounded uniformly in jc, then
for r ≥ 0 the upper bound (62) is minimized by eliminating the cut-off resolution threshold
and reconstructing all scales, while if r < 0, the optimal jc = 0.

Diagonal operators in the wavelet domain: Similarly to the Fourier case, in the
present case, h may also depend on the exponent p and dimension d, as well as the intrinsic
properties of the map A. To illustrate this dependence, we assume the forward operator A
is diagonal in the wavelet domain:

{
(Aψm)ψ = 4−γjmψ if ψ ∈ Ψj for all j ≥ 0

(Aφm)φ = mφ for all φ ∈ Φ

10It is possible to perform a similar analysis of ‖B‖δp→L2 � log(2j).

25



for some γ > 0. Therefore, B is given by
(Bψg)ψ = 4γjgψ if ψ ∈ Ψj for allj ≤ jc

(Bψg)ψ = 0 if ψ ∈ Ψj for allj > jc

(Bφg)φ = gφ for all φ ∈ Φ

According to Lemma 1 in [48], the set Φ has finite cardinality cΦ := |Φ| . 1. Also, by
that Lemma the cardinality of Ψj . 2dj. By (76), the operator norm from δup given (57)
space to L2 is computed as follows.

‖Bn‖2
L2 =

∑
φ∈Φ

α2
φ +

∑
jc≥j≥0

4j(γ+1)4−j
∑
ψ∈Ψj

β2
ψ

≤ (c
1
2
− 1
p

Φ ‖α‖p)2 +
∑

jc≥j≥0

4j(γ+1)
(

2−j2dj(
1
2
− 1
p

)‖βj‖p
)2

≤ (jc + 1)−1

(
c

1
2
− 1
p

Φ ‖α‖p +
∑

jc≥j≥0

2j(γ+1)2−j2dj(
1
2
− 1
p

)‖βj‖p

)2

= (jc + 1)−1C2
w(δup (n))2

(63)

where

Cw =

max(c
1
2
− 1
p

Φ , 2jc(γ+1)) if γ ≥ −1

max(c
1
2
− 1
p

Φ , 1) if γ < −1
(64)

On the other hand, the operator norm from δlp given (59) space to L2 is computed as follows.

‖Bn‖2
L2 =

∑
φ∈Φ

α2
φ +

∑
jc≥j≥0

4j(γ+1)4−j
∑
ψ∈Ψj

β2
ψ

≤ (c
1
2
− 1
p

Φ ‖α‖p)2 + sup
jc≥j≥0

{
4j(γ+1)

(
2−j2dj(

1
2
− 1
p

)‖βj‖p
)2}

≤ 1

2

(
c

1
2
− 1
p

Φ ‖α‖p + sup
jc≥j≥0

{
4j(γ+1)

(
2−j2dj(

1
2
− 1
p

)
)2}) 1

2

=
1

2
C2
w(δlp(n))2

(65)

Accordingly, if γ ≥ −1 for jc enough, the reconstruction error bound is minimized when the
cutoff scale jc is bounded as follows

(jc + 1)
1
2

Cw
·
‖m‖HrΨ
δuq

. 4
jc(1+γ+r)
jc

.
1

Cw
·
‖m‖HrΨ
δq

.

This indicates that, in contrast to the resolution of frequencies in computational inversion
using the Wp metric, the resolution of wavelets in such an inversion does not exhibit a
complicated dependence on p and the dimension d.
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6.4 Relationship to existing work

When p = 2, the upper bound (43) is minimized when

kc �
(
δ−1

2 ‖m‖Hr
) 1

1+r+γ
.

This resolution matches the optimal resolution in [24] for inverse matching using the H−1

norm. More generally, this reference showed that in the context of using the Hs norm

kc �
(
δ−1
s ‖m‖Hr

) 1
1+r+γ−s

.

where δs is the early stopping threshold (corresponding to Hs norm of the “noise” repre-
senting the difference between the Amδ at early stopping and the data g). Taking s = 0,
corresponds to the L2 norm matching, leading to lower resolution (smoother reconstruc-
tion) than the Wp metric minimization; on the other hand, using the Hs with the negative
s = d

p′
− d

2
= d

2
− d

p
leads to the same resolution in Hs and Wp matching for p ∈ [1, 2] (in

each case, assuming that the early stopping thresholds are the same: δs = δp′). However,
the resolution analysis of W2 was based on its equivalence with the weighted homogeneous
Sobolev norm H−1. The latter norms entail mixing between different frequencies of the
signal (66), which somewhat complicates the resolution analysis. Since our Fourier-based
bounds do not entail such mixing, they lead to a more straightforward analysis.

7 Conclusion and Future Directions

The present work develops Fourier-based norm bounds on the Wp distance and makes
progress towards understanding the effects of using the Wp metric and its generalizations in
the context of computational inverse problems by applying these bounds to determine the
optimal resolution of frequencies in the context of solving such problems using this metric.

In addition to the resolution analysis, previous work [21, 24] analyzed the convexity
of the objective function, as well as the regularity of iterative solutions, in computational
inversion using the W2 mismatch functional. Accordingly, a potential future direction would
be to generalize this convexity and regularity analysis to other values of p. As the Fourier-
based bounds do not entail mixing between different frequencies, our results may also lead to
provable frequency matching algorithms forWp minimization in the context of computational
inverse problems and other settings; we leave this intriguing research directions to future
work. Moreover, since the Wp distance is used for a broad range of problems in mathematics
and computational sciences, we expect that our Fourier-based norm bounds will be of interest
beyond inverse problems.
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[41] L. Métivier, R. Brossier, Q. Mérigot, E. Oudet, and J. Virieux, Measuring the
misfit between seismograms using an optimal transport distance: application to full waveform
inversion, Geophys. J. Int., 205 (2016), pp. 345–377.

[42] , An optimal transport approach for seismic tomography: application to 3D full waveform
inversion, Inverse Probl., 32 (2016). 115008.

[43] Y. Meyer and D. Salinger, Wavelets and Operators, Cambridge University Press, 2011.

[44] L. Métivier, R. Brossier, F. Kpadonou, J. Messud, and A. Pladys, A review of
the use of optimal transport distances for high resolution seismic imaging based on the full
waveform, 2022.

[45] K. Nadjahi, V. De Bortoli, A. Durmus, R. Badeau, and U. Simsekli, Approximate
bayesian computation with the sliced-Wasserstein distance, arXiv:1910.12815, (2019).

[46] S. Nietert, R. Cummings, and Z. Goldfeld, Robust estimation under the wasserstein
distance., 2023.

[47] S. Nietert, Z. Goldfeld, and R. Cummings, Outlier-robust optimal transport: Duality,
structure, and statistical analysis, in Proceedings of The 25th International Conference on
Artificial Intelligence and Statistics, G. Camps-Valls, F. J. R. Ruiz, and I. Valera, eds., vol. 151
of Proceedings of Machine Learning Research, PMLR, 28–30 Mar 2022, pp. 11691–11719.

30



[48] J. Niles-Weed and Q. Berthet, Minimax estimation of smooth densities in Wasserstein
distance, Annals of Statistics, (2022), pp. 1519–1540.

[49] R. Peyre, Comparison between W2 distance and Ḣ−1 norm, and localization of wasserstein
distance, ESAIM: COCV, 24 (2018), pp. 1489–1501.

[50] B. Piccoli and F. Rossi, On properties of the generalized Wasserstein distance, Archive for
Rational Mechanics and Analysis, 222 (2000), pp. 1339– 1365.

[51] B. Piccoli, F. Rossi, and M. Tournus, A Wasserstein norm for signed measures, with
application to non-local transport equation with source term, 2023.

[52] E. K. Ryu, W. Li, P. Yin, and S. Osher, Unbalanced and partial l1 Monge-Kantorovich
problem: A scalable parallel first-order method, J. Sci. Comput., 75 (2018), pp. 1596–1613.

[53] F. Santambrogio, Optimal Transport for Applied Mathematicians: Calculus of Variations,
PDEs, and Modeling, Birkhäuser, 2015.
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A Existing Fourier-based bounds for Wp

Wp on the circle: In the case of Wp on the circle T for 1 ≤ p <∞, [57] showed that

Wp(f, g) .p

( ∞∑
k=1

|f̂(k)− ĝ(k)|2

k2p−2

) 1
2p
.

When g is a Lebesgue measure λ, [57] proved the following lower bound,

W1(f, λ) &M−1

∞∑
k∈Z
k 6=0

1 + log |k|
k2

|f̂(k)|2

where M = ‖f‖∞.
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W2 on R
d: Given a positive measure µ on M and F : M → R, the weighted Sobolev

Ḣs(µ) semi-norm of F is given by

‖F‖2
Ḣs(µ)

:=

∫
M

|ξ|2s|F̂ (ξ)|2dµ(ξ). (66)

We will omit the parenthesis in Ḣs(µ) if µ is the Lebesgue measure, which we will denote by
λ. If µ is absolutely continuous with respect to λ, then it can be associated with a density
g. If ω = 1/

√
g has a Fourier expansion, then the preceding norm becomes

‖F‖2
Ḣs(µ)

:=

∫
M

|ξ|2s|F̂ ~ ω̂(ξ)|2dξ. (67)

When µ is close to ν, referred to as linearized or asymptotic, in the case of transport on Rn,
W2 is equivalent to the weighted homogeneous Sobolev Ḣ−1(µ) norm (e.g., Theorem 7.26 in
[58]). Based on this equivalence, reference [49] established

1

c
‖µ− ν‖Ḣ−1 ≤ W2(µ, ν) ≤ 2‖µ− ν‖Ḣ−1(µ) (68)

where the lower bound holds only if µ ≤ ρ0λ and ν ≤ ρ1λ with

c =
2(ρ

1
2
0 − ρ

1
2
1 )

ln(ρ0/ρ1)

(For ρ0 = ρ1, we take c = ρ
1
2
0 by continuity.) Note that in the lower bound we have an

unweighted Sobolev norm while in the upper bound we have a weighted one. The constant c
is bounded from above by the prefactor max(ρ0, ρ1)

1
2 that appears in a similar lower bound

in [38]; the two lower bounds coalesce when ρ0 = ρ1. If the probability measures µ and ν
are absolutely continuous with respect to the Lebesgue measure and have densities f and g,
which have Fourier transforms, then

‖f − g‖2
Ḣ−1(ν)

=

∫
Rn

∣∣∣|ξ|−1((f̂ − ĝ) ~ ω̂(ξ))
∣∣∣2 dξ. (69)

where ω = 1/
√
g. Reference [24] used the relationship between Ḣ−1 and W2 to analyze the

frequency content of W2 inverse matching in the Fourier domain in the asymptotic regime.
In this setting, it observed that the weighting leads to mixing between different modes of g
in the Fourier domain, which prevents matching mode by mode.

W1 and W2 on a finite grid: Reference [5] analysed the equivalence of a Fourier-based
metric and Wp for p = 1 and 2 for discrete measures supported on a finite grid. Specifically
in the case of a discrete measure µ supported on a regular grid GN (of Nd points) in [0, 1)d

given by
GN := {x ∈ Rd : Nx ∈ Zd ∩ [0, N)d}
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its discrete Fourier transform
µ̂(k) =

∑
x∈Gn

µxe
−i〈k,x〉

is 2πN -periodic in each coordinate of x, and therefore it suffices to consider k ∈ [0, 2πN ]d.
Letting T = 2πN , this reference showed the equivalence of the metrics f1,2 and F2,2 based
on the Fourier transform µ̂, as defined below, and Wp for p = 1 and 2:

f1,2(µ, ν) ≤ W1(µ, ν) ≤ T 2

2π
f1,2(µ, ν) and

1

2
√

2
F2,2(µ, ν) ≤ W2(µ, ν) ≤ T 3

π
F2,2(µ, ν)

where

fp,2(µ, ν) =
( 1

|T |d

∫
[0,T ]d

|µ̂(k)− ν̂(k)|2

|k|2p
dk
) 1

2
, F2,2(µ, ν) =

√
fp,2(µ, νmµ−mν ) + |mµ −mν |2

and νmµ−mν is the translation of ν by mµ −mν so that µ and νmµ−mν have the same center
of mass given by (11).

B Proof of Theorem 4.5

Proof. Let h be a function given by

h =
∑
k

λkψk

for some sequence of Fourier coefficients λ that we will determine later. Since Assumption 3
(Locality) is not satisfied with respect to Fourier basis function, Lemma E.2 and consequently
Lemma 7 in [48] would not generalize to the present setting. However, the following bound
holds instead.

Lemma B.1. If q ∈ (2,∞], q′ is its conjugate exponent given by (20), and

d
1
2
− 1
q ‖λ‖q′,wq′ ≤ 1 (70)

where the weights wq
′

are given by (2), then ‖∇h‖Lq ≤ 1.
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Proof. We have

‖∇h‖qLq =
∥∥∥∑

k

λk∇ψk
∥∥∥q
Lq

=

∫
Ω

( d∑
j=1

∣∣∣∑
k

2πiλkkjψk(x)
∣∣∣2) q2dx

≤ d
q
2
−1

∫
Ω

d∑
j=1

∣∣∣∑
k

2πiλkkjψk(x)
∣∣∣qdx

≤ d
q
2
−1

d∑
j=1

(∑
k

|2πλkkj|q
′
) q
q′

≤ d
q
2
−1
( d∑
j=1

∑
k

|2πλkkj|q
′
) q
q′

= d
q
2
−1
(∑

k

(2π‖k‖q′)q
′|λk|q

′
) q
q′

≤ 1

Specifically, the first inequality follows from the fact that ‖ · ‖2 ≤ d
1
2
− 1
q ‖ · ‖q. The second

inequality follows from the Hausdorff-Young inequality (21); the third inequality follows
from the fact that 1 ≤ q

q′
, and the last inequality follows from the weighted norm bound

(70).

Assuming (70) holds, by Lemma 4.4 and the preceding lemma,

Wp(f, g) ≥M−1/p′〈λ, f̂ − ĝ〉 (72)

We now optimize λ to maximize this lower bound subject to the constraint (70). Note that
the Hölder’s inequality holds with equality when

|〈a, b〉| = ‖a‖q′‖b‖q

which holds when |ak|q
′

= α|bk|q. Accordingly, for the weights wq
′

k = 1/(2π‖k‖q′), the value
λ guaranteeing that

〈λ, (f̂ − ĝ)〉 =
∑
k

λk(f̂k − ĝk) =
∑
k

λk/wk(f̂k − ĝk)wk (73)

is equal to
‖λ‖q′,1/wq′‖λ‖q,wq′ ,

is given by

λk = wq
′

k α
(f̂k − ĝk)∗

|f̂k − ĝk|

(
wq
′

k |f̂k − ĝk|
) q
q′

(74)
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for some α > 0 that we will determine next (the superscript ∗ denotes the complex conju-
gate). Also observe that q

q′
= q − 1. Accordingly,

‖λ‖q′,wq′ ≤ α
∥∥∥(|f̂ − ĝ|wq′) q

q′
∥∥∥
q′

= α‖f̂ − ĝ‖
q
q′

q,wq′
= α‖f̂ − ĝ‖q−1

q,wq′
(75)

Now, setting

α = 1
/

(d
1
2
− 1
q ‖f̂ − ĝ‖q−1

q,wq′
)

guarantees (70). Now evaluating

〈λ, (f̂ − ĝ)〉 = α
∑
k

|f̂k − ĝk|
wk

( |f̂k − ĝk|
wk

)q−1

= α‖f̂k − ĝk‖qq,v = d
1
q
− 1

2‖f̂k − ĝk‖q,vq′

completes the proof of Theorem 4.5.

C Proof of Lemma 4.6

When p ∈ [1, 2], we use Hölder’s inequality and Parseval’s identity:

‖V ‖pLp =

∫
Td

‖V (x)‖p2dx

=

∫
Td

(∑
j

(∑
k

(f̂k − ĝk)(Vk)j(x)
)2) p

2
dx

=

∫
Td

(∑
j

(∑
k

kj
i2π‖k‖2

2

(f̂k − ĝk)ψk(x)
)2) p

2
dx

≤
(∫

Td

dx
) 2

2−p
(∫

Td

∑
j

(∑
k

kj
i2π‖k‖2

2

(f̂k − ĝk)ψk(x)
)2

dx
) p

2

=
(∑

j

∑
k

k2
j

i2π‖k‖4
2

(f̂k − ĝk)2
) p

2

= ‖f̂k − ĝk‖p2,w2

where the sequence of weights w2 is given by (2) and the inequality follows from the appli-
cation of Hölder’s inequality with conjugate exponents 2/p and 2/(2− p); afterwards we use
Parseval’s identity and the fact that the volume of Td is 1.

When p ∈ (2,∞),we use the Hausdorff-Young inequality. Taking cj,k = kp/‖k‖pp in the
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definition of Vk, we have

‖V ‖pLp ≤ d
p
2
−1

∫
Td

‖V (x)‖ppdx

= d
p
2
−1
∑
j

∫
Td

(∑
k

kp−1
j

i2π‖k‖pp
(f̂k − ĝk)ψk(x)

)p
dx

≤ d
p
2
−1
∑
j

∑
k

k
(p−1)p′

j

i2π‖k‖pp′2

(f̂k − ĝk)p
′

= d
p
2
−1
∑
k

1

i2π‖k‖pp′−p2

(f̂k − ĝk)p
′

= d
p
2
−1‖f̂k − ĝk‖pp′,wp′

The first inequality above follows from the standard result for vectors in Rd,

‖x‖p ≤ d
1
p
− 1
q ‖x‖q. (76)

The second inequality follows from the application of Hausdorff-Young inequality and the
sequence of weights wp

′
is again given by (2).

D Proof of Proposition 4.7

Proof. When p > 1, following [48], we use the fluid-dynamics characterization of W p in (19).
If E and ρ are absolutely continuous with respect to the Lebesgue measure on Ω× [0, 1], we
identify them with their densities as follows. We set

ρ(x, t) = (1− λ(t))f(x) + λ(t)g(x)

where

λ(t) =

{
1
2
(2t)p if t ≤ 1/2

1− 1
2
(2− 2t)p if t > 1/2

Then the lower bound (29) leads to

ρ(x, t) ≥

{
1
2
(2t)pξ if t < 1/2

1
2
(2− 2t)pξ if t > 1/2

a.e. on Ω. Moreover, since

λ′(t) =


p(2t)p−1 if t < 1/2 and p > 1

p(2− 2t)p−1 if t > 1/2 and p > 1

1 if p = 1
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we have
λ′(t)p

ρ(x, t)p−1
≤

{
2p−1ppξ1−p if t 6= 1

2
and p > 1

1 if t 6= 1
2

and p = 1

Also similarly to [48], we let

E(x, t) = λ′(t)V (x) for t ∈ [0, 1] \ {1/2}

It can be verified by differentiation that the pair of ρ and E defined above satisfies the PDE
in (19). Therefore, since our choices of E and ρ are feasible for the optimization problem
and (19):

Wp(f, g) ≤
(∫

Ω×[0,1]

∥∥∥dE
dρ

(x, t)
∥∥∥pdρ(x, t)

) 1
p ≤

(∫
Ω×[0,1]

‖V (x)‖p λ′(t)p

ρ(x, t)p−1

) 1
p

≤ 21/p−1pξ1/p−1‖V ‖p = 2
− 1
p′ pξ−1/p′‖V ‖p

and the result follows from Lemma 4.6.

When p = 1, the divergence formulation provides

W1(f, g) ≤ ‖V ‖1

since V is a feasible point for (10).

E Proof of Proposition 4.8

Proof. We will use the generalized Hölder’s inequality in the `p spaces and∑
i

|aibici| ≤ ‖a‖p‖b‖q‖c‖r

for 1
p

+ 1
q

+ 1
r

= 1, and the Fourier representation of the homogeneous Sobolev norm (9).

‖f̂ − ĝ‖2
2,w = (w0(f̂ − ĝ))2 +

∑
k

1

(2π‖k‖2)2
(f̂k − ĝk)2 (77)

= (w0(f̂0 − ĝ0))2 +
∑
k

1

(2π‖k‖2)β+1

(f̂k − ĝk)
2π‖k‖2

(2π‖k‖2)β(f̂k − ĝk) (78)

≤ (w0(f̂0 − ĝ0))2 + C2
p,d,β‖f̂0 − ĝ0‖p′,w2‖f − g‖Ḣs (79)

where

C2
p,d,β =

(∑
k

1

(2π‖k‖2)(β+1)t

) 1
t

and
1

t
+

1

p′
+

1

2
= 1
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leading to t = 2p/(2−p). Since the summand above is a decreasing function of ‖k‖ (whenever
the sum converges), we can bound Cp,d,β by an integral with a radially symmetric integrand
plus constant discretization error:

1 ≤ Cp,d,β ≤
(
ωd−1

∫ ∞
1

1

r(β+1)t
rd−1dr +O(1)

) 1
2t ≤

(
ωd−1

∫ ∞
1

1

r(β+1)t
rd−1dr +O(1)

) 1
2

where ωd−1 is the surface area of the d− 1 unit sphere. If

β >
d

p
− d

2
− 1,

this integral converges and is equal to 1. Accordingly, 1 ≤ Cp,d,β ≤
(
ωd−1 + O(1)

) 1
2t

=

O(1).

F Proof of Lemma 4.9

Let Ṽ denote the vector field V with the j component evaluated on xj = 0

Ṽ :=
∑
k

(f̂k − ĝk)Ṽk.

where Vk is as defined in (33). Similarly to the proof of Lemma 4.6 in Appendix C, for
p ∈ [1, 2],

‖Ṽ ‖pLp =

∫
Td

‖Ṽ (x)‖p2dx

=

∫
Td

(∑
j

(∑
kj

( ∑
kj :kj=|k|∞

1

i2πkj
(f̂k − ĝk)

)∏
m 6=j

ψkm(xm)
)2) p

2
dx

≤
(∫

Td

dx
) 2

2−p
(∫

Td

∑
j

(∑
kj

( ∑
kj :kj=|k|∞

1

i2πkj
(f̂kj − ĝkj)

)∏
m6=j

ψkm(xm)
)2) p

2

=
(∑

j

∑
kj

( ∑
kj :kj=|k|∞

1

i2πkj
(f̂k − ĝk)

)2) p
2

=
(∑

j

∑
kj

‖f̂kj − ĝkj‖2
1,w∞

) p
2
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where the sequence of weights w is given by (2). Also for p ∈ (2,∞), by Hausdorff-Young
inequality

‖Ṽ ‖pLp =

∫
Td

‖Ṽ (x)‖p2dx

≤ d
p
2
−1

∫
Td

‖Ṽ (x)‖ppdx

= d
p
2
−1

∫
Td

∑
j

(∑
kj

( ∑
kj :kj=|k|∞

1

i2πkj
(f̂k − ĝk)

)∏
m 6=j

ψkm(xm)
)p
dx

≤ d
p
2
−1
∑
j

∑
kj

( ∑
kj :kj=|k|∞

1

i2πkj
(f̂k − ĝk)

)p′
= d

p
2
−1
∑
j

(∑
kj

‖f̂kj − ĝkj‖p
′

1,w∞

)p′

G Proof of Lemma 5.1

Proof. By Lemma B.1 and Hölder’s inequality∫
h(f − g)dx =

∫
h(f − f̃)dx+

∫
h(f̃ − g̃)dx+

∫
h(g − g̃)dx

≤ ‖h‖∞‖f − f̃‖1 +M1/p′‖∇h‖Lq(Ω)Wp(f̃ , g̃) + ‖h‖∞‖g − g̃‖1

=
((
‖h‖∞(‖f − f̃‖1 + ‖g − g̃‖1) +M1/p′‖∇h‖Lq(Ω)Wp(f̃ , g̃)

)p) 1
p

≤
(

2p−1
(
‖h‖p∞(‖f − f̃‖1 + ‖g − g̃‖1)p + (M1/p′‖∇h‖Lq(Ω)Wp(f̃ , g̃))p

)) 1
p

≤ 2
p−1
p W a,b

p (f, g)

where in the next to last inequality, we have used the standard inequality (x + y)p ≤
2p−1(xp + yp) for all x, y > 0.

H Proof of Theorem 5.2

Proof. We modify the proof of Theorem 4.5 starting after (75). Note that if

‖λ‖1 ≤ a (80)

then ‖h‖∞ ≤ a, and we obtain the following result. We have

‖λ‖1 = α
∥∥∥|f̂ − ĝ| qq′w q

q′+1
∥∥∥

1
= α

∥∥∥|f̂ − ĝ| qq′wq′∥∥∥
1

= α
∥∥∥(f̂ − ĝ)

1
q′
∥∥∥q
q,wq′

. (81)
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Therefore, setting

α = min
(
M−1/p′d

1
q
− 1

2 b
/
‖f̂ − ĝ‖q−1

q,wq′
, a
∥∥(f̂ − ĝ)

1
q′
∥∥q
q,wq′

)
guarantees (70) and (80). Now evaluating

〈λ, (f̂ − ĝ)〉 = α
∑
k

|f̂k − ĝk|wk
(
|f̂k − ĝk|wk

)q−1

= α‖f̂ − ĝ‖q
q,wq′

=

(M−1/p′d
1
q
− 1

2 b
)
∧

 a

‖(f̂ − ĝ)
1
q′ ‖q

q,wq′

 ‖f̂ − ĝ‖q
q,wq′

completes this proof.

I Proof of Theorem 6.1

Proof. By a standard decomposition,

‖m−mc
δ‖L2 = ‖m−BAm+BAm−Bgδ‖L2 ≤ ‖(I −BA)m‖L2 + ‖Bn‖L2

where I denotes the identity operator. From the definition of Ḣr, the operator I −BA has
the following norm

‖I −BA‖Ḣr→L2 = (2πkc)
−r.

Therefore,
‖(I −BA)m‖L2 ≤ (2πkc)

−r‖m‖Ḣr . (82)

J Proof of Remark 6.2

Proof. We use the standard result for vectors in Rd (76). Also the cardinality of {k ∈
Z
d : 1 ≤ ‖k‖ ≤ kc} is proportional to kdc .

‖Bn‖L2 =

 ∑
1≤‖k‖≤kc

|n̂k|2‖k‖2γ

 1
2

=

 ∑
1≤‖k‖≤kc

‖k‖2γ+2 |n̂k|2

‖k‖2

 1
2

.

k
1+γ+ d

2
− d
q

c δq if γ > −1

k
d
2
− d
q

c δq if γ ≤ −1
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When ‖n‖Ḣβ ≤ z,

‖Bn‖L2 =

 ∑
1≤‖k‖≤kc

|n̂k|2‖k‖2γ

 1
2

=

 ∑
1≤‖k‖≤kc

‖k‖2γ+1−β |n̂k|
‖k‖
‖k‖β|n̂k|

 1
2

≤
√
z

 ∑
1≤‖k‖≤kc

‖k‖4γ+2−2β |n̂k|2

‖k‖2

 1
2

.
√
z

k
1+2γ−beta+ d

2
− d
q

c

√
δq if γ > β/2− 1/2

k
d
2
− d
q

c

√
δq if γ ≤ β/2− 1/2

K Proof of Proposition 6.3

Proof. If d < η, then

‖n‖2
L∞ ≤

∑
kn≤‖k‖2≤ckn

‖k‖−η (83)

≈
∫ ∞

1

r−η+d−1dr (84)

≤ Cn (85)

uniformly in kn and b. Therefore, we can rescale n by taking

ñ =
ξ

Cn
n

to ensure that ‖ñ‖L∞ ≤ ξ and therefore gδ = g + n ≥ ξ a.e. on Td. B monotonicity of Lp

on Td with bounded Lebesgue measure, ‖ñ‖Ls ≤ ξ for all s ∈ [1,∞). Also

‖ñ‖2
Ḣs = (2π‖k‖2)2β ˆ̃n2

k (86)

≈
∫ bkn

kn

r2(β−η)+d−1dr (87)

This integral converges of 2(β−η)+d < 0. Accordingly, it suffices to show that equivalently
2β + d < 2η if d < η. Let us rewrite the inequality (31) as s = d

p
− d

2
− 1 + ε2 for some

ε2 > 0. For p ∈ [1, 2), we have

2η > 2d ≥ 2d

(
1

p
− 1

2

)
+ d = 2(β + 1− ε2) + d ≥ 2β + d
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where the last inequality holds if ε2 ≤ 1 or equivalently d
p
− d

2
≥ β. We estimate

δqq = ‖n̂‖qq,w2 �
∑
k

n̂qk
(2π‖k‖2)q

by the integral∫ bkn

kn

rq(−η−1)+d−1dr � (bkn)q(−η−1)+d − kq(−η−1)+d
n � bkq(−η−1)+d

n

Therefore,

δq � (bkn)(−η−1)+ d
q . (88)

and the result follows by application of the upper and lower bounds on kc.

L Proof of Theorem 6.6

Proof. By the standard error decomposition:

‖m−mc
δ‖L2 = ‖m−BAm+BAm−Bgδ‖L2 ≤ ‖(I −BA)m‖L2 + ‖Bn‖L2(Ω)

where I denotes the identity operator. Using (60),

‖I −BA‖L2(Ω) ≤ ‖α‖2 + 4jr‖n‖2
HrΨ
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