Homework Sheet 5: Solutions

1. Consider the non-empty set of functions

$$
V:=\left\{p: \mathbb{R} \rightarrow \mathbb{R} \mid p(x)=\sum_{k=0}^{n-1} a_{k} x^{k} \text { for } a_{i} \in \mathbb{R}, \quad x \in \mathbb{R}\right\}
$$

(a) Define an addition operation $+: V \times V \rightarrow V$ and a scalar multiplication operation $\cdot: \mathbb{R} \times V \rightarrow V$ such that the triple $(V,+, \cdot)$ is a real vector space.

We define $+: V^{2} \rightarrow V$ by $\left(p_{1}+p_{2}\right)(x)=p_{1}(x)+p_{2}(x)$. Then $p_{1}(x)+p_{2}(x)=\sum_{k=0}^{n-1}\left(a_{1 k}+a_{2 k}\right) x^{k}$ where $p_{1}(x)=\sum_{k=0}^{n-1} a_{1 k} x^{k}$ and $p_{2}(x)=$ $\sum_{k=0}^{n-1} a_{2 k} x^{k}$. Therefore, $p_{1}+p_{2} \in V$. This confirms that V is closed under addition.

Similarly, we define $\cdot: \mathbb{R} \times V \rightarrow V$ by $(\lambda p)(x)=\lambda p(x)$. Then $\lambda p(x)=\sum_{k=0}^{n}\left(\lambda a_{k}\right) x^{k}$ where $p(x)=\sum_{k=0}^{n} a_{k} x^{k}$, so $\lambda p \in V$. This confirms that V is closed under scalar multiplication.
$[\mathrm{V} 1]\left(p_{1}+p_{2}\right)(x)=\sum_{k=0}^{n-1}\left(a_{1 k}+a_{2 k}\right) x^{k}=\sum_{k=0}^{n-1}\left(a_{2 k}+a_{1 k}\right) x^{k}=\left(p_{2}+p_{1}\right)(x)$ Thus $p_{1}+p_{2}=p_{2}+p_{1}$ for any $p_{1}, p_{2} \in V$.
[V2] For p_{3} defined by $p_{3}(x)=\sum_{k=0}^{n-1} a_{3 k} x^{k}$, we have

$$
\begin{aligned}
\left(p_{1}+\left(p_{2}+p_{3}\right)\right)(x) & =\sum_{k=0}^{n-1} a_{1 k} x^{k}+\left(\sum_{k=0}^{n-1} a_{2 k} x^{k}+\sum_{k=0}^{n-1} a_{3 k} x^{k}\right) \\
& =\left(\sum_{k=0}^{n-1} a_{1 k} x^{k}+\sum_{k=0}^{n-1} a_{2 k} x^{k}\right)+\sum_{k=0}^{n-1} a_{3 k} x^{k} \\
& =\left(\left(p_{1}+p_{2}\right)+p_{3}\right)(x)
\end{aligned}
$$

Thus $p_{1}+\left(p_{2}+p_{3}\right)=\left(p_{1}+p_{2}\right)+p_{3}$ for any $p_{1}, p_{2}, p_{3} \in V$.
[V3] Define 0 by $0(x)=0$. By the Fundamental Theorem of Algebra, an $n-1$ degree polynomial with more than $n-1$ roots is identically
zero. Therefore $0 \in V$ is uniquely defined by $0(x)=\sum_{k=0}^{n-1} 0 \cdot x^{k}$, and we have

$$
(p+0)(x)=\sum_{k=0}^{n-1} a_{k} x^{k}+\sum_{k=0}^{n-1} 0 \cdot x^{k}=p(x)
$$

Therefore, $p+0=p$ for any $p \in V$.
[V4] We have

$$
(p+(-1) \cdot p)(x)=\sum_{k=0}^{n-1} a_{k} x^{k}+(-1) \sum_{k=0}^{n-1} a_{k} \cdot x^{k}=0
$$

Therefore, $p+(-1) p=0$ for any $p \in V$.
[V5] We have

$$
(1 \cdot p)(x)=1 \cdot \sum_{k=0}^{n-1} a_{k} x^{k}=p(x)
$$

Therefore, $1 \cdot p=p$ for any $p \in V$.
[V6] We have

$$
c_{1}\left(c_{2} \cdot p\right)(x)=c_{1}\left(c_{2} \cdot \sum_{k=0}^{n-1} a_{k} x^{k}\right)=\left(c_{1} c_{2}\right) \cdot \sum_{k=0}^{n-1} a_{k} x^{k}=\left(c_{1} c_{2}\right) p(x)
$$

Therefore, $c_{1}\left(c_{2} \cdot p\right)=\left(c_{1} c_{2}\right) p$ for any $p \in V$.
[V7] We have
$\left(\left(c_{1}+c_{2}\right) p\right)(x)=\left(c_{1}+c_{2}\right) \cdot \sum_{k=0}^{n-1} a_{k} x^{k}=c_{1} \sum_{k=0}^{n-1} a_{k} x^{k}+c_{2} \sum_{k=0}^{n-1} a_{k} x^{k}=c_{1} p(x)+c_{2} p(x)$
Therefore, $\left(c_{1}+c_{2}\right) \cdot p=c_{1} p+c_{2} p$ for any $c_{1}, c_{2} \in \mathbb{R}$ and $p \in V$.
[V8] We have

$$
\begin{aligned}
c\left(p_{1}+p_{2}\right)(x) & =c\left(\sum_{k=0}^{n-1} a_{1 k} x^{k}+\sum_{k=0}^{n-1} a_{2 k} x^{k}\right) \\
& =c \sum_{k=0}^{n-1} a_{1 k} x^{k}+c \sum_{k=0}^{n-1} a_{2 k} x^{k}=c p_{1}(x)+c p_{2}(x)
\end{aligned}
$$

Therefore, $c \cdot\left(p_{1}+p_{2}\right) p=c_{1} \cdot p_{1}+c \cdot p_{2}$ for any $c \in \mathbb{R}$ and $p_{1}, p_{2} \in V$.
(b) Find a basis for this vector space, and deduce its dimension.

By the construction of V , the set of monomials $b=\left\{x^{k}\right\}_{k=0}^{n-1}$ is a spanning set. By the Fundamental Theorem of Algebra, an $n-1$ degree polynomial with more than $n-1$ roots is identically zero. Therefore $\sum_{k=0}^{n-1} a_{k} \cdot x^{k}=0$ for all $x \in \mathbb{R}$ if and only if $a_{k}=0$ for $0 \leq k \leq n-1$. Thus, b is a basis of V .
2. Suppose $m, n \geq 1$ are integers.
(a) Prove that the set of all maps $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ of class $C^{1}\left(\mathbb{R}^{m}\right)$ admits the structure of a real vector space with respect to the 'natural' $+: C^{1}\left(\mathbb{R}^{m}\right) \times C^{1}\left(\mathbb{R}^{m}\right) \rightarrow C^{1}\left(\mathbb{R}^{m}\right)$ and $\cdot: \mathbb{R} \times C^{1}\left(\mathbb{R}^{m}\right) \rightarrow C^{1}\left(\mathbb{R}^{m}\right)$ operations.

We define $+: C^{1}\left(\mathbb{R}^{m}\right) \times C^{1}\left(\mathbb{R}^{m}\right) \rightarrow C^{1}\left(\mathbb{R}^{m}\right)$ by $(f+g)(x)=f(x)+g(x)$. Then, the fact that f and g are differentiable implies that there exists $f^{\prime}, g^{\prime}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n \times m}$ such that for every $a \in \mathbb{R}^{m}$, we have

$$
\lim _{|h| \rightarrow 0} \frac{f(a+h)-f(a)-f^{\prime}(a)}{|h|}=\lim _{|h| \rightarrow 0} \frac{g(a+h)-g(a)-g^{\prime}(a)}{|h|}=0
$$

Consequently,

$$
\begin{aligned}
& \lim _{|h| \rightarrow 0} \frac{(f(a+h)+g(a+h))-(f(a)+g(a))-\left(f^{\prime}(a)+g^{\prime}(a)\right)}{|h|} \\
& =\lim _{|h| \rightarrow 0} \frac{(f+g)(a+h)-(f+g)(a)-\left(f^{\prime}(a)+g^{\prime}(a)\right)}{|h|}=0
\end{aligned}
$$

Therefore, there exists $(f+g)^{\prime}$ on \mathbb{R}^{m} defined by $(f+g)^{\prime}(a)=f^{\prime}(a)+$ $g^{\prime}(a)$. The existence of $(f+g)^{\prime}$ implies that $(f+g)^{\prime}$ is continuous on \mathbb{R}^{m} (Munkres, Theorem 5.2).

Next, let $D_{j}(f+g)$ be the j-th partial derivative of $(f+g)$, which by the preceding paragraph is defined by $D_{j}(f+g)=D_{j} f+D_{j} g$. The
continuity of $D_{j} f+D_{j} g$ implies that for every $\epsilon / 2>0$, there exists $\delta=\min \left(\delta_{f}, \delta_{g}\right)$, such that

$$
\begin{aligned}
\left\|D_{j}(f+g)(x)-D_{j}(f+g)(y)\right\| & =\left\|D_{j} f(x)-D_{j} f(y)\right\|+\left\|D_{j} g(x)-D_{j} g(y)\right\| \\
& \leq \epsilon / 2+\epsilon / 2
\end{aligned}
$$

for $\|x-y\| \leq \delta$. This confirms that $(f+g) \in C^{1}\left(\mathbb{R}^{m}\right)$, and therefore $C^{1}\left(\mathbb{R}^{m}\right)$ is closed under addition.

Similarly, we define $\cdot: \mathbb{R} \times C^{1}\left(\mathbb{R}^{m}\right) \rightarrow C^{1}\left(\mathbb{R}^{m}\right)$ by $(\lambda f)(x)=\lambda f(x)$. Then, the fact that f is differentiable implies that there exists $f^{\prime}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n \times m}$ such that for every $a \in \mathbb{R}^{m}$, we have

$$
\lim _{|h| \rightarrow 0} \frac{f(a+h)-f(a)-f^{\prime}(a)}{|h|}=0
$$

Consequently,

$$
\lim _{|h| \rightarrow 0} \frac{\lambda f(a+h)-\lambda f(a)-\lambda f^{\prime}(a)}{|h|}=\lim _{|h| \rightarrow 0} \frac{(\lambda f)(a+h)-(\lambda f)(a)-\lambda f^{\prime}(a)}{|h|}=0
$$

Therefore, there exists $(\lambda f)^{\prime}$ on \mathbb{R}^{m} defined by $(\lambda f)^{\prime}(a)=\lambda f^{\prime}(a)$. The existence of λf^{\prime} implies that f^{\prime} is continuous on \mathbb{R}^{m}.

Next, let $D_{j}(\lambda f)$ be the j-th partial derivative of f, which by the preceding paragraph is defined by $D_{j}(\lambda f)=D_{j} \lambda f$. The continuity of $D_{j} f$ implies that $D_{j} \lambda f$ is also continuous (Munkres, Theorem 3.6). This confirms that $(\lambda f) \in C^{1}\left(\mathbb{R}^{m}\right)$, and therefore $C^{1}\left(\mathbb{R}^{m}\right)$ is closed under scalar multiplication.
[V1] We have

$$
(f+g)(x)=f(x)+g(x)=g(x)+f(x)=(g+f)(x)
$$

Thus $f+g=g+f$ for any $f, g \in V$.
[V2] For $h \in C^{1}\left(\mathbb{R}^{m}\right)$, we have

$$
\begin{aligned}
(f+(g+h))(x) & =f(x)+(g(x)+h(x)) \\
& =(f(x)+g(x))+h(x)=((f+g)+h)(x)
\end{aligned}
$$

Thus $f+(g+h)=(f+g)+h$ for any $f, g, h \in C^{1}\left(\mathbb{R}^{m}\right)$.
[V3] Define 0 by $0(x)=0$. Trivially $0^{\prime}=0$, and $D_{j} 0=0$, and therefore $0 \in C^{1}\left(\mathbb{R}^{m}\right)$. We have,

$$
(f+0)(x)=f(x)+0=f(x)
$$

Therefore, $f+0=f$ for any $f \in V$. Note that if $0(x) \neq 0$ for any x, then the above equality will not hold, and therefore, $0 \in C^{1}\left(\mathbb{R}^{m}\right)$ is uniquely defined.
[V4] We have

$$
(f+(-1) \cdot f)(x)=f(x)+(-1) f(x)=0
$$

Therefore, $f+(-1) f=0$ for any $f \in C^{1}\left(\mathbb{R}^{m}\right)$.
[V5] We have

$$
(1 \cdot f)(x)=f(x)
$$

Therefore, $1 \cdot f=f$ for any $f \in C^{1}\left(\mathbb{R}^{m}\right)$.
[V6] We have

$$
c_{1}\left(c_{2} \cdot f\right)(x)=c_{1}\left(c_{2} f(x)\right)=\left(c_{1} c_{2}\right) \cdot f(x)=\left(c_{1} c_{2}\right) f(x)
$$

Therefore, $c_{1}\left(c_{2} \cdot f\right)=\left(c_{1} c_{2}\right) f$ for any $f \in C^{1}\left(\mathbb{R}^{m}\right)$.
[V7] We have

$$
\left(\left(c_{1}+c_{2}\right) f\right)(x)=\left(c_{1}+c_{2}\right) \cdot f(x)=c_{1} f(x)+c_{2} f(x)=c_{1} f(x)+c_{2} f(x)
$$

Therefore, $\left(c_{1}+c_{2}\right) \cdot f=c_{1} f+c_{2} f$ for any $c_{1}, c_{2} \in \mathbb{R}$ and $f \in C^{1}\left(\mathbb{R}^{m}\right)$.
[V8] We have

$$
c\left(f_{1}+f_{2}\right)(x)=c\left(f_{1}(x)+f_{2}(x)\right)=c f_{1}(x)+c f_{2}(x)
$$

Therefore, $c \cdot\left(f_{1}+f_{2}\right) p=c_{1} \cdot f_{1}+c \cdot f_{2}$ for any $c \in \mathbb{R}$ and $f_{1}, f_{2} \in C^{1}\left(\mathbb{R}^{m}\right)$.
(b) In the case $n=m=1$, show that this vector space cannot be finitedimensional.
Assume that $\left\{b_{i}\right\}_{i=0}^{k}$ is a basis of $C^{1}(\mathbb{R})$. Since $\left(x^{i}\right)^{\prime}=i x^{i-1}$, each monomial is of class $C^{1}(\mathbb{R})$, and as shown above, the set of monomials is linearly independent. We can have l linearly independent monomials for any $l>k$. This contradicts Theorem 1.1 in Munkres.
3. Let $V:=\mathbb{R}^{3}$ and consider the set of all 3-tensors $\mathcal{L}^{3}(V)$. Give two examples, say f and g, of maps which lie in $\mathcal{L}^{3}(V)$.

Consider $f(x, y, z)=x_{1} y_{1} z_{1}$ and $g(x, y, z)=x_{1} y_{1} z_{1}+x_{2} y_{2} z_{2}$ where $x=$ $\left(x_{1}, x_{2}, x_{3}\right), y=\left(y_{1}, y_{2}, y_{3}\right), z=\left(z_{1}, z_{2}, z_{3}\right) \in \mathbb{R}^{3}$.
For $s=\left(s_{1}, s_{2}, s_{3}\right)$, consider $f(\alpha x+\beta s, y, z)=\left(\alpha x_{1}+\beta s_{1}\right) y_{1} z_{1}=\alpha x_{1} y_{1} z_{1}+$ $\beta s_{1} y_{1} z_{1}=\alpha f(x, y, z)+\beta f(s, y, z)$ and $g(\alpha x+\beta s, y, z)=\left(\alpha x_{1}+\beta s_{1}\right) y_{1} z_{1}+\left(\alpha x_{2}+\right.$ $\left.\beta s_{2}\right) y_{2} z_{2}=\alpha\left(x_{1} y_{1} z_{1}+x_{2} y_{2} z_{2}\right)+\beta\left(s_{1} y_{1} z_{1}+s_{2} y_{2} z_{2}\right)=\alpha g(x, y z)+\beta g(s, y, z)$.
We can similarly confirm the linearity in the second and third variables.
4. Suppose $f_{1}, \ldots, f_{k} \in \mathcal{L}^{1}(V)$, the set of all 1-tensors on a real vector space V. Prove that

$$
F\left(x_{1}, \ldots, x_{k}\right):=f_{1}\left(x_{1}\right) \ldots f_{k}\left(x_{k}\right) \quad \text { for }\left(x_{1}, \ldots, x_{k}\right) \in V^{k}
$$

is a k-tensor on V, i.e. $F \in \mathcal{L}^{k}(V)$.
For $s \in V$, by linearity of f_{1} we have $F\left(\alpha x_{1}+\beta s, x_{2}, \ldots, x_{k}\right)=f_{1}\left(\alpha x_{1}+\right.$ $\beta s) f_{2}\left(x_{2}\right) \ldots f_{k}\left(x_{k}\right)=\alpha f_{1}\left(x_{1}\right) f_{2}\left(x_{2}\right) \ldots f_{k}\left(x_{k}\right)+\beta f_{1}(s) f_{2}\left(x_{2}\right) \ldots f_{k}\left(x_{k}\right)=\alpha F\left(x_{1}, \ldots, x_{k}\right)+$ $\beta F\left(s, \ldots, x_{k}\right)$. We can similarly confirm the linearity in the other variables.
5. Let V be a real vector space, and $k \geq 1$ an integer. Show that if $f, g \in \mathcal{L}^{k}(V)$ and $c, d \in \mathbb{R}$, then $c f+d g \in \mathcal{L}^{k}(V)$.
For $s \in V$, by multilinearity of f and g, we have

$$
\begin{array}{r}
(c f+d g)\left(\alpha x_{1}+\beta s, x_{2}, \ldots, x_{k}\right)=c f\left(\alpha x_{1}+\beta s, x_{2}, \ldots, x_{k}\right)+d g\left(\alpha x_{1}+\beta s, x_{2}, \ldots, x_{k}\right) \\
=c\left(\alpha f\left(x_{1}, x_{2}, \ldots, x_{k}\right)+\beta f\left(s, x_{2}, \ldots, x_{k}\right)\right)+d\left(\alpha g\left(x_{1}, x_{2}, \ldots, x_{k}\right)+\beta g\left(s, x_{2}, \ldots, x_{k}\right)\right) \\
\left.=\alpha\left[c f\left(x_{1}, x_{2}, \ldots, x_{k}\right)+d g\left(x_{1}, x_{2}, \ldots, x_{k}\right)\right]+\beta\left[c f\left(s, x_{2}, \ldots, x_{k}\right)\right)+d g\left(s, x_{2}, \ldots, x_{k}\right)\right] \\
=\alpha(c f+d g)\left(x_{1}, x_{2}, \ldots, x_{k}\right)+\beta(c f+d g)\left(s, x_{2}, \ldots, x_{k}\right)
\end{array}
$$

We can similarly confirm the linearity in the other variables.
6. Let $V:=\mathbb{R}^{4}$. Which of the following define 2-tensors on V ?
(a) $f(x, y):=3 x_{1} y_{2}+5 x_{2} x_{3}$;

We have $f((0,1,1,0)+(0,1,1,0), 0)=20$ and $f((0,1,1,0), 0)+f((0,1,1,0), 0)=10$. Thus $f \notin \mathcal{L}^{2}(V)$.
(b) $g(x, y):=x_{1} y_{2}+x_{2} y_{4}+1$;

We have $g(0+0,0)=1$ and $g(0,0)+g(0,0)=2$. Thus $g \notin \mathcal{L}^{2}(V)$.
(c) $h(x, y):=x_{1} y_{1}-7 x_{2} y_{3}$.

$$
\begin{aligned}
h(\alpha x+\beta s, y) & =\left(\alpha x_{1}+\beta s_{1}\right) y_{1}-7\left(\alpha x_{2}+\beta s_{2}\right) y_{3} \\
& =\alpha\left(x_{1} y_{1}-7 x_{2} y_{3}\right)+\beta\left(s_{1} y_{1}-7 s_{2} y_{3}\right) \\
& =\alpha h(x, y)+\beta h(s, y)
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
h(x, \alpha y+\beta s) & =x_{1}\left(\alpha y_{1}+\beta s_{1}\right)-7 x_{2}\left(\alpha y_{3}+\beta s_{3}\right) \\
& =\alpha\left(x_{1} y_{1}-7 x_{2} y_{3}\right)+\beta\left(x_{1} y_{1}-7 x_{2} s_{3}\right) \\
& =\alpha h(x, y)+\beta h(x, s)
\end{aligned}
$$

Thus $h \in \mathcal{L}^{2}(V)$.
7. Let V be a real vector space with basis $\left\{v_{k}\right\}_{k=1}^{n}$. To begin, for each $1 \leq i \leq n$ we define the maps $\phi_{i}:\left\{v_{k}\right\}_{k=1}^{n} \rightarrow\{0,1\}$ by

$$
\phi_{i}\left(v_{j}\right):= \begin{cases}1 & \text { if } j=i \\ 0 & \text { if } i \neq j .\end{cases}
$$

(a) How does ϕ_{i} extend in a natural way to a linear map $\tilde{\phi}_{i}: V \rightarrow \mathbb{R}$ on the whole vector space V ? Write out $\tilde{\phi}_{i}: V \rightarrow \mathbb{R}$ explicitly (that is, write out $\tilde{\phi}_{i}(x)$ for any $\left.x \in V\right)$.

Define $\tilde{\phi}_{i}: V \rightarrow \mathbb{R}$ by $\tilde{\phi}_{i}(v)=a_{i}$ where $v=\sum_{k=1}^{n} a_{k} v_{k}$. Observe that $\tilde{\phi}_{i}=\phi_{i}$ on the restricted set $\left\{v_{k}\right\}_{k=1}^{n}$.
(b) How can we use Proposition 8.1 to show that ϕ_{i} extends to a linear map on the whole vector space V uniquely?

For $w=\sum_{k=1}^{n} b_{k} v_{k}$, we have $\tilde{\phi}_{i}(\alpha v+\beta w)=\alpha a_{i}+\beta b_{i}=\alpha \tilde{\phi}_{i}(v)+\beta \tilde{\phi}_{i}(w)$. This confirms that $\tilde{\phi}_{i} \in \mathcal{L}^{1}(V)$. This and 7(a) establish the hypothesis of proposition 8.1. Therefore, given any $\tilde{\phi}_{i}^{\prime} \in \mathcal{L}^{1}(V)$ such that $\tilde{\phi}_{i}^{\prime}=\phi_{i}=\tilde{\phi}_{i}$ on the restricted set $\left\{v_{k}\right\}_{k=1}^{n}$, we have $\tilde{\phi}_{i}^{\prime}=\tilde{\phi}_{i}$ on the whole vector space V, i.e. the extension given by $\tilde{\phi}_{i}$ is unique.
(c) Suppose $V:=\mathbb{R}^{3}$ equipped with the canonical basis $\left\{e_{k}\right\}_{k=1}^{3}$. Can you give a 'geometric' description of the map $\phi_{1}: V \rightarrow \mathbb{R}$ associated with e_{1} ?
ϕ_{1} is a scalar projection of $v \in V$ on e_{1}, i.e. $\phi_{1}(v)=\left\langle e_{1}, v\right\rangle$.
8. Let V be a real vector space with basis $\left\{v_{r}\right\}_{r=1}^{n}$, and $k \geq 1$ an integer. For any fixed multi-index $I=(i(1), \ldots, i(k)) \in\{1, \ldots, n\}^{k}$, we define an associated map $\phi_{I}: \underbrace{\left\{v_{r}\right\}_{r=1}^{n} \times \ldots \times\left\{v_{r}\right\}_{r=1}^{n}}_{k \text { times }} \rightarrow\{0,1\}$ by

$$
\phi_{I}\left(v_{j(1)}, \ldots, v_{j(k)}\right):= \begin{cases}1 & \text { if }(j(1), \ldots, j(k))=I \tag{1}\\ 0 & \text { if }(j(1), \ldots, j(k)) \neq I\end{cases}
$$

(a) How does ϕ_{I} extend in a natural way to a multilinear map $\tilde{\phi}_{I}: V^{k} \rightarrow \mathbb{R}$ on the whole vector space V ? Write out $\tilde{\phi}_{I}: V^{k} \rightarrow \mathbb{R}$ explicitly (that is, write out $\tilde{\phi}_{I}\left(x_{1}, \ldots, x_{k}\right)$ for any $\left.\left(x_{1}, \ldots, x_{k}\right) \in V^{k}\right)$.

Define $\tilde{\phi}_{I}: V \rightarrow \mathbb{R}$ by $\tilde{\phi}_{I}\left(x_{1}, \ldots, x_{k}\right)=\prod_{m=1}^{k} x_{m, i(m)}$ where $x_{m}=$ $\sum_{r=1}^{n} x_{m, r} v_{r}$. Observe that $\tilde{\phi}_{I}=\phi_{I}$ on the restricted set $\underbrace{\left\{v_{r}\right\}_{r=1}^{n} \times \ldots \times\left\{v_{r}\right\}_{r=1}^{n}}_{k \text { times }}$.
(b) How can we use proposition 8.1. to show that $\tilde{\phi}_{I}$ extends to a map on the whole vector space V^{k} uniquely?

For $y=\sum_{r=1}^{n} y_{r} v_{r}$, we have

$$
\begin{aligned}
\tilde{\phi}_{I}\left(\alpha x_{1}+\beta y, x_{2}, \ldots, x_{k}\right) & =\left(\alpha x_{1, i(1)}+\beta y_{i(1)}\right) \prod_{m=2}^{k} x_{m, i(m)} \\
& =\alpha \tilde{\phi}_{I}\left(x_{1}, x_{2}, \ldots, x_{k}\right)+\beta \tilde{\phi}_{I}\left(y, x_{2}, \ldots, x_{k}\right)
\end{aligned}
$$

This confirms that $\tilde{\phi}_{I} \in \mathcal{L}^{k}(V)$. This and 8(a) establish the hypothesis of proposition 8.1. Therefore, given any other $\tilde{\phi}_{I}^{\prime} \in \mathcal{L}^{k}(V)$ such that $\tilde{\phi}_{I}^{\prime}=\phi_{I}=\tilde{\phi}_{I}$ on the restricted set $\underbrace{\left\{v_{r}\right\}_{r=1}^{n} \times \ldots \times\left\{v_{r}\right\}_{r=1}^{n}}_{k \text { times }}$, we have $\tilde{\phi}_{I}^{\prime}=\tilde{\phi}_{I}$ on the whole vector space V^{k}, i.e., the extension given by $\tilde{\phi}_{I}$ is unique.
9. Let V be a real vector space and $k \geq 1$ an integer. Prove that the set of n^{k} k-tensors

$$
\left\{\phi_{I}: I \in\{1, \ldots n\}^{k}\right\} \subset \mathcal{L}^{k}(V)
$$

defined in question 8 above is a basis for $\mathcal{L}^{k}(V)$.
See Munkres, Theorem 26.3.

