Quiz Sheet 1: Solutions

Question 1. (Exercise from Lecture 1.) *Show that Green's Theorem is a special case of Stokes' Theorem.*

$$\int_{\partial S} P(x, y)dx + Q(x, y)dy = \int_{\partial S} (P(x, y), Q(x, y), 0) \cdot (dx, dy, dz)$$
$$= \int_{S} \nabla \times (P(x, y), Q(x, y), 0) \cdot dS =$$
$$= \int_{S} \begin{vmatrix} i & j & k \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P(x, y) & Q(x, y) & 0 \end{vmatrix} \cdot dS$$
$$= \int_{S} (\frac{\partial}{\partial x} Q(x, y) - \frac{\partial}{\partial x} P(x, y))k \cdot k \, dx dy$$

where S is the region of the xy plane bounded by ∂S which is positively oriented with respect to k = (0, 0, 1), the normal unit vector in the direction of the z-axis.

Question 2. (Exercise 1 from Lecture 2.) Suppose $U \subseteq \mathbb{R}^m$ is open. Show that $f: U \to \mathbb{R}^n$ is continuous on U iff for every open set $V \subseteq \mathbb{R}^n$, the set

$$f^{-1}(V) := \{x \in U : f(x) \in V\}$$

is open in \mathbb{R}^m .

(⇒) Take any open set $V \subseteq \mathbb{R}^n$, and any arbitrary point $x \in f^{-1}(V)$. Since V is open, and $f(x) \in V$, by continuity of f, there exists an open set $O \subseteq U$ containing x s.t. $f(O) \subseteq V$. This implies $O \subseteq f^{-1}(V)$. Thus O is a neighborhood of x. Therefore, there exists $\epsilon > 0$ s.t. $B(x, \epsilon) \subseteq O \subseteq f^{-1}(V)$. Since x is an arbitrary point in $f^{-1}(V)$, this implies that $f^{-1}(V)$ is open.

(\Leftarrow) Take any point $x \in U$ and any open set $V \subseteq \mathbb{R}^n$ s.t. $f(x) \in V$. The hypothesis implies that $f^{-1}(V)$ is open. Furthermore, since $f(x) \in V$, we have $x \in f^{-1}(V) \subseteq \mathbb{R}^m$. Lastly $f(f^{-1}(V)) = V$. Thus we found an open set $f^{-1}(V) \subset \mathbb{R}^m$ containing x such that $f(f^{-1}(V)) = V$. This confirms that f is continuous at x. Since x is an arbitrary point in U, f is continuous on U.

Question 3. (Exercise 2 from Lecture 2.) Suppose $U \subseteq \mathbb{R}^m$ is open. Show that $f: U \to \mathbb{R}^n$ is continuous at $x_0 \in U$ iff for every $\epsilon > 0$, there exists $\delta > 0$ s.t.

$$d(x_0, x) < \delta \Rightarrow d(f(x_0), f(x)) < \epsilon (*)$$

(⇒) Consider $B(f(x_0), \epsilon) \in \mathbb{R}^n$. Since it is an open set containing $f(x_0)$, by continuity of f, there exists an open set $O \subseteq \mathbb{R}^m$ containing x_0 , s.t. $f(O) \subseteq B(f(x_0), \epsilon)$. By the definition of an open set, there exists $\delta > 0$, s.t. $B(x_0, \delta) \subseteq O$. Thus, if $x \in B(x_0, \delta)$, this implies that $f(x) \in f(B(x_0, \delta)) \subseteq f(O) \subseteq B(f(x_0), \epsilon)$, which is equivalent to (*).

(\Leftarrow) Let x_0 be any point in U and $V \subseteq \mathbb{R}^n$ be an open set containing $f(x_0)$. Then, by the definition of the open set, there exists $\epsilon > 0$ s.t. $B(f(x_0), \epsilon) \subseteq V$. By the hypothesis, there exists $\delta > 0$ s.t. (*) holds. Therefore, we found an open set $B(x_0, \delta)$ containing x_0 , and

$$f(B(x_0, x)) \subseteq B(f(x_0), \epsilon) \subseteq V$$

Therefore, f is continuous at x_0 .

Question 4. (Exercise 3 from Lecture 2) Show that $x_0 := (1, 0, ..., 0)$, where there are m - 1 zero entries, is a limit point of the open unit ball

$$A = \{x \in \mathbb{R}^m : ||x|| < 1\}$$

Consider $x_{\epsilon} = (1 - \epsilon/2, 0, ..., 0) \neq x_0$. (If $\epsilon > 1$, we can take $x_{\epsilon} = (1/2, 0, ..., 0)$). Thus, for every $\epsilon > 0$, we have

$$||x_{\epsilon} - x_0|| \le \epsilon/2 \Rightarrow x_{\epsilon} \in B(x_0, \epsilon)$$

and

$$||x_{\epsilon} - 0|| < 1 \Rightarrow x_{\epsilon} \in A$$

which implies the desired result.