Quiz Sheet 2

Instructions: Turn in responses to TWO questions of your choice. This quiz will be timed for 15 minutes.

Question 1. Do all of the following:
(a) Show that $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ having the form:

$$
f(x)=\left(f_{1}(x), \ldots, f_{n}(x)\right)
$$

is continuous at $x_{0} \in \mathbb{R}^{m}$ if and only if each component function $f_{i}: \mathbb{R}^{m} \rightarrow \mathbb{R}$ is continuous at x_{0}.

Hint: Use the result we established previously: Suppose $U \subseteq \mathbb{R}^{m}$ is open. $f: U \rightarrow \mathbb{R}^{n}$ is continuous at $x_{0} \in U$ iff for every $\epsilon>0$, there exists $\delta>0$ s.t. $d\left(x_{0}, x\right)<\delta \Rightarrow d\left(f\left(x_{0}\right), f(x)\right)<\epsilon$

To show the "if" part, ensure that $\left|f_{i}(x)-f_{i}\left(x_{0}\right)\right|<\frac{\epsilon}{\sqrt{n}}$.
(b) Show that $g: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ given by $g(x):=\|x\|^{2} x$ is continuous on \mathbb{R}^{m}.

Hint: Use (a) above, the standard result in \mathbb{R} that if f and g are continous mappings from a metric space X to \mathbb{R}, then $f g$ is a continuous mapping from X to \mathbb{R}, and the result shown in class that $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$ given by $f(x):=\|x\|$ is continuous on \mathbb{R}^{m}.

Question 2. Do all of the following:
(a) Suppose $A \subseteq \mathbb{R}^{m}$, and let $f: A \rightarrow \mathbb{R}^{n}$. State what it means for $f(x)$ to approach y_{0} as x approaches x_{0}, i.e., $f(x) \rightarrow y_{0}$ as $x \rightarrow x_{0}$ or $\lim _{x \rightarrow x_{0}} f(x)=$ y_{0}.
(b) Show that $f(x)$ approaches y_{0} as x approaches x_{0} iff for every $\epsilon>0$ there exists $\delta>0$ s.t.

$$
x \in A, 0<d\left(x_{0}, x\right)<\delta \Rightarrow d\left(y_{0}, f(x)\right)<\epsilon
$$

Question 3. Do all of the following:
(a) Let $A \subseteq \mathbb{R}^{m}$ and $\varphi: A \rightarrow \mathbb{R}^{n}$. Suppose that A contains a neighborhood of $a \in A$. State the definition of what it means for φ to be differentiable at a as well as the definition of the derivative of φ at a, denoted as $D \varphi(a)$.
(c) Find $D \varphi(a)$ for any $a \in \mathbb{R}^{m}$ if $\varphi(x):=\|x\|^{2}, x \in \mathbb{R}^{m}$,

Question 4. Do all of the following:
(a) State what it means for $x \otimes y$ to be the tensor product of x and y in \mathbb{R}^{m}.
(ii) Find $D \varphi(a)$ for any $a \in \mathbb{R}^{m}$ if $\varphi(x):=\|x\|^{2} x, x \in \mathbb{R}^{m}$.

