Quiz 2: Solutions

Question 1. (Exercise 3 from Lecture 2)
(a) Show that $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ having the form:

$$
f(x)=\left(f_{1}(x), \ldots, f_{n}(x)\right)
$$

is continuous at $x_{0} \in \mathbb{R}^{m}$ if and only if each component function $f_{i}: \mathbb{R}^{m} \rightarrow \mathbb{R}$ is continuous at x_{0}.
(\Rightarrow) By a result we showed previously, the continuity of f at x_{0} implies that for every $\epsilon>0$, there exists $\delta>0$ s.t.

$$
\left\|x_{0}-x\right\|<\delta \Rightarrow \sqrt{\sum_{i=1}^{n}\left|f_{i}\left(x_{0}\right)-f_{i}(x)\right|^{2}}=\left\|f\left(x_{0}\right)-f(x)\right\|<\epsilon
$$

which implies that $\left|f_{i}\left(x_{0}\right)-f_{i}(x)\right|<\epsilon$ for every $1 \leq i \leq n$. Thus, each f_{i} is continuous.
(\Leftarrow) The continuity of f_{i} implies that every $\epsilon>0$, there exists $\delta>0$ s.t. $\left|f_{i}\left(x_{0}\right)-f_{i}(x)\right|<\frac{\epsilon}{\sqrt{n}}$. This implies that

$$
\sqrt{\sum_{i=1}^{n}\left|f_{i}\left(x_{0}\right)-f_{i}(x)\right|^{2}}=\left\|f\left(x_{0}\right)-f(x)\right\|<\epsilon
$$

and consequently f is continuous.
(b) Show that $g: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ given by $g(x):=\|x\|^{2} x$ is continuous on \mathbb{R}^{m}.

The standard result is that if f and g are continous mappings from a metric space X to \mathbb{R}, then $f g$ is a continuous mapping from X to \mathbb{R} and the result shown in class that $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$ given by $f(x):=\|x\|$ is continuous on \mathbb{R}^{m} imply that $g_{i}=\|x\|^{2} x_{i}$ is continuous for all $0 \leq i \leq m$. By (a), this implies that g is continuous.

Question 2. (Exercise 5 from Lecture 2) Show that $f(x) \rightarrow y_{0}$ as $x \rightarrow x_{0}$ iff for every $\epsilon>0$ there exists $\delta>0$ s.t.

$$
x \in A, 0<d\left(x_{0}, x\right)<\delta \Rightarrow d\left(y_{0}, f(x)\right)<\epsilon
$$

(\Rightarrow) Let $B\left(y_{0}, \epsilon\right) \supseteq\left\{f(x): d\left(y_{0}, f(x)\right)\right\}$. Since $B\left(y_{0}, \epsilon\right) \subseteq \mathbb{R}^{n}$ is an open set containing y_{0}, the existence of the limit implies that there exists an open set $U \in \mathbb{R}^{m}$ containing x_{0} s.t.

$$
x \in U \cap A \Rightarrow f(x) \in B\left(y_{0}, \epsilon\right)(*)
$$

Since U is an open set containing x_{0}, there exists $\delta>0$ s.t.

$$
x \in B\left(x_{0}, \delta\right) \subseteq U
$$

By construction $x \in A$. Therefore, $x \in B\left(x_{0}, \delta\right) \cap A \subseteq U \cap A$. Then (*) implies that $f(x) \in B\left(y_{0}, \epsilon\right)$.
(\Leftarrow) Consider any open set $V \subseteq \mathbb{R}^{n}$ containing y_{0}. By the definition of an open set, there exists $\epsilon>0$, s.t. $B\left(y_{0}, \epsilon\right) \subseteq V$. Then by the hypothesis, there exists $\delta>0$ s.t.

$$
x \in A, x \in B\left(x_{0}, \delta\right) \Rightarrow f(x) \in B\left(y_{0}, \epsilon\right)
$$

Thus, for any open set $V \subseteq \mathbb{R}^{n}$ containing y_{0}, we have an open set $B\left(x_{0}, \delta\right) \in \mathbb{R}^{m}$ containing x_{0}, such that

$$
x \in B\left(x_{0}, \delta\right) \cap A \Rightarrow f(x) \in B\left(y_{0}, \epsilon\right) \subseteq V
$$

This confirms that $f(x) \rightarrow y_{0}$ as $x \rightarrow x_{0}$.
Question 3. (Last Exercise from Lecture 2, part (a)) Find $\varphi^{\prime}(a)$ for any $a \in \mathbb{R}^{m}$ if $\varphi(x):=\|x\|^{2}, x \in \mathbb{R}^{m}$.

$$
\begin{aligned}
\varphi(a+h)-\varphi(a) & =\|a+h\|^{2}-\|a\|^{2} \\
& =\langle a+h, a+h\rangle-\langle a, a\rangle \\
& =2\langle a, h\rangle+\|h\|^{2}
\end{aligned}
$$

Thus,

$$
\lim _{\|h\| \rightarrow 0} \frac{\varphi(a+h)-\varphi(a)-2\langle a, h\rangle}{\|h\|}=\lim _{\|h\| \rightarrow 0}\|h\|=0
$$

which shows that $\varphi^{\prime}(a)=2 a$ (and thus $\left.\varphi^{\prime}(a) h=2\langle a, h\rangle\right)$.

Question 4. (Last Exercise from Lecture 2, part (b)) Find $\varphi^{\prime}(a)$ for any $a \in \mathbb{R}^{m}$ if $\varphi(x):=\|x\|^{2} x, x \in \mathbb{R}^{m}$.

$$
\begin{aligned}
\varphi(a+h)-\varphi(a) & =\|a+h\|^{2}(a+h)-\|a\|^{2} a \\
& =\langle a+h, a+h\rangle(a+h)-\|a\|^{2} a \\
& =\langle a+h, a+h\rangle a+\langle a+h, a+h\rangle h-\|a\|^{2} a \\
& =\left(\|a\|^{2}+2\langle a, h\rangle+\|h\|^{2}\right) a+\left(\|a\|^{2}+2\langle a, h\rangle+\|h\|^{2}\right) h-\|a\|^{2} a \\
& =2\langle a, h\rangle a+\|h\|^{2} a+\|a\|^{2} h+2\langle a, h\rangle h+\|h\|^{2} h
\end{aligned}
$$

Thus,

$$
\varphi(a+h)-\varphi(a)-2\langle a, h\rangle a-\|a\|^{2} h=\|h\|^{2} a+2\langle a, h\rangle h+\|h\|^{2} h
$$

and we have

$$
\lim _{\|h\| \rightarrow 0} \frac{\varphi(a+h)-\varphi(a)-B(a) h}{\|h\|}=J(h)
$$

where

$$
B(a) h=2\langle a, h\rangle a+\|a\|^{2} h=\left(2 a \otimes a+\|a\|^{2} I\right) h
$$

and

$$
J(h)=\frac{\|h\|^{2} a+2\langle a, h\rangle h+\|h\|^{2} h}{\|h\|}
$$

By the Cauchy-Schwarz inequality,

$$
\begin{aligned}
\|J(h)\| & \leq\|h\| \cdot\|a\|+2\langle a, h\rangle+\|h\|^{2} \\
& \leq\|h\| \cdot\|a\|+2\|a\| \cdot\|h\|+\|h\|^{2} \rightarrow 0
\end{aligned}
$$

as $h \rightarrow 0$.
Therefore, $\varphi^{\prime}(a)=B(a)=\left(2 a \otimes a+\|a\|^{2} I\right)$.

Examples

Example 1. (Differentiable function with discontinuous derivative) Consider f : $\mathbb{R} \rightarrow \mathbb{R}$

$$
f(x)= \begin{cases}x^{2} \sin \frac{1}{x} & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

For $x \neq 0$, we can compute $f^{\prime}(x)$ by the usual calculus rules.

$$
f^{\prime}(x)=2 x \sin \frac{1}{x}-\cos \frac{1}{x}
$$

At $x=0, f^{\prime}$ is also well-defined.

$$
\left|f^{\prime}(0)\right|=\lim _{h \rightarrow 0} \frac{h^{2}\left|\sin \frac{1}{h}\right|}{|h|}=0
$$

However,

$$
\lim _{x \rightarrow 0} f^{\prime}(x)=\lim _{x \rightarrow 0} 2 x \sin \frac{1}{x}-\cos \frac{1}{x}
$$

does not exist. This is because in an arbitrary small neighborhood around $x=0, \cos \frac{1}{x}$ and thus f^{\prime} will oscillate near 1 and -1 . Observe that

$$
\cos \frac{1}{x}=\left\{\begin{array}{ll}
1 & \text { for } x=\frac{1}{2 n \pi} \\
-1 & \text { for } x=\frac{1}{(1+2 n) \pi}
\end{array}, n \in \mathbb{Z}\right.
$$

Question: How does the foregoing analysis change for $f(x)=\left\{\begin{array}{ll}x \sin \frac{1}{x} & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{array}\right.$?
Example 2. (Continuous partial derivatives/chain rule) Find $\varphi^{\prime}(a)$ for any $a \in$ $\mathbb{R}^{m} \backslash\{0\}$ if $\varphi(x):=\|x\|, x \in \mathbb{R}^{m}$.

Let $\varphi(x):=\|x\|=\sqrt{\sum_{i=1}^{m}\left|x_{i}\right|^{2}}$. Then $D_{j} \varphi(x)=\frac{1}{2}\left(\sum_{i=1}^{m}\left|x_{i}\right|^{2}\right)^{-\frac{1}{2}}\left(2\left|x_{j}\right|\right) \frac{\left|x_{j}\right|}{x_{j}}=\frac{x_{j}}{\|x\| \|}$ is continuous for $x \neq 0$. Therefore, by Theorem 6.2 (Munkres), $\varphi^{\prime}(a)=\frac{a}{\|a\|}$.

Alternatively, since $\varphi(x)=\sqrt{\|x\|^{2}}$, the same result can be obtained by the chain rule (which we are yet to prove in \mathbb{R}^{n}) using the result in Question 3.

