

Vector Analysis, MATH-UA.224.001

Quiz 2: Solutions

Question 1. (Exercise 3 from Lecture 2)

(a) Show that $f : \mathbb{R}^m \to \mathbb{R}^n$ having the form:

$$f(x) = (f_1(x), ..., f_n(x))$$

is continuous at $x_0 \in \mathbb{R}^m$ if and only if each component function $f_i : \mathbb{R}^m \to \mathbb{R}$ is continuous at x_0 .

(⇒) By a result we showed previously, the continuity of *f* at x_0 implies that for every $\epsilon > 0$, there exists $\delta > 0$ s.t.

$$||x_0 - x|| < \delta \Rightarrow \sqrt{\sum_{i=1}^n |f_i(x_0) - f_i(x)|^2} = ||f(x_0) - f(x)|| < \epsilon$$

which implies that $|f_i(x_0) - f_i(x)| < \epsilon$ for every $1 \le i \le n$. Thus, each f_i is continuous.

(\Leftarrow) The continuity of f_i implies that every $\epsilon > 0$, there exists $\delta > 0$ s.t. $|f_i(x_0) - f_i(x)| < \frac{\epsilon}{\sqrt{n}}$. This implies that

$$\sqrt{\sum_{i=1}^{n} |f_i(x_0) - f_i(x)|^2} = ||f(x_0) - f(x)|| < \epsilon$$

and consequently f is continuous.

(b) Show that $g : \mathbb{R}^m \to \mathbb{R}^m$ given by $g(x) := ||x||^2 x$ is continuous on \mathbb{R}^m .

The standard result is that if f and g are continous mappings from a metric space X to \mathbb{R} , then fg is a continuous mapping from X to \mathbb{R} and the result shown in class that $f : \mathbb{R}^m \to \mathbb{R}$ given by f(x) := ||x|| is continuous on \mathbb{R}^m imply that $g_i = ||x||^2 x_i$ is continuous for all $0 \le i \le m$. By (a), this implies that g is continuous.

Question 2. (Exercise 5 from Lecture 2) Show that $f(x) \to y_0$ as $x \to x_0$ iff for every $\epsilon > 0$ there exists $\delta > 0$ s.t.

$$x \in A, 0 < d(x_0, x) < \delta \Rightarrow d(y_0, f(x)) < \epsilon$$

 (\Rightarrow) Let $B(y_0, \epsilon) \supseteq \{f(x) : d(y_0, f(x))\}$. Since $B(y_0, \epsilon) \subseteq \mathbb{R}^n$ is an open set containing y_0 , the existence of the limit implies that there exists an open set $U \in \mathbb{R}^m$ containing x_0 s.t.

$$x \in U \cap A \Rightarrow f(x) \in B(y_0, \epsilon)$$
 (*)

Since *U* is an open set containing x_0 , there exists $\delta > 0$ s.t.

$$x \in B(x_0, \delta) \subseteq U$$

By construction $x \in A$. Therefore, $x \in B(x_0, \delta) \cap A \subseteq U \cap A$. Then (*) implies that $f(x) \in B(y_0, \epsilon)$.

(⇐) Consider any open set $V \subseteq \mathbb{R}^n$ containing y_0 . By the definition of an open set, there exists $\epsilon > 0$, s.t. $B(y_0, \epsilon) \subseteq V$. Then by the hypothesis, there exists $\delta > 0$ s.t.

$$x \in A, x \in B(x_0, \delta) \Rightarrow f(x) \in B(y_0, \epsilon)$$

Thus, for any open set $V \subseteq \mathbb{R}^n$ containing y_0 , we have an open set $B(x_0, \delta) \in \mathbb{R}^m$ containing x_0 , such that

$$x \in B(x_0, \delta) \cap A \Rightarrow f(x) \in B(y_0, \epsilon) \subseteq V$$

This confirms that $f(x) \rightarrow y_0$ as $x \rightarrow x_0$.

Question 3. (Last Exercise from Lecture 2, part (a)) Find $\varphi'(a)$ for any $a \in \mathbb{R}^m$ if $\varphi(x) := ||x||^2, x \in \mathbb{R}^m$.

$$\varphi(a+h) - \varphi(a) = ||a+h||^2 - ||a||^2$$
$$= \langle a+h, a+h \rangle - \langle a, a \rangle$$
$$= 2 \langle a, h \rangle + ||h||^2$$

Thus,

$$\lim_{\|h\|\to 0} \frac{\varphi(a+h) - \varphi(a) - 2\langle a, h \rangle}{\|h\|} = \lim_{\|h\|\to 0} \|h\| = 0$$

which shows that $\varphi'(a) = 2a$ (and thus $\varphi'(a)h = 2\langle a, h \rangle$).

Question 4. (Last Exercise from Lecture 2, part (b)) *Find* $\varphi'(a)$ *for any* $a \in \mathbb{R}^m$ *if* $\varphi(x) := ||x||^2 x, x \in \mathbb{R}^m$.

$$\begin{aligned} \varphi(a+h) - \varphi(a) &= ||a+h||^2 (a+h) - ||a||^2 a \\ &= \langle a+h, a+h \rangle (a+h) - ||a||^2 a \\ &= \langle a+h, a+h \rangle a + \langle a+h, a+h \rangle h - ||a||^2 a \\ &= (||a||^2 + 2\langle a, h \rangle + ||h||^2) a + (||a||^2 + 2\langle a, h \rangle + ||h||^2) h - ||a||^2 a \\ &= 2\langle a, h \rangle a + ||h||^2 a + ||a||^2 h + 2\langle a, h \rangle h + ||h||^2 h \end{aligned}$$

Thus,

$$\varphi(a+h) - \varphi(a) - 2\langle a, h \rangle a - ||a||^2 h = ||h||^2 a + 2\langle a, h \rangle h + ||h||^2 h$$

and we have

$$\lim_{\|h\|\to 0} \frac{\varphi(a+h) - \varphi(a) - B(a)h}{\|h\|} = J(h)$$

where

$$B(a)h = 2\langle a, h \rangle a + ||a||^2h = (2a \otimes a + ||a||^2I)h$$

and

$$J(h) = \frac{\|h\|^2 a + 2\langle a, h \rangle h + \|h\|^2 h}{\|h\|}$$

By the Cauchy-Schwarz inequality,

$$\begin{aligned} \|J(h)\| \le \|h\| \cdot \|a\| + 2\langle a, h \rangle + \|h\|^2 \\ \le \|h\| \cdot \|a\| + 2\|a\| \cdot \|h\| + \|h\|^2 \to 0 \end{aligned}$$

as $h \to 0$.

Therefore, $\varphi'(a) = B(a) = (2a \otimes a + ||a||^2 I)$.

Examples

Example 1. (Differentiable function with discontinuous derivative) Consider $f : \mathbb{R} \to \mathbb{R}$

$$f(x) = \begin{cases} x^2 \sin \frac{1}{x} & \text{if } x \neq 0\\ 0 & \text{if } x = 0 \end{cases}$$

For $x \neq 0$, we can compute f'(x) by the usual calculus rules.

$$f'(x) = 2x\sin\frac{1}{x} - \cos\frac{1}{x}$$

At x = 0, f' is also well-defined.

$$|f'(0)| = \lim_{h \to 0} \frac{h^2 |\sin \frac{1}{h}|}{|h|} = 0$$

However,

$$\lim_{x \to 0} f'(x) = \lim_{x \to 0} 2x \sin \frac{1}{x} - \cos \frac{1}{x}$$

does not exist. This is because in an arbitrary small neighborhood around x = 0, $\cos \frac{1}{x}$ and thus f' will oscillate near 1 and -1. Observe that

$$\cos \frac{1}{x} = \begin{cases} 1 & \text{for } x = \frac{1}{2n\pi} \\ -1 & \text{for } x = \frac{1}{(1+2n)\pi} \end{cases}, n \in \mathbb{Z}$$

Question: How does the foregoing analysis change for $f(x) = \begin{cases} x \sin \frac{1}{x} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$?

Example 2. (Continuous partial derivatives/chain rule) Find $\varphi'(a)$ for any $a \in \mathbb{R}^m \setminus \{0\}$ if $\varphi(x) := ||x||, x \in \mathbb{R}^m$.

Let $\varphi(x) := ||x|| = \sqrt{\sum_{i=1}^{m} |x_i|^2}$. Then $D_j \varphi(x) = \frac{1}{2} (\sum_{i=1}^{m} |x_i|^2)^{-\frac{1}{2}} (2|x_j|) \frac{|x_j|}{|x_j|} = \frac{x_j}{||x||}$ is continuous for $x \neq 0$. Therefore, by Theorem 6.2 (Munkres), $\varphi'(a) = \frac{a}{||a||}$.

Alternatively, since $\varphi(x) = \sqrt{||x||^2}$, the same result can be obtained by the chain rule (which we are yet to prove in \mathbb{R}^n) using the result in Question 3.

