Quiz Sheet 3

Instructions: Turn in responses to TWO questions of your choice. This quiz will be timed for 15 minutes.

Question 1. Let $\varphi: U \rightarrow \mathbb{R}^{n}, U \subseteq R^{m}$. Suppose U contains a neighborhood of $a \in U$. Let $\varphi_{i}: U \rightarrow \mathbb{R}$ be the i-th component function of φ so that:

$$
\varphi(x)=\left(\begin{array}{c}
\varphi_{1}(x) \\
\cdot \\
\cdot \\
\varphi_{n}(x)
\end{array}\right)
$$

(a) For φ differentiable at $a \in U$, define the Jacobian matrix of φ at a.
(b) Show that $\varphi: U \rightarrow \mathbb{R}^{n}$ is differentiable at $a \Longleftrightarrow \varphi_{i}: U \rightarrow \mathbb{R}^{n}, 1 \leq i \leq n$ is differentiable at a.
(c) Show that if $\varphi: U \rightarrow \mathbb{R}^{n}$ is differentiable at $a \in U$, then $\varphi^{\prime}(a)$ is the Jacobian matrix.

Question 2. Do all of the following:
(a) Suppose $\varphi: U \rightarrow \mathbb{R}^{n}$. State what it means for φ to be continuously differentiable on U, which we denote by $\varphi \in C^{1}(U)$.
(b) If $\varphi \in C^{1}(U)$, what can you say about the map $\varphi^{\prime}: U \rightarrow \mathbb{R}^{n \times m}$

Note: We equip $\mathbb{R}^{n \times m}$ with the metric

$$
d(A, B):=\sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n}\left(A_{i j}-B_{i j}\right)^{2}}
$$

where $A_{i j}$ and $B_{i j}$ are the elements in the i-th row and j-th column of A and B, respectively.

Question 3. We showed that if $\varphi(x):=\|x\|^{2} x, x \in \mathbb{R}^{m}$, then for any $a \in \mathbb{R}^{m}$,

$$
\varphi^{\prime}(a)=\left(\|a\|^{2} I+2 a \otimes a\right)
$$

In other words, for $h \in \mathbb{R}^{m}$, we have

$$
\varphi^{\prime}(a) h=\left(\|a\|^{2} I+2 a \otimes a\right) h=\|a\|^{2} h+2\langle a, h\rangle a
$$

Prove that $\varphi(x)$ is of class $C^{1}\left(\mathbb{R}^{m}\right)$.

Question 4. We showed that for $\varphi(x):=\|x\|, x \in \mathbb{R}^{m}$, for any $a \in \mathbb{R}^{m} \backslash\{0\}$,

$$
\varphi^{\prime}(a)=\frac{a}{\|a\|}
$$

In other words, for $h \in \mathbb{R}^{m}$, we have

$$
\varphi^{\prime}(a) h=\frac{\langle a, h\rangle}{\|a\|}
$$

Determine on which open set $U \subset \mathbb{R}^{m}, \varphi(x)$ is of class $C^{1}(U)$.

Question 5. Let $U \subseteq \mathbb{R}^{n}$ be open and $\varphi: U \rightarrow \mathbb{R}^{n}$. Let $b:=\varphi(a)$. Suppose that ψ maps a neighborhood of b into \mathbb{R}^{n} that $\psi(b)=a$ and

$$
\psi(\varphi(x))=x
$$

for all x in a neighborhood of a. If φ is differentiable at a, and ψ is differentiable at b, then

$$
\psi^{\prime}(b)=\varphi^{\prime}(a)^{-1}
$$

in $\mathbb{R}^{n \times n}$.

