Quiz Sheet 3: Solutions

Question 1. (Proposition 3.2 from Lecture 3) Let $\varphi: U \rightarrow \mathbb{R}^{n}, U \subseteq R^{m}$. Suppose U contains a neighborhood of $a \in U$. Let $\varphi_{i}: U \rightarrow \mathbb{R}$ be the i-th component function of φ so that:

$$
\varphi(x)=\left(\begin{array}{c}
\varphi_{1}(x) \\
\cdot \\
\cdot \\
\varphi_{n}(x)
\end{array}\right)
$$

Show that $\varphi: U \rightarrow \mathbb{R}^{n}$ is differentiable at $a \Longleftrightarrow \varphi_{i}: U \rightarrow \mathbb{R}^{n}, 1 \leq i \leq n$ is differentiable at a. Show that if $\varphi: U \rightarrow \mathbb{R}^{n}$ is differentiable at $a \in U$, then $\varphi^{\prime}(a)$ is the Jacobian matrix.

See Munkres, p. 46-47.

Question 2. (Question from Lecture 4) If $\varphi \in C^{1}(U)$, what can you say about the map $\varphi^{\prime}: U \rightarrow \mathbb{R}^{n \times m}$?

Note: We equip $\mathbb{R}^{n \times m}$ with the metric

$$
d(A, B):=\sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n}\left(A_{i j}-B_{i j}\right)^{2}}
$$

where $A_{i j}$ and $B_{i j}$ are the elements in the i-th row and j-th column of A and B, respectively.

By the continuity of each partial derivative $D_{j} \varphi_{i}(a)$ for $\frac{\epsilon}{\sqrt{m n}}>0$, there exists $\delta_{i j}>0$ such that $\|a-x\|<\delta_{i j}$ implies that $\left|D_{j} \varphi_{i}(a)-D_{j} \varphi_{i}(x)\right|<\frac{\epsilon}{\sqrt{m n}}$. Take $\delta=\min _{1 \leq i<n, 1 \leq j \leq m} \delta_{i j}$. Then $\|a-x\|<\delta$, implies

$$
d(J(a), J(x)):=\sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n}\left(D_{j} \varphi_{i}(a)-D_{j} \varphi_{i}(x)\right)^{2}}<\epsilon
$$

Hence, the Jacobian matrix $J: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n \times m}$ is a continuous at $a \in \mathbb{R}^{m}$ in the above metric.

Question 3. (The penultimate example from Lecture 4) We showed that if $\varphi(x):=$ $\|x\|^{2} x, x \in \mathbb{R}^{m}$, then for any $a \in \mathbb{R}^{m}$,

$$
\varphi^{\prime}(a)=\left(\|a\|^{2} I+2 a \otimes a\right)
$$

In other words, for $h \in \mathbb{R}^{m}$, we have

$$
\varphi^{\prime}(a) h=\left(\|a\|^{2} I+2 a \otimes a\right) h=\|a\|^{2} h+2\langle a, h\rangle a
$$

Prove that $\varphi(x)$ is of class $C^{1}\left(\mathbb{R}^{m}\right)$.
By Question 1, $\varphi^{\prime}(a)$ is the Jacobian matrix, which implies that the i-th row vector is given by

$$
\varphi_{i}^{\prime}(a)=\left(D_{1} \varphi_{i}(a), \ldots, D_{m} \varphi_{i}(a)\right)=\|a\|^{2} e_{i}^{T}+2 a_{i} a
$$

Therefore,

$$
D_{j} \varphi_{i}^{\prime}(x)=\|x\|^{2} \delta_{i j}+2 x_{i} x_{j}
$$

is continuous at a. The demonstration of continuity of a function given by $\|x\|^{2}$ is straightforward. x_{i} depends continuously on x as well: $\|a-x\|<\epsilon \Rightarrow\left\|a_{i}-x_{i}\right\|<$ ϵ. Lastly sums and products of continuous real-valued functions are continuous (e.g., Munkres, Theorem 3.6).

Question 4. (The last example from Lecture 4) We showed that for $\varphi(x):=$ $\|x\|, x \in \mathbb{R}^{m}$, for any $a \in \mathbb{R}^{m} \backslash\{0\}$,

$$
\varphi^{\prime}(a)=\frac{a}{\|a\|}
$$

In other words, for $h \in \mathbb{R}^{m}$, we have

$$
\varphi^{\prime}(a) h=\frac{\langle a, h\rangle}{\|a\|}
$$

Determine on which open set $U \subset \mathbb{R}^{m}, \varphi(x)$ is of class $C^{1}(U)$.
Similarly to the preceding problem,

$$
\varphi^{\prime}(a)=\left(D_{1} \varphi(a), \ldots, D_{m} \varphi(a)\right)=\frac{a}{\|a\|}
$$

Therefore,

$$
D_{j} \varphi^{\prime}(x)=\frac{x_{j}}{\|x\|}
$$

is continuous at $a \in \mathbb{R} \backslash\{0\}$ (a quotient of continuous real-valued functions).
We demonstrate the partial derivatives are not well-defined at zero.

$$
D_{j} \varphi^{\prime}(0)=\lim _{h \rightarrow 0} \frac{\sqrt{h^{2}}}{h}=\left\{\begin{array}{l}
1 \text { if } h>0 \\
-1 \text { if } h<0
\end{array}\right.
$$

Question 5. (The last exercise from Lecture 5) Let $U \subseteq \mathbb{R}^{n}$ be open and $\varphi: U \rightarrow$ \mathbb{R}^{n}. Let $b:=\varphi(a)$. Suppose that ψ maps a neighborhood of b into \mathbb{R}^{n} that $\psi(b)=a$ and

$$
\psi(\varphi(x))=x
$$

for all x in a neighborhood of a. If φ is differentiable at a, and ψ is differentiable at b, then

$$
\psi^{\prime}(b)=\varphi^{\prime}(a)^{-1}
$$

in $\mathbb{R}^{n \times n}$.
See Munkres, p 60.

