WNYU

Vector Analysis, MATH-UA.224.001

Quiz Sheet 3: Solutions

Question 1. (Proposition 3.2 from Lecture 3) Let $\varphi : U \to \mathbb{R}^n$, $U \subseteq \mathbb{R}^m$. Suppose U contains a neighborhood of $a \in U$. Let $\varphi_i : U \to \mathbb{R}$ be the *i*-th component function of φ so that:

$$\varphi(x) = \begin{pmatrix} \varphi_1(x) \\ \vdots \\ \varphi_n(x) \end{pmatrix}$$

Show that $\varphi : U \to \mathbb{R}^n$ is differentiable at $a \iff \varphi_i : U \to \mathbb{R}^n, 1 \le i \le n$ is differentiable at a. Show that if $\varphi : U \to \mathbb{R}^n$ is differentiable at $a \in U$, then $\varphi'(a)$ is the Jacobian matrix.

See Munkres, p. 46-47.

Question 2. (Question from Lecture 4) If $\varphi \in C^1(U)$, what can you say about the map $\varphi' : U \to \mathbb{R}^{n \times m}$?

Note: We equip $\mathbb{R}^{n \times m}$ *with the metric*

$$d(A, B) := \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} (A_{ij} - B_{ij})^2}$$

where A_{ij} and B_{ij} are the elements in the *i*-th row and *j*-th column of A and B, respectively.

By the continuity of each partial derivative $D_j\varphi_i(a)$ for $\frac{\epsilon}{\sqrt{mn}} > 0$, there exists $\delta_{ij} > 0$ such that $||a - x|| < \delta_{ij}$ implies that $|D_j\varphi_i(a) - D_j\varphi_i(x)| < \frac{\epsilon}{\sqrt{mn}}$. Take $\delta = \min_{1 \le i < n, 1 \le j \le m} \delta_{ij}$. Then $||a - x|| < \delta$, implies

$$d(J(a), J(x)) := \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} (D_j \varphi_i(a) - D_j \varphi_i(x))^2} < \epsilon$$

Hence, the Jacobian matrix $J : \mathbb{R}^m \to \mathbb{R}^{n \times m}$ is a continuous at $a \in \mathbb{R}^m$ in the above metric.

Question 3. (The penultimate example from Lecture 4) We showed that if $\varphi(x) := ||x||^2 x$, $x \in \mathbb{R}^m$, then for any $a \in \mathbb{R}^m$,

$$\varphi'(a) = (||a||^2 I + 2a \otimes a)$$

In other words, for $h \in \mathbb{R}^m$, we have

$$\varphi'(a)h = (||a||^2I + 2a \otimes a)h = ||a||^2h + 2\langle a, h\rangle a$$

Prove that $\varphi(x)$ *is of class* $C^1(\mathbb{R}^m)$ *.*

By Question 1, $\varphi'(a)$ is the Jacobian matrix, which implies that the *i*-th row vector is given by

$$\varphi'_{i}(a) = (D_{1}\varphi_{i}(a), ..., D_{m}\varphi_{i}(a)) = ||a||^{2}e_{i}^{T} + 2a_{i}a$$

Therefore,

$$D_j \varphi_i'(x) = ||x||^2 \delta_{ij} + 2x_i x_j$$

is continuous at *a*. The demonstration of continuity of a function given by $||x||^2$ is straightforward. x_i depends continuously on *x* as well: $||a-x|| < \epsilon \Rightarrow ||a_i-x_i|| < \epsilon$. Lastly sums and products of continuous real-valued functions are continuous (e.g., Munkres, Theorem 3.6).

Question 4. (The last example from Lecture 4) We showed that for $\varphi(x) := ||x||$, $x \in \mathbb{R}^m$, for any $a \in \mathbb{R}^m \setminus \{0\}$,

$$\varphi'(a) = \frac{a}{\|a\|}$$

In other words, for $h \in \mathbb{R}^m$, we have

$$\varphi'(a)h = \frac{\langle a, h \rangle}{\|a\|}$$

Determine on which open set $U \subset \mathbb{R}^m$, $\varphi(x)$ is of class $C^1(U)$.

Similarly to the preceding problem,

$$\varphi'(a) = (D_1\varphi(a), ..., D_m\varphi(a)) = \frac{a}{\|a\|}$$

Therefore,

NYU

$$D_j \varphi'(x) = \frac{x_j}{\|x\|}$$

is continuous at $a \in \mathbb{R} \setminus \{0\}$ (a quotient of continuous real-valued functions).

We demonstrate the partial derivatives are not well-defined at zero.

$$D_j \varphi'(0) = \lim_{h \to 0} \frac{\sqrt{h^2}}{h} = \begin{cases} 1 \text{ if } h > 0\\ -1 \text{ if } h < 0 \end{cases}$$

Question 5. (The last exercise from Lecture 5) Let $U \subseteq \mathbb{R}^n$ be open and $\varphi : U \to \mathbb{R}^n$. Let $b := \varphi(a)$. Suppose that ψ maps a neighborhood of b into \mathbb{R}^n that $\psi(b) = a$ and

$$\psi(\varphi(x)) = x$$

for all x in a neighborhood of a. If φ is differentiable at a, and ψ is differentiable at b, then

$$\psi'(b) = \varphi'(a)^{-1}$$

in $\mathbb{R}^{n \times n}$.

See Munkres, p 60.