

Quiz Sheet 4

Instructions: Turn in responses to TWO questions of your choice. This quiz will be timed for 15 minutes.

Question 1. Do all of the following. Let $A \subseteq \mathbb{R}^n$.

NYU

- (a) State what it means for the set *int* A to be the interior, the set *ext* A to be the exterior, and the set ∂A to be the boundary of A.
- (b) Suppose $A_1 := B(0, 1) = \{x \in \mathbb{R}^n : ||x|| < 1\}$ and $A_2 := \overline{B(0, 1)} = \{x \in \mathbb{R}^n : ||x|| \le 1\}$. Find int A_i , ext A_i , ∂A_i for i = 1, 2.

Question 2. Prove that $x \in \partial A \subseteq \mathbb{R}^n$ if and only if every open set containing *x* intersects both *A* and $\mathbb{R}^n \setminus A$.

Question 3. In "Piece One" (invertibility of $\varphi'(a)$ implies φ is injective near *a*) of the proof of the Inverse Function Theorem we established the following. Let *U* be open in \mathbb{R}^n and $\varphi : U \to \mathbb{R}^n$ be of class C^1 . If $\varphi'(a)$ is invertible then there exists $\alpha > 0$ s.t.

$$\|\varphi(x_0) - \varphi(x_1)\| \ge \alpha \|x_0 - x_1\| (*)$$

for all $x_0, x_1 \in B(a, \epsilon)$ and some $\epsilon > 0$. Explain why local injectivity of φ follows from (*).

Question 4. Give an example of $\varphi : U \to \mathbb{R}^n$ that is continuous on U and $B(a, \epsilon) \subseteq U$ open such that $\varphi(B(a, \epsilon)) \subseteq \mathbb{R}^n$ is NOT open, or explain why such result may occur.