Quiz Sheet 4: Solutions

Question 1. Let $A \subseteq \mathbb{R}^{n}$. Suppose $A_{1}:=B(0,1)=\left\{x \in \mathbb{R}^{n}:\|x\|<1\right\}$ and $A_{2}:=\overline{B(0,1)}=\left\{x \in \mathbb{R}^{n}:\|x\| \leq 1\right\}$. Find int A_{i}, ext $A_{i}, \partial A_{i}$ for $i=1,2$.
$\underline{A_{1}}:$ int $A_{1}=A_{1}=B(0,1)$ since $B(0,1)$ is open and trivially contains all its open proper subsets.

Any $x \in \mathbb{R}^{n}$, s.t. $\|x\|=1$, is a limit point of $B(0,1),{ }^{1}$ and so for any $B(x, \epsilon)$, we have $B(0,1) \cap B(x, \epsilon) \neq \emptyset$. Thus, ext $A_{1} \subseteq \overline{B(0,1)}^{c}$. Since $\overline{B(0,1)}^{c}$ is open, if $x_{0} \in \overline{B(0,1)}^{c}$, then there exists $B\left(x_{0}, \delta\right) \subseteq \overline{B(0,1)}^{c}$, such that $B(x, \delta) \cap B(0,1)=\emptyset$. Thus, in fact, ext $A_{1}=\overline{B(0,1)}^{c}$.

By exclusion, $\partial A_{1}=\left\{x \in \mathbb{R}^{n}:\|x\|=1\right\}$.
$\underline{A_{2}}$: Any $x \in \mathbb{R}^{n}$, s.t. $\|x\|=1$, is a limit point of $\overline{B(0,1)}^{c},{ }^{2}$ which implies that $B(x, \epsilon) \cap \overline{B(0,1)}^{c} \neq \emptyset$. Thus $\mathrm{B}(0,1)$ is the maximal open set containing all open sets $U \subseteq \overline{B(0,1)}$, and we have int $A_{2}=B(1,0)$.

Now $x \in$ ext $A_{2} \Leftrightarrow \exists B(x, \epsilon)$ s.t. $B(x, \epsilon) \cap A_{2}=\emptyset \Leftrightarrow x \in A_{2}^{c}$. Thus, ext $A_{2}=$ $A_{2}^{c}=\overline{B(0,1)}^{c}$.

Again, by exclusion, $\partial A_{2}=\left\{x \in \mathbb{R}^{n}:\|x\|=1\right\}$.

Question 2. Prove that $x \in \partial A \subseteq \mathbb{R}^{n}$ if and only if every open set containing x intersects both A and $\mathbb{R}^{n} \backslash A$.
(\Rightarrow) Let $x \in \partial A$ and $x \in U$ open. If $U \cap A=\emptyset \Rightarrow U \subseteq$ ext A, which is false. Thus $U \cap A \neq \emptyset$.

Similarly, if $U \cap \mathbb{R}^{n} \backslash A=\emptyset$, then $U \subseteq A$, which implies $U \in$ int A, which is a contradiction. Thus $U \cap \mathbb{R}^{n} \backslash A \neq \emptyset$.
(\Leftarrow) If every U open, s.t. $x \in U$ intersects A, then $x \notin \operatorname{ext} A$. Similarly, if every such U intersects $\mathbb{R}^{n} \backslash A$, then $x \notin$ int A. Thus, $x \in \partial A$.

[^0]Question 3. In "Piece One" (invertibility of $\varphi^{\prime}(a)$ implies φ is injective near a) of the proof of the Inverse Function Theorem we established the following. Let U be open in \mathbb{R}^{n} and $\varphi: U \rightarrow \mathbb{R}^{n}$ be of class C^{1}. If $\varphi^{\prime}(a)$ is invertible then there exists $\alpha>0$ s.t.

$$
\left\|\varphi\left(x_{0}\right)-\varphi\left(x_{1}\right)\right\| \geq \alpha\left\|x_{0}-x_{1}\right\|(*)
$$

for all $x_{0}, x_{1} \in B(a, \epsilon)$ and some $\epsilon>0$. Explain why local injectivity of φ follows from (*).

If φ were not injective, then for some $x_{0} \neq x_{1}$ in \mathbb{R}^{n}, we would have $\varphi\left(x_{0}\right)=$ $\varphi\left(x_{1}\right)$, which would contradict (*).

Question 4. Give an example of $\varphi: U \rightarrow \mathbb{R}^{n}$ that is continuous on U and $B(a, \epsilon) \subseteq U$ open such that $\varphi(B(a, \epsilon)) \subseteq \mathbb{R}^{n}$ is NOT open, or explain why such result may occur.
$\varphi:(-1,1) \rightarrow \mathbb{R}$ defined by $\varphi(x)=x^{2}$ has the image $[0,1)$, which is not open. Note that φ doesn't have a well-defined inverse on this interval.

[^0]: ${ }^{1}$ To rigorously justify this consider $B(x, \epsilon)$ for $0<\epsilon<1$. Then $(1-\epsilon / 2) x$ will be contained in $B(x, \epsilon)$, and since $\|(1-\epsilon / 2) x\|=1-\epsilon / 2$, x will be also contained in $B(0,1)$
 ${ }^{2}$ We can give a justification similar to the above. Consider $B(x, \epsilon)$ for $0<\epsilon<1$. Then $(1+\epsilon / 2) x$ will be contained in $B(x, \epsilon)$, and since $\|(1+\epsilon / 2) x\|=1+\epsilon / 2, x$ will be also contained in $\overline{B(0,1)}$

