🌾 NYU

Vector Analysis, MATH-UA.224.001

Quiz Sheet 4: Solutions

Question 1. Let $A \subseteq \mathbb{R}^n$. Suppose $A_1 := B(0, 1) = \{x \in \mathbb{R}^n : ||x|| < 1\}$ and $A_2 := \overline{B(0, 1)} = \{x \in \mathbb{R}^n : ||x|| \le 1\}$. Find int A_i , ext A_i , ∂A_i for i = 1, 2.

<u> A_1 </u>: int $A_1 = A_1 = B(0, 1)$ since B(0, 1) is open and trivially contains all its open proper subsets.

Any $x \in \mathbb{R}^n$, s.t. ||x|| = 1, is a limit point of B(0, 1),¹ and so for any $B(x, \epsilon)$, we have $B(0, 1) \cap B(x, \epsilon) \neq \emptyset$. Thus, ext $A_1 \subseteq \overline{B(0, 1)}^c$. Since $\overline{B(0, 1)}^c$ is open, if $x_0 \in \overline{B(0, 1)}^c$, then there exists $B(x_0, \delta) \subseteq \overline{B(0, 1)}^c$, such that $B(x, \delta) \cap B(0, 1) = \emptyset$. Thus, in fact, ext $A_1 = \overline{B(0, 1)}^c$.

By exclusion, $\partial A_1 = \{x \in \mathbb{R}^n : ||x|| = 1\}.$

<u>A</u>₂: Any $x \in \mathbb{R}^n$, s.t. ||x|| = 1, is a limit point of $\overline{B(0,1)}^c$,² which implies that $B(x, \epsilon) \cap \overline{B(0,1)}^c \neq \emptyset$. Thus B(0,1) is the maximal open set containing all open sets $U \subseteq \overline{B(0,1)}$, and we have int $A_2 = B(1,0)$.

Now $x \in \text{ext } A_2 \Leftrightarrow \exists B(x,\epsilon) \text{ s.t. } B(x,\epsilon) \cap A_2 = \emptyset \Leftrightarrow x \in A_2^c$. Thus, $\text{ext } A_2 = A_2^c = \overline{B(0,1)}^c$.

Again, by exclusion, $\partial A_2 = \{x \in \mathbb{R}^n : ||x|| = 1\}.$

Question 2. Prove that $x \in \partial A \subseteq \mathbb{R}^n$ if and only if every open set containing x intersects both A and $\mathbb{R}^n \setminus A$.

 (\Rightarrow) Let $x \in \partial A$ and $x \in U$ open. If $U \cap A = \emptyset \Rightarrow U \subseteq \text{ext } A$, which is false. Thus $U \cap A \neq \emptyset$.

Similarly, if $U \cap \mathbb{R}^n \setminus A = \emptyset$, then $U \subseteq A$, which implies $U \in \text{ int } A$, which is a contradiction. Thus $U \cap \mathbb{R}^n \setminus A \neq \emptyset$.

(⇐) If every U open, s.t. $x \in U$ intersects A, then $x \notin \text{ext } A$. Similarly, if every such U intersects $\mathbb{R}^n \setminus A$, then $x \notin \text{ int } A$. Thus, $x \in \partial A$.

¹To rigorously justify this consider $B(x, \epsilon)$ for $0 < \epsilon < 1$. Then $(1 - \epsilon/2)x$ will be contained in $B(x, \epsilon)$, and since $||(1 - \epsilon/2)x|| = 1 - \epsilon/2$, x will be also contained in B(0, 1)

²We can give a justification similar to the above. Consider $B(x, \epsilon)$ for $0 < \epsilon < 1$. Then $(1+\epsilon/2)x$ will be contained in $B(x, \epsilon)$, and since $||(1 + \epsilon/2)x|| = 1 + \epsilon/2$, *x* will be also contained in $\overline{B(0, 1)}$

Question 3. In "Piece One" (invertibility of $\varphi'(a)$ implies φ is injective near a) of the proof of the Inverse Function Theorem we established the following. Let U be open in \mathbb{R}^n and $\varphi : U \to \mathbb{R}^n$ be of class C^1 . If $\varphi'(a)$ is invertible then there exists $\alpha > 0$ s.t.

$$\|\varphi(x_0) - \varphi(x_1)\| \ge \alpha \|x_0 - x_1\| (*)$$

for all $x_0, x_1 \in B(a, \epsilon)$ and some $\epsilon > 0$. Explain why local injectivity of φ follows from (*).

If φ were not injective, then for some $x_0 \neq x_1$ in \mathbb{R}^n , we would have $\varphi(x_0) = \varphi(x_1)$, which would contradict (*).

Question 4. Give an example of $\varphi : U \to \mathbb{R}^n$ that is continuous on U and $B(a, \epsilon) \subseteq U$ open such that $\varphi(B(a, \epsilon)) \subseteq \mathbb{R}^n$ is NOT open, or explain why such result may occur.

 $\varphi : (-1, 1) \to \mathbb{R}$ defined by $\varphi(x) = x^2$ has the image [0, 1), which is not open. Note that φ doesn't have a well-defined inverse on this interval.