🌾 NYU

Vector Analysis, MATH-UA.224.001

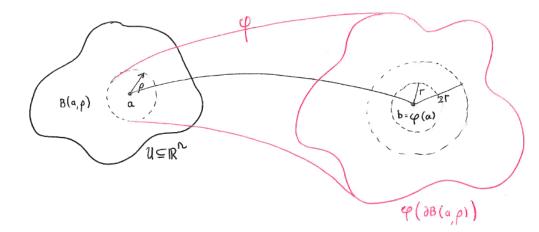
Quiz Sheet 5

Instructions: Turn in responses to TWO questions of your choice. This quiz will be timed for 15 minutes.

Question 1. Referring to the figure below, for $y \in B(b, r)$, we define the map $\Phi_y : U \to \mathbb{R}$ by

$$\Phi_{y}(x) := \|\varphi(x) - y\|^{2}, x \in U$$

where $U \subseteq \mathbb{R}^n$ is open, $\varphi : U \to \mathbb{R}^n$ is of class $C^1(U)$ and one-to-one on $U, \varphi'(x)$ is nonsingular for all $x \in U$, and $a \notin \partial B(a, \rho)$. Explain why $\Phi_y(a) := ||\varphi(a) - y||^2 = ||b - y|| < r^2$ (and not $\leq r^2$).



Question 2. Referring to the hypothesis of Question 1, do all of the following.

- (a) Define a function ψ such that $\Phi_y = \psi \circ \phi$, and specify the domain and the range of ψ .
- (b) Using the chain rule, confirm that Φ_y is of class $C^1(U)$.
- (c) Deduce that $D\Phi_y(x_{min}, e_i) = 0$ for i = 1, ..., n, where $x_{min} \in B(a, \rho)$ and $D\Phi_y(\cdot, e_i)$ is a directional derivative in the direction of the *i*-th canonical basis vector of \mathbb{R}^n , if and only if

$$\sum_{k=1}^{n} 2(\varphi_k(x_{min}) - y_k) D_i \varphi_k(x_{min}) = 0$$

for *i* = 1, ..., *n*.

Question 3. Do all of the following:

- (a) State what it means for a nonempty set V, $+: V^2 \to V$ and $\cdot: \mathbb{R} \times V \to V$ to be a *real vector space*.
- (b) Let

$$V := \{ p : \mathbb{R} \to \mathbb{R} \mid p(x) = \sum_{k=0}^{n} a_k x^k, \ x \in \mathbb{R}, \text{ for some } a_k \in \mathbb{R} \}$$

Show that *V* is real vector space and show that the dimension of V is $n + 1 \in \mathbb{N}$

Hint: Define $+: V^2 \to V$ and $\cdot: \mathbb{R} \times V \to V$ first.

Question 4. Let $V := \mathbb{R}^{n \times n}$. Show that V is a real vector space. Show that the dimension of V is $n^2 \in \mathbb{N}$.

Question 5. Let $V := C(\mathbb{R}, \mathbb{R})$ be the set of all continuous functions on \mathbb{R} with range in \mathbb{R} . Show that V is a real vector space. What can you say about the dimension of V?

Question 6. Do all of the following:

- (a) If V is a real vector space, state what it means for a subset $W \subseteq V$ to be a *subspace* of V.
- (b) Let $W := C^1(\mathbb{R}, \mathbb{R})$. Show that W is a subspace of $V := C(\mathbb{R}, \mathbb{R})$. ($C(\mathbb{R}, \mathbb{R})$ is defined in Question 5.)