Quiz Sheet 5

Instructions: Turn in responses to TWO questions of your choice. This quiz will be timed for 15 minutes.

Question 1. Referring to the figure below, for $y \in B(b, r)$, we define the map $\Phi_{y}: U \rightarrow \mathbb{R}$ by

$$
\Phi_{y}(x):=\|\varphi(x)-y\|^{2}, x \in U
$$

where $U \subseteq \mathbb{R}^{n}$ is open, $\varphi: U \rightarrow \mathbb{R}^{n}$ is of class $C^{1}(U)$ and one-to-one on $U, \varphi^{\prime}(x)$ is nonsingular for all $x \in U$, and $a \notin \partial B(a, \rho)$. Explain why $\Phi_{y}(a):=\|\varphi(a)-y\|^{2}=$ $\|b-y\|<r^{2}$ (and not $\leq r^{2}$).

Question 2. Refering to the hypothesis of Question 1, do all of the following.
(a) Define a function ψ such that $\Phi_{y}=\psi \circ \phi$, and specify the domain and the range of ψ.
(b) Using the chain rule, confirm that Φ_{y} is of class $C^{1}(U)$.
(c) Deduce that $D \Phi_{y}\left(x_{\text {min }}, e_{i}\right)=0$ for $i=1, \ldots, n$, where $x_{\text {min }} \in B(a, \rho)$ and $D \Phi_{y}\left(\cdot, e_{i}\right)$ is a directional derivative in the direction of the i-th canonical basis vector of \mathbb{R}^{n}, if and only if

$$
\sum_{k=1}^{n} 2\left(\varphi_{k}\left(x_{\text {min }}\right)-y_{k}\right) D_{i} \varphi_{k}\left(x_{\text {min }}\right)=0
$$

for $i=1, \ldots, n$.

Question 3. Do all of the following:
(a) State what it means for a nonempty set $\mathrm{V},+: V^{2} \rightarrow V$ and $\cdot: \mathbb{R} \times V \rightarrow V$ to be a real vector space.
(b) Let

$$
V:=\left\{p: \mathbb{R} \rightarrow \mathbb{R} \mid p(x)=\sum_{k=0}^{n} a_{k} x^{k}, x \in \mathbb{R}, \text { for some } a_{k} \in \mathbb{R}\right\}
$$

Show that V is real vector space and show that the dimension of V is $n+1 \in$ \mathbb{N}
Hint: Define $+: V^{2} \rightarrow V$ and $\cdot: \mathbb{R} \times V \rightarrow V$ first.
Question 4. Let $V:=\mathbb{R}^{n \times n}$. Show that V is a real vector space. Show that the dimension of V is $n^{2} \in \mathbb{N}$.

Question 5. Let $V:=C(\mathbb{R}, \mathbb{R})$ be the set of all continuous functions on \mathbb{R} with range in \mathbb{R}. Show that V is a real vector space. What can you say about the dimension of V ?

Question 6. Do all of the following:
(a) If V is a real vector space, state what it means for a subset $W \subseteq V$ to be a subspace of V.
(b) Let $W:=C^{1}(\mathbb{R}, \mathbb{R})$. Show that W is a subspace of $V:=C(\mathbb{R}, \mathbb{R}) .(C(\mathbb{R}, \mathbb{R})$ is defined in Question 5.)

