Quiz Sheet 5: Solutions

Question 1. (from Lecture 7, p. 7) Referring to the figure below, for $y \in B(b, r)$, we define the map $\Phi_{y}: U \rightarrow \mathbb{R}$ by

$$
\Phi_{y}(x):=\|\varphi(x)-y\|^{2}, x \in U
$$

where $U \subseteq \mathbb{R}^{n}$ is open, $\varphi: U \rightarrow \mathbb{R}^{n}$ is of class $C^{1}(U)$ and one-to-one on $U, \varphi^{\prime}(x)$ is nonsingular for all $x \in U$, and $a \notin \partial B(a, \rho)$. Explain why $\Phi_{y}(a):=\|\varphi(a)-y\|^{2}=$ $\|b-y\|^{2}<r^{2}\left(\right.$ and $\left.n o t \leq r^{2}\right)$.

If $\|b-y\|=r$, this implies that $y \notin B(b, r)$.
Question 2. (from Lecture 7, pp. 8-9) Referring to the hypothesis of Question 1, do all of the following.
(a) Define a function ψ such that $\Phi_{y}=\psi \circ \varphi$, and specify the domain and the range of ψ.

$$
\psi: \mathbb{R}^{n} \rightarrow \mathbb{R}
$$

defined by $\psi(s)=\|s-y\|^{2}$
(b) Using the chain rule, confirm that Φ_{y} is of class $C^{1}(U)$.

We have

$$
D \Phi_{y}=D \psi(\varphi) \cdot D \varphi=2 \varphi \cdot D \varphi
$$

where the last equality follows from the last Exercise from Lecture 2, part (a). $D \Phi_{y}$ is continuous since φ is of class $C^{1}(U)$.
(c) Deduce that $D \Phi_{y}\left(x_{\text {min }}, e_{i}\right)=0$ for $i=1, \ldots, n$, where $x_{\min } \in B(a, \rho)$ and $D \Phi_{y}\left(\cdot, e_{i}\right)$ is a directional derivative in the direction of the i-th canonical basis vector of \mathbb{R}^{n}, if and only if

$$
\sum_{k=1}^{n} 2\left(\varphi_{k}\left(x_{\min }\right)-y_{k}\right) D_{i} \varphi_{k}\left(x_{\text {min }}\right)=0
$$

for $i=1, \ldots, n$.
Since $D \Phi\left(x_{\text {min }}\right)$ and $D \varphi\left(x_{\text {min }}\right)$ are Jacobian matrices, we have $D \Phi\left(x_{\text {min }}, e_{i}\right)=$ $D_{i} \Phi\left(x_{\min }\right)$ and $D \varphi\left(x_{\min }, e_{i}\right)=D_{i} \varphi\left(x_{\min }\right)$, which are the i-th column vectors of the corresponding Jacobians. Therefore,

$$
\begin{aligned}
D \Phi_{y}\left(x_{\text {min }}, e_{i}\right) & =D_{i} \Phi_{y}\left(x_{\min }\right)=2\left(\varphi\left(x_{\min }\right)-y\right) \cdot D_{i} \varphi\left(x_{\min }\right) \\
& =\sum_{k=1}^{n} 2\left(\varphi_{k}\left(x_{\text {min }}\right)-y_{k}\right) D_{i} \varphi_{k}\left(x_{\text {min }}\right)=0
\end{aligned}
$$

Question 3. (from Lecture 8, Example 8.3) Let

$$
V:=\left\{p: \mathbb{R} \rightarrow \mathbb{R} \mid p(x)=\sum_{k=0}^{n} a_{k} x^{k}, x \in \mathbb{R}, \text { for some } a_{k} \in \mathbb{R}\right\}
$$

Show that V is real vector space and show that the dimension of V is $n+1 \in \mathbb{N}$.
See Solution to Problem 1 from Homework 5.
Question 4. (from Lecture 8, Example 8.4) Let $V:=\mathbb{R}^{n \times n}$. Show that V is a real vector space. Show that the dimension of V is $n^{2} \in \mathbb{N}$.
(Sketch of proof) The closure under addition and scalar multiplication and the other vector space properties follow from the canonical addition and scalar multiplication $+: V^{2} \rightarrow V$ by $A_{1}+A_{2}$ where the $i j$-th entry of the sum is given by $\left(A_{1}+A_{2}\right)_{i j}=a_{1 i j}+a_{2 i j}$ and $a_{1 i j}$ and $a_{2 i j}$ are the $i j$-th entries of A_{1} and A_{2} respectively, and $\cdot: \mathbb{R} \times V \rightarrow V$ by λA where the $i j$-th entry of the is given by $(\lambda A)_{i j}=\lambda a_{i j}$ where $a_{i j}$ are the $i j$-th entries of A.

It is also straightforward to show that the set of $n \times n$ matrices $E_{i j}$ that have all zero entries except for the $i j$-th entry, where $1 \leq i, j \leq n$ are linearly independent and span V. There are n^{2} such matrices.

Question 5. (from Lecture 8, Example 8.5) Let $V:=C(\mathbb{R}, \mathbb{R})$ be the set of all continuous functions on \mathbb{R} with range in \mathbb{R}. Show that V is a real vector space. What can you say about the dimension of V ?

The proof is the same as the proof that the set of all maps $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ of class $C^{1}\left(\mathbb{R}^{m}\right)$ is a real vector space in Problem 2 of Homework 5 (taking $m=n=$ 1) except that closure follows from the basic result that linear combinations of continuous functions are continuous (Munkres, Theorem 3.6).

Question 6. (from Lecture 8, Example 8.6)Let $W:=C^{1}(\mathbb{R}, \mathbb{R})$. Show that W is a subspace of $V:=C(\mathbb{R}, \mathbb{R})$. $(C(\mathbb{R}, \mathbb{R})$ is defined in Question 5.$)$

It suffices to prove that W is closed under addition and scalar multiplication, which is the same as the proof that the set of all maps $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ of class $C^{1}\left(\mathbb{R}^{m}\right)$ is closed under addition and scalar multiplication in Problem 2 of Homework 5.

