Quiz Sheet 6

Instructions: Turn in responses to TWO questions of your choice. This quiz will be timed for 15 minutes.

Question 1. Do all of the following:
(a) Let f be a k-tensor on V and let g be an l-tensor on V. Define what it means for a function $f \otimes g$ to be the tensor product of f and g, and specify the domain and the range of $f \otimes g$.
(b) Let f and g be the following tensors on \mathbb{R}^{4} :

$$
\begin{aligned}
f(x, y, z) & =2 x_{1} y_{2} z_{2}-x_{2} y_{3} z_{1} \\
g & =\phi_{2,1}-5 \phi_{3,1}
\end{aligned}
$$

Express $f \otimes g$ as a linear combination of elementary 5-tensors.
(c) Express $(f \otimes g)(x, y, z, u, v)$ as a function.

Question 2. Do all of the following:
(a) Given a symmetric group (also denoted as a permutation group) S_{n} define what it means for an element $e_{i}, 1 \leq i<k$, of S_{n} to be an elementary permutation.
(b) Define what it means for a k-tensor f on V to be an alternating tensor.
(c) Which of the following are alternating tensors in \mathbb{R}^{4} ?

$$
\begin{aligned}
& f(x, y)=x_{1} y_{2}-x_{2} y_{1}+x_{1} y_{1} \\
& g(x, y)=x_{1} y_{3}-x_{3} y_{2} \\
& h(x, y)=\left(x_{1}\right)^{3}\left(y_{2}\right)^{3}-\left(x_{2}\right)^{3}\left(y_{1}\right)^{3}
\end{aligned}
$$

Question 3. Do all of the following:
(a) Let V be a vector space with basis a_{1}, \ldots, a_{n}. Let $I=\left(i_{1}, \ldots, i_{k}\right)$ be an ascending k-tuple from the set $\{1, \ldots, n\}$. Define what means for the tensor ψ_{I} on V to be an elementary alternating k-tensor on V corresponding to the basis a_{1}, \ldots, a_{n} for V .
(b) Let V be a vector space, and $f \in A^{k}(V)$ and $g \in A^{l}(V)$. Define what means for a tensor $f \wedge g$ be the wedge product of f and g.
(c) Show that $f \wedge g \wedge f=0$ where f and g are the following alternating tensors in \mathbb{R}^{2} :

$$
\begin{aligned}
& f(x, y)=x_{1} y_{2}-x_{2} y_{1} \\
& g(x, y)=-x_{1} y_{2}+x_{2} y_{1}
\end{aligned}
$$

Hint: As an alternative to a direct computation, you can determine the space containing this wedge product and apply the relevant result from the homework submitted last week (Homework Sheet 6).

