🌾 NYU

Vector Analysis, MATH-UA.224.001

Quiz Sheet 6

Instructions: Turn in responses to TWO questions of your choice. This quiz will be timed for 15 minutes.

Question 1. Do all of the following:

- (a) Let f be a k-tensor on V and let g be an *l*-tensor on V. Define what it means for a function $f \otimes g$ to be the *tensor product* of f and g, and specify the domain and the range of $f \otimes g$.
- (b) Let f and g be the following tensors on \mathbb{R}^4 :

$$f(x, y, z) = 2x_1y_2z_2 - x_2y_3z_1$$
$$g = \phi_{2,1} - 5\phi_{3,1}$$

Express $f \otimes g$ as a linear combination of elementary 5-tensors.

(c) Express $(f \otimes g)(x, y, z, u, v)$ as a function.

Question 2. Do all of the following:

- (a) Given a symmetric group (also denoted as a permutation group) S_n define what it means for an element e_i , $1 \le i < k$, of S_n to be an *elementary permutation*.
- (b) Define what it means for a *k*-tensor *f* on *V* to be an *alternating tensor*.
- (c) Which of the following are alternating tensors in \mathbb{R}^4 ?

$$f(x, y) = x_1y_2 - x_2y_1 + x_1y_1$$

$$g(x, y) = x_1y_3 - x_3y_2$$

$$h(x, y) = (x_1)^3(y_2)^3 - (x_2)^3(y_1)^3$$

Question 3. Do all of the following:

- (a) Let *V* be a vector space with basis $a_1, ..., a_n$. Let $I = (i_1, ..., i_k)$ be an ascending *k*-tuple from the set $\{1, ..., n\}$. Define what means for the tensor ψ_I on *V* to be an *elementary alternating k-tensor* on *V* corresponding to the basis $a_1, ..., a_n$ for V.
- (b) Let V be a vector space, and $f \in A^k(V)$ and $g \in A^l(V)$. Define what means for a tensor $f \wedge g$ be the *wedge product* of f and g.
- (c) Show that $f \wedge g \wedge f = 0$ where f and g are the following alternating tensors in \mathbb{R}^2 :

$$f(x, y) = x_1y_2 - x_2y_1$$

$$g(x, y) = -x_1y_2 + x_2y_1$$

Hint: As an alternative to a direct computation, you can determine the space containing this wedge product and apply the relevant result from the home-work submitted last week (Homework Sheet 6).