Vector Analysis, MATH-UA.224.001

Quiz Sheet 7

Instructions: Turn in responses to TWO questions of your choice. This quiz will be timed for 15 minutes.

Question 1. Let $x, y, z \in \mathbb{R}^5$. Let

NYU

$$F(x, y, z) = 2x_2y_2z_1 + x_1y_5z_4$$

$$G(x, y) = x_1y_3 + x_3y_1$$

$$h(w) = w_1 - 2w_3$$

(a) Write AF and AG in terms of elementary alternating tensors, where A : $\mathcal{L}^k(V) \to \mathcal{R}^k(V)$ is defined by

$$Af := \sum_{\sigma \in \text{ sym } (k)} (\text{sgn } \sigma) T_{\sigma} f \text{ for any } f \in \mathcal{L}^k(V)$$

Hint: Write *F* and *G* in terms of elementary alternating tensors and use the identity that for any collection $f_1, ..., f_k$ of 1-tensors, $A(f_1 \otimes ... \otimes f_k) = f_1 \wedge ... \wedge f_k$ (e.g., Munkres, p. 241, Step 9).

- (b) Express $(AF) \wedge h$ in terms of elementary alternating tensors.
- (c) Express (AF)(x, y, z) as a function.

Question 2. Do all of the following:

- (a) Given $x \in \mathbb{R}^n$, define what it means for a pair (x, v) to be a *tangent vector* to \mathbb{R}^n at x and the set $\mathcal{T}_x(\mathbb{R}^n)$ to be the *tangent space* to \mathbb{R}^n at x.
- (b) Given an open set A in Rⁿ, define what it means for a function ω to be a k-tensor field in A. Define what it means for a function ω to be a differential form of order k (or simply a k-form) on A.
- (c) Let $e_1, ..., e_n$ be the canonical basis for \mathbb{R}^n , and $(x, e_1), ..., (x, e_n)$ be the canonical basis for $\mathcal{T}_x(\mathbb{R}^n)$. Define what it means for the 1-forms $\Phi_1, ... \Phi_n$ to be the *elementary 1-forms on* \mathbb{R}^n .

Question 3. Do all of the following:

(a) Given an ascending *k*-tuple $I = (i_1, ..., i_k)$ from the set $\{1, ..., n\}$, define what it means for a *k*-form Φ_I to be an *elementary k-form* on \mathbb{R}^n .

(b) Show that ω given by

$$\omega(x) = x_2 x_3 \Phi_{1,2} - x_3 \Phi_{1,3} + x_2 \cos x_1 \Phi_{2,3}$$

for every $x = (x_1, x_2, x_3) \in \mathbb{R}^3$ is a differential form of order 2.

(c) Evaluate $\omega(x)((x, v_1), (x, v_2))$ for $x = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}, v_1 = \begin{pmatrix} 1 \\ 3 \\ 3 \end{pmatrix}, v_2 = \begin{pmatrix} 1 \\ 0 \\ -7 \end{pmatrix}.$

Hint: the determinants of 2×2 *matrices.*