## Quiz Sheet 7

Instructions: Turn in responses to TWO questions of your choice. This quiz will be timed for 15 minutes.

Question 1. Let $x, y, z \in \mathbb{R}^{5}$. Let

$$
\begin{aligned}
F(x, y, z) & =2 x_{2} y_{2} z_{1}+x_{1} y_{5} z_{4} \\
G(x, y) & =x_{1} y_{3}+x_{3} y_{1} \\
h(w) & =w_{1}-2 w_{3}
\end{aligned}
$$

(a) Write AF and AG in terms of elementary alternating tensors, where $A$ : $\mathcal{L}^{k}(V) \rightarrow \mathcal{A}^{k}(V)$ is defined by

$$
A f:=\sum_{\sigma \in \operatorname{sym}(k)}(\operatorname{sgn} \sigma) T_{\sigma} f \text { for any } f \in \mathcal{L}^{k}(V)
$$

Hint: Write $F$ and $G$ in terms of elementary alternating tensors and use the identity that for any collection $f_{1}, \ldots, f_{k}$ of 1-tensors, $A\left(f_{1} \otimes \ldots \otimes f_{k}\right)=$ $f_{1} \wedge \ldots \wedge f_{k}$ (e.g., Munkres, p. 241, Step 9).
(b) Express $(A F) \wedge h$ in terms of elementary alternating tensors.
(c) Express $(A F)(x, y, z)$ as a function.

Question 2. Do all of the following:
(a) Given $x \in \mathbb{R}^{n}$, define what it means for a pair $(x, v)$ to be a tangent vector to $\mathbb{R}^{n}$ at $x$ and the set $\mathcal{T}_{x}\left(\mathbb{R}^{n}\right)$ to be the tangent space to $\mathbb{R}^{n}$ at $x$.
(b) Given an open set $A$ in $\mathbb{R}^{n}$, define what it means for a function $\omega$ to be a $k$-tensor field in $A$. Define what it means for a function $\omega$ to be a differential form of order $k$ (or simply a $k$-form) on A.
(c) Let $e_{1}, \ldots, e_{n}$ be the canonical basis for $\mathbb{R}^{n}$, and $\left(x, e_{1}\right), \ldots,\left(x, e_{n}\right)$ be the canonical basis for $\mathcal{T}_{x}\left(\mathbb{R}^{n}\right)$. Define what it means for the 1 -forms $\Phi_{1}, \ldots \Phi_{n}$ to be the elementary 1-forms on $\mathbb{R}^{n}$.

Question 3. Do all of the following:
(a) Given an ascending $k$-tuple $I=\left(i_{1}, \ldots, i_{k}\right)$ from the set $\{1, \ldots, n\}$, define what it means for a $k$-form $\Phi_{I}$ to be an elementary $k$-form on $\mathbb{R}^{n}$.
(b) Show that $\omega$ given by

$$
\omega(x)=x_{2} x_{3} \Phi_{1,2}-x_{3} \Phi_{1,3}+x_{2} \cos x_{1} \Phi_{2,3}
$$

for every $x=\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}$ is a differential form of order 2 .
(c) Evaluate $\omega(x)\left(\left(x, v_{1}\right),\left(x, v_{2}\right)\right)$ for $x=\left(\begin{array}{l}0 \\ 1 \\ 2\end{array}\right), v_{1}=\left(\begin{array}{l}1 \\ 3 \\ 3\end{array}\right), v_{2}=\left(\begin{array}{c}1 \\ 0 \\ -7\end{array}\right)$.

Hint: the determinants of $2 \times 2$ matrices.

