Quiz Sheet 8

Instructions: Turn in responses to TWO questions of your choice. This quiz will be timed for 15 minutes.

Question 1. Do all of the following:
(a) Given an open set A in \mathbb{R}^{n}, define what it means for a function f on A to be a differential form of order zero (or simply a 0 -form).
(b) Define what it means for a function to be an exterior derivative of a 0 -form.
(c) Find the exterior derivative $d \omega$ of ω given by $\omega(x)=x_{1} x_{2}$. Evaluate $d f(x)((x, v))$

$$
\text { for } x=\binom{1}{2} \text { and } v=\binom{3}{4} \text {. }
$$

Question 2. Do all of the following:
(a) Write the representation formula for k-forms in Ω^{k} that allows us to define the exterior derivative operator.
(b) Define what it means for d to be the exterior derivative operator on $\Omega^{k} \in \mathbb{R}^{n}$ for $k \geq 1$.
(c) Find the exterior derivative $d \omega$ of ω given by $\omega(x)=x_{1} x_{2} d x$. Evaluate $d \omega(x)\left(\left(x, v_{1}\right),\left(x, v_{2}\right)\right)$ for $x=\binom{0}{1}, v_{1}=\binom{1}{3}, v_{2}=\binom{1}{0}$.

Question 3. Do all of the following:
(a) If ω and η are forms of order k and l, respectively, state the 'product' rule for evaluating $d(\omega \wedge \eta)$.
(b) Consider the forms

$$
\begin{aligned}
\omega & =x y d x+3 d y-y z d z \\
\eta & =x d x-y z^{2} d y+2 x d z
\end{aligned}
$$

$\in \mathbb{R}^{3}$. Verify by direct computation that $d(d \omega)=0$ and $d(w \wedge \eta)=(d \omega) \wedge$ $\eta-\omega \wedge d \eta$.

