## Quiz Sheet 9

Instructions: Turn in responses to TWO questions of your choice. This quiz will be timed for 15 minutes.

Question 1. Let $A$ be open in $\mathbb{R}^{3}$. Let $f: A \rightarrow \mathbb{R}$ be a scalar field $(\mathrm{a} / \mathrm{k} / \mathrm{a}$ the differential 0 -form). We define a corresponding vector field in $A$, called the gradient of $f$, by

$$
(\operatorname{grad} f)(x)=\nabla f(x)=\left(x ; \frac{\partial f(x)}{\partial x_{1}} e_{1}+\frac{\partial f(x)}{\partial x_{2}} e_{2}+\frac{\partial f(x)}{\partial x_{3}} e_{3}\right)
$$

Let $\alpha_{1}$ be a map from the set of all $C^{\infty}$ vector fields on $\mathrm{A}\left(\mathrm{a} / \mathrm{k} / \mathrm{a} \Omega^{0}(A)\right)$ to $\Omega^{1}(A)$ given by

$$
\alpha_{1} F=f_{1} d x_{1}+f_{2} d x_{2}+f_{2} d x_{2}
$$

where the vector field $F$ is given by

$$
F(x)=\left(x ; f_{1}(x) e_{1}+f_{2}(x) e_{2}+f_{3}(x) e_{3}\right)
$$

Show that $d=\alpha_{1} \circ$ grad.
Hint: To evaluate the LHS, apply the definition of the exterior derivative of a 0 -form and to evaluate the RHS apply the definitions given above.

Question 2. Let $A$ be open in $\mathbb{R}^{3}$, and $F$ be a vector field in $A$ given by $F(x)=$ $\left(x ; f_{1}(x) e_{1}+f_{2}(x) e_{2}+f_{3}(x) e_{3}\right)$ for $x \in A$. We define another vector field in $A$, called the curl of $f$, by

$$
\begin{aligned}
(\operatorname{curl} F)(x)=\nabla \times F(x) & =\left(x ;\left(\frac{\partial f_{3}}{\partial x_{2}}-\frac{\partial f_{2}}{\partial x_{3}}\right) e_{1}+\left(\frac{\partial f_{1}}{\partial x_{3}}-\frac{\partial f_{3}}{\partial x_{1}}\right) e_{2}+\left(\frac{\partial f_{2}}{\partial x_{1}}-\frac{\partial f_{1}}{\partial x_{2}}\right) e_{3}\right) \\
& =\operatorname{det}\left(\begin{array}{ccc}
e_{1} & e_{2} & e_{3} \\
\frac{\partial}{\partial x_{1}} & \frac{\partial}{\partial x_{2}} & \frac{\partial}{\partial x_{3}} \\
f_{1} & f_{2} & f_{3}
\end{array}\right) .
\end{aligned}
$$

where each partial derivative is evaluated at $x \in A$. Let $\beta_{2}$ be a map from the set of all $C^{\infty}$ vector fields on $A$ to $\Omega^{2}(A)$ given by

$$
\beta_{2} F=f_{1} d x_{2} \wedge d x_{3}-f_{2} d x_{1} \wedge d x_{3}+f_{3} d x_{1} \wedge d x_{2}
$$

Show that $d \circ \alpha_{1}=\beta_{2} \circ$ curl where $\alpha_{1}$ is as defined in Question 1.
Hint: To evaluate the LHS, apply the definition of the exterior derivative of a 1 -form to $\alpha_{1} F$. To evaluate the RHS expand $\beta_{2} \circ$ curl $F$ using the definitions given above.

Question 3. Let $A$ be open in $\mathbb{R}^{3}$. Let $G(x)=(x ; g(x))$ be a vector field in $A$, where $g: A \rightarrow \mathbb{R}^{3}$ is given by

$$
g(x)=g_{1}(x) e_{1}+g_{2}(x) e_{2}+g_{3}(x) e_{3}
$$

we define a corresponding scalar field in $A$, called the divergence of $f$, by

$$
(\operatorname{div} G)(x)=\nabla \cdot G(x)=\frac{\partial g_{1}(x)}{\partial x_{1}}+\frac{\partial g_{2}(x)}{\partial x_{2}}+\frac{\partial g_{3}(x)}{\partial x_{3}}
$$

Let $\beta_{3}$ be a map from the set of all $C^{\infty}$ scalar fields on $A$ to $\Omega^{3}(A)$ given by

$$
\beta_{3} h=h d x_{1} \wedge d x_{2} \wedge d x_{3}
$$

where $h$ is a scalar field. Show that $d \circ \beta_{2}=\beta_{3} \circ$ div.

