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Assortment planning of substitutable products is a major operational issue that arises in many industries, such as retailing,
airlines and consumer electronics. We consider a single-period joint assortment and inventory planning problem under
dynamic substitution with stochastic demands, and provide complexity and algorithmic results as well as insightful struc-
tural characterizations of near-optimal solutions for important variants of the problem. First, we show that the assortment
planning problem is NP-hard even for a very simple consumer choice model, where each consumer prefers only two
items. In fact, we show that the problem is hard to approximate within a factor better than 1−1/e. Secondly, we show that
for several interesting and practical customer choice models, one can devise a polynomial-time approximation scheme
(PTAS), i.e., the problem can be solved efficiently to within any level of accuracy. To the best of our knowledge, this is
the first efficient algorithm with provably near-optimal performance guarantees for assortment planning problems under
dynamic substitution. Quite surprisingly, the algorithm we propose stocks only a constant number of different product
types, depending only on the desired accuracy level. This provides an important managerial insight that assortments with
a relatively small number of product types can obtain almost all of the potential revenue. Furthermore, we show that
our algorithm can be easily adapted for more general choice models, and present numerical experiments to show that it
performs significantly better than other known approaches.
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1. Introduction
Assortment planning is a major operational issue that arises in many industries, such as retailing, airlines,
and consumer electronics. Given a set of products that are differentiated by price, quality and possibly
other attributes, one has to decide on the product assortment, and the respective quantities that will be
stocked and offered to customers. Such decisions become particularly important when different products
are substitutable and customers exhibit a substitution behavior. For example, customers may a-priori prefer
product A to product B, but may still be willing to buy product B if product A is not offered or not available
anymore. The substitution behavior can be assortment-based (or static), i.e., unaffected by the availability of
products and depends only on the specific assortment of products, or it can be stock-out-based (or dynamic),
i.e., driven by stock-out events and availability of products. When customers exhibit substitution behavior
(static or dynamic), the demands for different product types are correlated, and accounting for product
substitutability can lead to significantly higher revenues and profits. However, this requires joint multi-
product assortment and inventory decisions, which usually give rise to complex optimization models that
are computationally challenging. Assortment planning under substitution forms one of the core problem
domains in revenue management, and many variants of these problems have been studied extensively in the
literature.

We consider a single-period joint assortment and inventory planning problem with stochastic demand
and dynamic substitution. Specifically, we study a single period model with finite number of product types
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(or item types), each with a per-unit selling price and potentially other attributes that differentiate between
different product types (e.g., quality, size, color). At the beginning of the period, one has to decide jointly
on the assortment and the inventory levels, i.e., which product types to offer and how many units to stock
from each offered product, subject to a capacity constraint on the total number of units that can be stocked.
After the assortment and inventory decisions are made, a stochastic number of customers arrive one after the
other, each with a random preference on the product types. A preference is an ordered list or permutation
of product types that reflects the order in which the customer prefers different product types. Note that the
no-purchase alternative can appear at any position in the preference. No-purchase alternative at any position
denotes that buying nothing is more preferable to buying any product below this position. We assume that
the preference of each customer is independent and identically distributed according to a known distribution
over all potential preferences. Upon arrival, each customer purchases the first available product type in her
preference list. If no product on the customer’s list is available, the customer leaves without purchasing
any product. The goal is to find the assortment and inventory levels that maximize the expected revenue
obtained from the units purchased by customers. Note that both the number of customers and their respective
preferences are stochastic in this model and the customers arrive in a sequential manner.

1.1. Our Results

Complexity and approximability. The model described above is in general computationally intractable.
Specifically, we show that the above mentioned problem is NP-hard even for the special case when there
is only one customer and all preference lists consist of only two product types, i.e., there is no efficient
algorithm for solving the problem to optimality, unless P = NP. Therefore, it is only natural to seek for
approximation algorithms that compute near-optimal solutions to the problem. However, even the model
with a single customer (but with general preference lists) can be shown to be hard to approximate within
some fixed constant. In particular, there is no polynomial-time algorithm that is guaranteed to recover at
least 1 − 1/e fraction of the optimal expected revenue for all possible instances of the problem unless
P = NP. Therefore, the worst-case approximation factor for any efficient algorithm can not be better than
1− 1/e, unless P = NP.

Polynomial time approximation scheme. In view of these hardness of approximation results, we study
this problem with two additional assumptions that still capture important practical situations. We first focus
attention on nested preference lists. Here, the product types are ordered by increasing per-unit selling price.
Customers always prefer the cheapest product type available upon arrival. Each preference list corresponds
to a different price threshold, and a customer with that preference list is willing to buy all product types
with per-unit price lower than the threshold. Nested preference lists arise in situations where the quality of
different product types is similar, and customers differentiate only by price. (Similar choice models have
been studied by Talluri and van Ryzin (2004).) The second assumption is that the number of customers
follows an increasing failure rate (IFR) distribution. (For a definition of an IFR distribution see Shaked
and Shanthikumar (1994) and Assumption 2 in Section 4.) This is a well-known class of distributions that
includes many of the traditional distributions used in the operations research and operations management
literature.

Interestingly, by imposing the above-mentioned assumptions, one can design a polynomial time approxi-
mation scheme (PTAS) for the problem, i.e., for any accuracy level 0< ε< 0.5, one can compute a solution
with expected revenue at least (1− ε) of the optimal expected revenue, in time that is polynomial in the
input size for any fixed ε. Practically speaking, this result implies that the problem can be solved efficiently
to within any degree of accuracy. This stands in contrast to the inapproximability result, stating that there
is no approximation algorithm for the general model with worst-case performance guarantee better than
1− 1/e unless P = NP. To the best of our knowledge, this is the first efficient algorithm with provably-
good performance guarantees for assortment planning problems under dynamic substitution. Moreover, our
algorithm stocks only a constant number of different product types, depending only on the desired accuracy
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level ε, and not on any other parameter of the problem, including the overall number of product types or the
capacity. This provides an important managerial insight that assortments with a relatively small number of
product types can obtain almost all of the potential revenue.

There have been relatively few approximation schemes for stochastic optimization models (for exam-
ple, see the recent results in Halman et al. (2009, 2008)). Most of these results are based on formulating
the respective problem as a dynamic program that can be solved in pseudo-polynomial time, and then
employ that to devise a fully polynomial approximation algorithm (FPTAS). (The running time of an FPTAS
depends polynomially on 1/ε, compared to a PTAS where it can depend on an arbitrary function of 1/ε.)
In contrast, the model studied in this paper does not seem to admit a tractable dynamic program. Instead,
we use several structural properties of a near-optimal solution to identify a subset of product types of
constant size, which in turn leads to a PTAS. This concept has previously been applied to other combina-
torial optimization problems (see, for instance, de la Vega and Lueker (1981), Har-Peled (2011)), but, to
our knowledge, not to stochastic optimization problems. We believe that the new ideas introduced in this
paper may also be applicable in other substitution and revenue management models, and more generally,
stochastic optimization models.

We also show that if the distribution of the number of customers is not IFR, small subsets of product types
cannot guarantee near-optimal performance. In particular, we construct an example, in which any solution
that stocks a constant number of product types performs arbitrarily bad compared to the optimal policy.

Extensions and computational experiments. By employing dynamic programming techniques, we show
how to leverage our PTAS to a more general choice model, in which customer choices are affected not
only by price but also by quality. Specifically, each customer is willing to buy products within a certain
quality category, and within that category, product types are differentiated only by price and admit a nested
form. The underlying assumption is that the prices of different quality categories are separated to different
customer segments. This choice model captures several important practical settings.

In addition, a natural question to explore is whether our approach to compute a near-optimal solution for
nested customer preferences, can be extended to handle more general choice models. Even though one can
artificially create worst-case examples showing that we may end up with highly sub-optimal solutions, it
is of particular interest to examine how our algorithm scales up in practice against adaptations of existing
methods. In this context, we describe computational experiments that evaluate the performance of assort-
ments consisting of very few product types, demonstrating that our approach is indeed suitable for fairly
general choice models.

Maximizing revenue vs. maximizing profit. We would like to emphasize that we consider a model with a
capacity constraint on the total number of units being stocked and assume that there are no per-unit purchas-
ing costs. This is in contrast to several dynamic substitution models considered in the literature where each
product has a per-unit revenue and a per-unit purchasing cost and the goal is to maximize the expected profit
(for instance, see Mahajan and van Ryzin (2001) and Netessine and Rudi (2003)). Capacity constraints arise
in many retailing settings, for example, when there is limited shelf space. Ignoring purchasing prices is an
appropriate assumption when the cost of buying or producing the products is a sunk cost (e.g., seats in an
airplane), or when the costs are identical (e.g., fashion industry), or when unsold products can be fully or
almost fully salvaged. Therefore, it is important to study models with capacity constraints instead of mod-
eling purchasing costs. It is worth pointing out that the objective of maximizing revenue (instead of profit)
has also been studied is a recent paper by Fisher and Vaidyanathan (2007).

On top of the practical motivation, we show that our method can be extended to compute near-optimal
solutions for models with purchasing costs. This result is obtained by essentially reducing such models
to a multi-capacitated setting, where carefully-picked subsets of products are given separate capacity con-
straints. More specifically, under the technical assumptions used to design the above-mentioned approx-
imation scheme, suppose in addition that we are given a budget constraint of B on the total purchasing
cost, under which the optimal inventory levels guarantee an expected revenue of R∗. Then, by following
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the approximation algorithm we sketch in Appendix A.1, one can compute an inventory vector in which
the expected revenue is at least (1− ε)R∗, without exceeding the total purchasing cost. That being said, the
downside of this extension is that the resulting algorithm is not longer a PTAS, but rather a quasi-PTAS
(where the running time exponent also involves factors that are polylogarithmic in the input size; see, for
instance, Bansal et al. (2006), Remy and Steger (2009), Chan and Elbassioni (2011)).

1.2. Literature Review
Joint assortment planning and inventory management problems with substitution have been extensively
studied; we refer the reader to directly related papers, surveys, and books (Kok et al. (2006), Lancaster
(1990), Ho and Tang (1998), Ramdas (2003)) for a comprehensive review of the recent literature. Pentico
(1974) was one of the earliest to consider an assortment planning problem with downward substitution and
a deterministic sequence of customer arrivals, showing that under several conditions, a certain planning-
horizon type policy is optimal. Van Ryzin and Mahajan (1999) consider a static substitution model with
multi-nomial logit (MNL) demand distributions. They show that in this model the optimal solution consists
of the most popular product. Cachon et al. (2005) generalize this static substitution model to incorporate
search costs. Hopp and Xu (2005) consider the problem of integrating assortment decisions with pricing
decisions, again with MNL demands. Anupindi et al. (2006) consider a probit demand model, and include
a penalty for customer’s disutility in substituting to a less preferred product type.

The above-mentioned papers are primarily focused on static substitution models, where customer pref-
erences and purchasing decisions depend only on the assortment being offered, but not on the specific
inventory levels observed at the time of purchase. Specifically, customers do not substitute to other product
types just because more preferred types are stocked out. Thus, the demand for each product type is indepen-
dent of the actual inventory levels of other products, and only depends on the subset of product types being
offered. However, in many practical applications such as airlines and retailing, customers do not exhibit
static substitution behavior, but rather a dynamic substitution. In particular, customers readily substitute
when a more preferred product type is stocked out. Models with dynamic substitution are generally more
complex and challenging. The demand for a specific product type is affected not only by the assortment
being offered, but also by the respective inventory levels that change dynamically over time as customers
arrive and consume products. As a result, assortment and inventory decisions must be made simultaneously.

While the static substitution model has been extensively studied, there is relatively little work on dynamic
substitution models. Parlar and Goyal (1984) were the first to study a dynamic substitution model. They
consider a probabilistic substitution model and show that the profit function is concave for a wide range of
problem parameters. Smith and Agrawal (2000) consider a dynamic substitution model specified by first-
choice probabilities and a substitution matrix, and show that static substitution yields bounds on the demand
for each product in the dynamic substitution case. Mahajan and van Ryzin (2001) study a joint assortment
and inventory planning problem with stochastic demands and general preferences where each product type
has per unit revenue and cost and the goal is to maximize the expected profit. Assuming that customer
sequences can be sampled, they propose a sample path gradient-based algorithm, and show that under fairly
general conditions it converges to a local maximum. However, they do not provide any performance bounds
for the expected profit of a local maximum as compared to the optimal expected profit.

Netessine and Rudi (2003) consider a substitution model where each customer preference consists of
only two products (a first-choice as well as a second-choice product), in the assortment of an arbitrary
number of products, and obtain analytically tractable solutions for the assortment planning problem in both
centralized inventory management and competition. It is worth pointing out that we prove the assortment
planning problem (in our model) to be NP-hard even when each customer preference consist of only two
products. However, our model is different from the model studied by Netessine and Rudi (2003); they
consider an uncapacitated problem with a per-unit purchasing cost for each product type and stocking a
fractional number of any product type is allowed. Whereas, we consider a model with a capacity constraints
on the total number of units that can be stocked across all product types. As mentioned earlier, it is more
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useful to consider a model with capacity constraints instead of purchasing costs for some applications (for
instance, airline seats and fashion industry). Moreover, we also show that a model with purchasing costs
can be approximately reduced to a problem with only capacity constraints (and no purchasing costs).

Kok and Fisher (2007) assume an MNL demand model within a Bayesian framework, propose an algo-
rithm to estimate the model parameters, and also solve the assortment and planning problem with one-level
stock-out based substitution. Gaur and Honhon (2006) give a heuristic for the problem under a location
choice model based on the solution of the static substitution case. Honhon et al. (2007) consider a gen-
eral customer choice model with a stochastic demand but the sequence of customer preferences satisfies
the following property: if a certain preference list occurs with probability p, then for every sequence of
1/p customers there will be one customer with this preference list. Therefore, the customer choices are
not completely random in their model. The authors provide a novel characterization of the local maxima,
and propose a dynamic programming based algorithm to solve the problem. However, the running time
of this algorithm is exponential in the number of product types, implying that it is practical only in cases
where the number of product types is small. Nagarajan and Rajagopalan (2008) consider a dynamic substi-
tution model where the individual demands for different products are negatively correlated, and show that
a partially-decoupled policy is optimal under fairly general conditions. Chen and Bassok (2008) study the
problem under a general customer choice model where all product types have identical prices and costs.
Assuming static allocation (i.e., one see all customers first and decides how to allocate the inventories), they
show that if the number of customers is fixed, then with high probability all the demand can be satisfied by
stocking a total of N units of the products even when the customer preferences are random. However, the
authors assume that the allocation of products to customers is simultaneous instead of sequential. That is,
the products can be allocated by the retailer after all customers have arrived and their preferences become
known to the retailer, as long as the product appears in the preference list of the customer. Using Normal
approximations, the authors also argue that, for a sufficiently large number of customers, the static alloca-
tion model is a good approximation for the sequential allocation model, in which customers arrive one after
the other and pick the most preferred product type among the available ones.

Outline. The rest of this paper is organized as follows. Section 2 provides a mathematical formulation of the
model. The hardness results are discussed in Section 3. In Section 4, we describe the PTAS and establish its
performance analysis. In Section 5, we discuss the extension to the more general model of quality categories.
In Section 6, we show that when the number of customers follows a non-IFR distribution, structural results
similar to those in Section 4 need not hold. We conclude by presenting extensive computational experiments
in Section 7, where the performance of our approach is tested when applied to more general settings.

2. Model Formulation
Consider n product types with per-unit selling prices p1 ≤ · · · ≤ pn, respectively, and a capacity bound C on
the total number of units (across all product types) that can be stocked. A random number of customers, say
M , arrive one after the other, where M is random variable with a known distribution. Each customer j =
1, . . . ,M has a random preference list Lj , which specifies a subcollection of products in decreasing order of
preference. This list comes from a known distribution and is independent and identically distributed among
customers and also independent of the number of customers M . Upon arrival, each customer purchases
the first available product in her list, assuming that at least one unit of such products exists at that time;
otherwise, the customer leaves without purchasing at all. For an inventory vector (y1, . . . , yn), where yi
specifies the number of units stocked from product type i, let Rm(y1, . . . , yn) denote the revenue attained
if m customers arrive. Observe that this revenue is still random, due to stochasticity in the preference lists
of customers. The objective is to determine the inventory level of each product type, subject to the capacity
constraint on the total number of units being stocked, so that the expected revenue is maximized, i.e.,

max
(y1,...,yn)∈Zn

+

{
E[RM(y1, . . . , yn)] :

n∑
i=1

yi ≤C

}
.
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Note that the expectation is taken with respect to the number of customersM and their stochastic preference
lists. We will use (y∗1 , . . . , y

∗
n) to denote the optimal solution and OPT to denote the optimal expected

revenue.

3. Hardness Results
In this section, we show that the capacitated assortment problem with general preferences is NP-hard even
when there is only one customer (i.e., M = 1, deterministically) and all possible preferences include only
two product types. Our hardness proof makes use of a reduction from the vertex cover problem.

THEOREM 1. The capacitated assortment planning problem is NP-hard even when there is only one cus-
tomer and all possible preferences include only two product types.

Proof. In the vertex cover problem, we are given an undirected graphG= (V,E) and an integer param-
eter k. The objective is to decide whether there exists a subset of vertices V ′ ⊂ V of cardinality at most
k, such that each edge e ∈E is incident on some vertex in V ′. This problem is known to be NP-hard (see,
for instance, problem [GT1] in Garey and Johnson (1979)). Consider a vertex cover instance I , with V =
{v1, . . . , vn}. We construct an instance I ′ of the assortment problem as follows. Let the number of product
types be n= |V |, one corresponding to each vertex; all products have identical prices, p1 = · · ·= pn = 1.
In addition, let the set of preference lists be {(i, j) : (vi, vj)∈E}, where a preference list (i, j) implies that
the first choice product is i and the second choice is j. Finally, there is a single customer, the capacity on
the total number of units to be stocked is k, and each preference list occurs with probability 1/|E|.

We show that the optimal expected revenue of the assortment problem instance I ′ is exactly 1 if and only
if there is a vertex cover of size at most k in instance I . Suppose there is a vertex cover V ′ ⊂ V such that
|V ′| ≤ k. Consider the inventory vector ȳ = (y1, . . . , yn), where yi = 1 if vi ∈ V ′ and yi = 0 otherwise. In
other words, we stock a single unit of product i if and only if vi is part of the vertex cover V ′. Clearly, the
total number of units stocked is at most k. Now,

E[R1(ȳ)] =
1

|E|
∑

(vi,vj)∈E

max{yi, yj} .

Since V ′ is a vertex cover, for each edge (vi, vj) ∈ E, at least one of vi or vj is in V ′. Therefore,
max(yi, yj) = 1 for all (vi, vj)∈E, and E[R1(ȳ)] = 1.

Conversely, consider an inventory vector ȳ = (y1, . . . , yn) that contains at most k units and has expected
revenue 1. We proceed by arguing that V ′ = {vi : yi ≥ 1} is a vertex cover, noting in advance that this set
clearly consists of at most k vertices. For this purpose, note that the expected revenue of ȳ can be written as

E[R1(ȳ)] =
1

|E|
∑

(vi,vj)∈E

min{max(yi, yj),1}.

Since E[R1(ȳ)] = 1, it follows that max(yi, yj)≥ 1 for all edges (vi, vj) ∈E, implying that at least one of
the vertices vi and vj belongs to V ′, making the set V ′ a vertex cover. �

We further extend the reduction in Theorem 1, and show that it is NP-hard to approximate the assortment
planning problem within a factor larger than 1− 1/e, even when there is only one customer. In this case,
however, customer preferences are not restricted to two products. Our proof is based on an approximation-
preserving reduction from the maximum coverage problem. The latter is NP-hard to approximate within a
factor better than 1− 1/e (Feige (1998)).

THEOREM 2. It is NP-hard to approximate the capacitated assortment problem within a factor better than
1− 1/e, even when there is only one customer.
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Proof. In the maximum coverage problem, we are given a ground set of elements U , a set family F ⊆
2U , and an integer k. The goal is to pick a subset T ⊆ U of at most k elements such that cov(T ) = |{S ∈
F : S ∩T 6= ∅}| is maximized.

Consider an instance I of the maximum coverage problem. We construct an instance I ′ of the capacitated
assortment problem as follows. Let the number of product types be n = |U |, one corresponding to each
element in U ; all products have a uniform price of p1 = · · ·= pn = 1. In addition, construct |F| preference
lists, one corresponding to each set Sj ∈F , and let Pj denote the preference list corresponding to Sj . More
specifically, suppose Sj = {ej1 , . . . , ejt}, where the element order is arbitrary. Then, the preference Pj is
given by Pj = (j1, . . . , jt), where (j1, . . . , jt) denote the order of preference for products corresponding
to elements in set Sj , with j1 being the most preferred product and jt being the least preferred. Finally,
each preference list occurs with probability 1/|F|, there is a single customer, and the capacity on the total
number of products is k.

Consider any subset T ⊆ U , |T | = k, obtaining the maximum number of covered sets in the instance
I , and let ȳ = (y1, . . . , yn) be the inventory vector defined by yi = 1 if ei ∈ T and yi = 0 otherwise. In
other words, we stock a single unit of product type i if and only if ei belongs to T . Clearly, the number
of units stocked is

∑n

i=1 yi = |T |= k. We now argue that ȳ generates an expected revenue of cov(T )/|F|.
To this end, for any subset S ⊂U , let χT (S) indicate whether S and T have a non-empty intersection, i.e.,
χT (S) = 1 if S ∩T 6= ∅ and χT (S) = 0 otherwise. Then,

E[R1(ȳ)] =
∑
Sj∈F

Pr[L1 =Pj] ·E[R1(ȳ)|L1 =Pj] =
∑
Sj∈F

1

|F|
·χT (Sj) =

cov(T )

|F|
.

Therefore, to complete the proof it is sufficient to show that, given an inventory vector ȳ = (y1, . . . , yn)
that contains at most k non-zero entries, we can construct a set T ⊆ U , |T | ≤ k, such that cov(T ) = |F| ·
E[R1(y)]. For this purpose, let T = {ei : yi ≥ 1}. Then, clearly |T | ≤ k, and

cov(T ) =
∑
Sj∈F

χT (Sj) = |F| ·E[R1(y)] .

�

4. Polynomial Time Approximation Scheme
In Section 3, we show that the general model described in Section 2 is hard to approximate beyond a
certain degree of accuracy. In what follows, we consider a special case of the model obtained by imposing
additional assumptions and give a polynomial time approximation scheme (PTAS) for computing near-
optimal solutions with arbitrary level of accuracy. For any fixed 0 < ε < 0.5, our algorithm computes an
inventory vector that obtains a fraction of at least (1−ε) of the optimal expected revenue, in time polynomial
in the input size. We proceed by listing the additional assumptions.

Assumption 1: Nested preference lists. We assume that the common distribution from which customers
pick their preference lists consists of only lists of the form L= (1, . . . , `) for some `≤ n. Therefore, there
are n+ 1 possible preferences lists, (), (1), (1,2), . . . , (1,2, . . . , n), but their respective probabilities can be
arbitrary (here, () denotes the empty preference list for customers who prefer the no-purchase alternative to
any product type). We refer to such preference lists as nested lists. Recall that the products are indexed such
that p1 ≤ · · · ≤ pn. (Note that, with the nested lists assumption in place, the latter assumption is without
loss of generality: if for some i1 < i2 we have pi1 > pi2 , there is no motivation to stock i2 at all, and this
product type can therefore be eliminated). Let αi denote the probability that the preference list picked from
this distribution contains the product i, i.e.,

αi =
n∑
`=i

Pr[L= (1, . . . , `)] .
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It is easy to verify that α1 ≥ · · · ≥ αn. In Section 5, we show that our results extend to a more general
setting, in which customer preferences are affected by both quality and price. In particular, the product types
are partitioned into quality categories. Customer preferences are characterized by a given quality category,
whereas within a given category, the preference lists are nested.

Assumption 2: IFR. We assume that the distribution of the number of customers, M , has an increasing
failure rate (IFR). An integer-valued random variable X is said to be IFR if Pr[X = k]/Pr[X ≥ k] is
non-decreasing over the integer domain. It can be proven (see, for instance, Chapter 1 of Shaked and
Shanthikumar (1994)) that this definition is equivalent to requiring that the sequence of random variables
[X − k|X ≥ k]k∈Z is stochastically non-increasing in k. For definitions of stochastic order and stochastic
monotonicity, see Shaked and Shanthikumar (1994) and Definition 2 in Section 4.5.

Assumption 3: Revenue evaluation. Given an inventory vector (y1, . . . , yn), there is a polynomial-time
procedure for computing E[RM(y1, . . . , yn)], possibly up to a multiplicative error of (1− ε).

In Appendix A.2, we show that when the distribution of the number of customers M has finite support,
say on {0, . . . , T}, then the expected revenue of any given vector (y1, . . . , yn) can be computed (exactly)
by means of dynamic programming in time polynomial in n and T . We also explain, in the general case,
how to efficiently make the support of M finite, at the cost of ε-approximating E[RM(y1, . . . , yn)] instead
of exactly computing this quantity.

4.1. An Overview of the Analysis
For ease of exposition, we first provide a high-level overview of the PTAS and its worst-case analysis. We
show that, for any accuracy level 0 < ε ≤ 0.5, there exists a solution that stocks only a subset of product
types of sizeO(log(1/ε)), obtaining at least (1−ε) fraction of the optimal revenue. Note that the size of this
product set depends on the accuracy level ε, but not on any other parameter of the problem. In particular,
we establish the following theorem.

THEOREM 3. For any accuracy level 0< ε≤ 0.5, there is an inventory vector (y1, . . . , yn) that satisfies the
following properties:

1. The total capacity is at most C, that is,
∑n

i=1 yi ≤C.
2. The number of non-zero coordinates in (y1, . . . , yn) is only O(log(1/ε)).
3. E[RM(y1, . . . , yn)]≥ (1− ε)OPT.

Furthermore, our proof gives a constructive method to efficiently identify the corresponding subset of
O(log(1/ε)) product types. As a result, one can naively enumerate all possible solutions consisting of these
product types, and take the best among those solutions (as mentioned in Assumption 3, the expected revenue
of any given solution can be evaluated efficiently). The overall number of such solutions is O(CO(log(1/ε)))
since there are a total of C+1 possible choices for the number of units to stock for each of the O(log(1/ε))
product types. However, this is only pseudo polynomial in the size of the input. As explained in Section 4.6,
by employing suitable discretization, this can be improved to enumerating onlyO((logC)O(log(1/ε))), which
is indeed polynomial in the input size.

To obtain a high-revenue subset of product types of size O(log(1/ε)), as described in Theorem 3, we
partition the product types into frequent and rare product types. For any product type i, let Xi denote the
random number of customers whose preference list contains product type i.

DEFINITION 1. A product type i is called frequent if the expected number of units sold when C units of
product type i are stocked is at least ε2C, i.e.,

E[min(Xi,C)]≥ ε2C.

Otherwise, the product type i is referred to as rare.
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Main idea 1:O(log(1/ε)) frequent product types are sufficient. Since αi ≥ αi′ whenever i < i′, it follows
that the frequent product types must be 1, . . . ,F , for some 0≤ F ≤ n, whereas the rare products are F +
1, . . . , n. In Lemma 1 we show that, by applying appropriate truncation and discretization, it is possible to
efficiently identify a small subset of frequent product types of size O(log(1/ε)) that obtains a fraction of
at least (1 − ε)3 of the expected revenue obtained by frequent product types in the optimal solution. (In
fact, this would be true for any solution.) The proof of Lemma 1 relies only on the fact that preferences are
nested (see Assumption 1).

Main idea 2: One rare product type is sufficient. The analysis is completed by showing that a single rare
product type can be used to attain at least (1− ε) of the expected revenue obtained by rare product types
in the optimal solution. This part of the analysis relies on several central ideas. The first idea is to establish
an upper bound on the total achievable expected revenue. This upper bound is derived by considering an
uncapacitated variant of the problem where there is no capacity constraint and one is allowed to stock any
number of units. The uncapacitated variant is clearly a relaxation of the original model, and provides an
upper bound on the optimal revenue. In Theorem 4 we show that, in the uncapacitated variant, it is optimal
to stock only one product type. Specifically, it is optimal to stock M units (the number of customers is
known in advance) of the maximal product type, which is the product type i that maximizes the expected
marginal revenue αipi from a single customer. The uncapacitated variant is discussed in Section 4.2 below.

Observe that if one stocks C units of a given rare product type, the expected number of units sold is
much smaller than the capacity, specifically, less than ε2C. Intuitively, this observation implies that if one
only considers rare product types, the resulting problem is ‘almost’ uncapacitated, and hence stocking only
the maximal product type among rare product types should be near optimal. However, it turns out that
this intuition is incorrect in general, unless the distribution of the number of customers M satisfies certain
properties. In particular, we prove in Lemmas 2, 3 and 4 that this intuition is indeed valid when the dis-
tribution of M is IFR (see Assumption 2 above). This implies that there exists a solution that stocks only
O(log(1/ε)) product types and obtains a fraction of at least (1− ε)4 of the optimal revenue. On the other
hand, in Section 6, we demonstrate that the latter property does not hold for general distributions of M .

The extension of the PTAS to the more general model, with preference lists that capture both price and
quality, is discussed in Section 5. In this case, the central idea is to employ the PTAS for nested preference
lists as an auxiliary subroutine within a dynamic programming approach.

4.2. The Uncapacitated Deterministic-M Problem
In this section, we consider the uncapacitated variant, in which the number of customers is known in advance
(i.e., M is deterministic) and there is no constraint on the number of units to be stocked. We show that,
for this variant, it is optimal to stock only the product type that maximizes the marginal expected revenue,
which is the expected revenue from a single customer if only one unit of the product type is stocked and
only one customer arrives. The marginal expected revenue of each product type is exactly the probability
that a customer is willing to purchase that product type times the respective per-unit price, i.e., αipi. We call
this product type the maximal product type and denote it by i∗. That is, i∗ = arg maxiαipi. We establish
the proof for each fixed m∈Z+.

THEOREM 4. For any number of customers, m∈Z+, it is optimal to stock m units of the maximal product
type i∗. The resulting optimal expected revenue is mαi∗pi∗ .

Proof. First observe that since the preference lists are nested, there is no benefit in stocking more than
m units. Consider now any solution y = (y1, . . . , yn). For each customer j = 1, . . . ,m, let Vj = Vj(y) be
the revenue generated by that customer, and let Ij = Ij(y) be the cheapest product type available upon
the arrival of customer j; note that the distributions Vj and Ij are solution dependent. Since there are m
customers and at least m units there will always be some product type available upon the customer arrival.
Observe that E[Vj] = E[E[Vj|Ij]] = E[αIjpIj ] ≤ αi∗pi∗ . It follows that the total revenue of any solution
is upper bounded by mαi∗pi∗ . However, the solution that stocks m units of product type i∗ has expected
revenue mαi∗pi∗ , so it must be optimal. �
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Since the number of customers is known in advance, stocking M units of the maximal product type
i∗ is optimal for the uncapacitated variant and the optimal expected revenue is E[M ]αi∗pi∗ . Since the
uncapacitated variant is a relaxation of the capacitated problem, we conclude that the optimal expected
revenue of the original capacitated model is upper bounded by E[M ]αi∗pi∗ . Moreover, the following is an
immediate interesting corollary.

COROLLARY 1. Consider the capacitated model described in Section 2, with Assumption 1. Suppose that
the capacity C is larger or equal to the maximal possible value that the number of customers M can attain.
Then, it is optimal to stock C units of the maximal product type i∗.

4.3. Frequent Product Types
Recall that, a product type i is called frequent, if the expected number of units sold, assuming only C units
of this product type are stocked, is at least ε2C. That is, E[min{Xi,C}]≥ ε2C, whereXi ∼B(M,αi) is the
number of customers willing to buy product type i. Note that, conditioning on [M =m], the random variable
Xi follows a Binomial distribution with parameters (m,αi). Due to the nested preferences assumption,
frequent product types can be numbered as 1, . . . ,F , and rare product types by F + 1, . . . , n, for some
0≤ F ≤ n. In the remainder of this section, we consider an optimal inventory vector,

(y∗1 , . . . . . . , y
∗
F︸ ︷︷ ︸

frequent

, y∗F+1, . . . . . . , y
∗
n︸ ︷︷ ︸

rare

).

The next lemma shows that there exists a subset of frequent product types of size O(log(1/ε)), which
obtains a fraction of at least (1− 3ε)3 of the expected revenue obtained by frequent product types in the
optimal solution. Furthermore, if the optimal solution stocks more than one unit of rare product types, one
can ensure that a capacity of at least εC is allocated to rare product types (i.e., the total number of units
of frequent product types does not exceed (1− ε)C). Intuitively, we wish to make sure that the number of
units of rare product types that are being sold in expectation (at most ε2C) is small relative to the capacity
allocated to them (at least εC). This property will enable us to use the uncapacitated bound derived in
Section 4.2.

LEMMA 1. Let (y∗1 , . . . , y
∗
n) be an optimal inventory solution. For any 0< ε < 0.5, there exists a feasible

inventory vector (y1, . . . , yF ) of frequent product types with only O(log(1/ε)) non-zero coordinates, such
that:

1. E[RM(y1, . . . , yF , y
∗
F+1, . . . , y

∗
n)]≥ (1− 3ε)3 ·E[RM(y∗1 , . . . , y

∗
n)] = (1− 3ε)3 ·OPT.

2. If
∑n

i=F+1 y
∗
i ≥ 2 then

∑F

i=1 yi ≤ (1− ε)C.

Proof. We present a constructive proof that shows how to efficiently identify the corresponding subset
of frequent product types.

Phase 1: Eliminating cheap products. Consider the frequent product types 1, . . . ,F , and recall that pF
is the price of the most expensive frequent product type. We begin by arguing that it is possible to discard
cheap product types from (y∗1 , . . . , y

∗
F ), without losing too much revenue in expectation. A product type i is

called cheap if pi ≤ ε3pF .
We argue that if we do not purchase any cheap product type, the expected revenue reduces by at most

εOPT. To understand this claim, note that the total expected revenue from cheap product types is upper
bounded by ε3pFC, since at most C units of such product types could be sold, at a price of at most ε3pF
each. On the other hand, we argue that OPT ≥ ε2CpF . Consider the solution where we stock C units of
product type F . The expected revenue of this solution is given by,

E[min{XF ,C}] · pF ≥ ε2CpF ,

where the inequality follows since product type F is frequent. Therefore, OPT≥ ε2CpF and by not pur-
chasing cheap product types, one may lose up to ε3pFC ≤ εOPT.
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Phase 2: Picking O(log(1/ε)) frequent product types. Phase 1 ensures that all remaining frequent prod-
ucts have per-unit price in [ε3pF , pF ]. We proceed by geometrically partitioning this interval by powers of
1+ε to obtainO(log(1/ε)) subintervals: [ε3pF , (1+ε)ε3pF ), [(1+ε)ε3pF , (1+ε)2ε3pF ), so forth and so on.
We modify the optimal solution by considering each of these intervals, and the respective product types with
prices within the interval, and reallocating every unit purchased to the cheapest product type that falls within
that interval. For instance, if there are 10 product types, say t, . . . , t+ 9, in the interval [ε3pF , (1 + ε)ε3pF ),
with respecting inventory levels y∗t , . . . , y

∗
t+9, then we will stock y∗t + · · ·+ y∗t+9 units of type t (which is

the cheapest one), and no units whatsoever of types t+ 1, . . . , t+ 9. Due to the nested preference lists, it
follows that each unit in the modified solution is now consumed with probability at least as high as before.
Moreover, if and when it is indeed consumed, the resulting revenue is at least 1/(1 + ε)≥ (1− ε) times its
revenue prior to this transformation, since the endpoints of each price interval differ by a factor of 1+ε. The
solution after this modification has only O(log(1/ε)) frequent product types and obtains at least (1− ε)2
fraction of the optimal revenue.

Phase 3: Transferring some capacity to rare product types. Suppose now that after Phase 2, the capacity
allocated to frequent product types is larger than (1−ε)C and

∑n

i=F+1 y
∗
i ≥ 2. Consider the current solution

ȳ = (y1, . . . , yn) obtained from the optimal solution after the modifications in Phase 1 and 2. For each unit
stocked in ȳ, compute the expected contribution to the overall revenue, that is, the probability of this unit
to be consumed times its per-unit price. We then discard

∑F

i=1 yi − b(1− ε)Cc units, choosing the ones
with the smallest contribution. Since the expected revenue from the remaining units can only increase after
removing these units, it follows that we lose a fraction of the expected revenue that is upper bounded by∑F

i=1 yi−d(1− ε)Ce+ 1∑F

i=1 yi
≤ εC + 1

(1− ε)C
≤ εC + εC/2

(1− ε)C
=

3ε

2(1− ε)
≤ 3ε.

The first inequality follows from d(1 − ε)Ce ≤
∑F

i=1 yi ≤ C, the second inequality holds since εC ≥∑N

1=F+1 yi ≥ 2, and the last inequality since ε < 0.5. This concludes the proof of the lemma. �

4.4. Rare Product Types
Lemma 1 implies that there exists an inventory vector (y1, . . . , yF , y

∗
F+1, . . . , y

∗
n) achieving a (1 − 3ε)3

fraction of the optimal revenue, and that its non-zero components among y1, . . . , yF are contained in an
O(log(1/ε))-sized subset of 1, . . . ,F . The next issue is how to complete each such combination of frequent
product types by augmenting it with rare product types. Clearly, if one considers a combination such that∑F

i=1 yi = C − 1, it is straightforward to compute the single rare product type that should be stocked to
maximize the overall expected revenue simply by enumerating all possibilities. When

∑F

i=1 yi <C − 1, by
Lemma 1 we can assume that

∑F

i=1 yi ≤ (1− ε)C. In other words, there is a capacity of at least εC to stock
units of rare product types. In the next section, we show that in fact one can use the entire residual capacity
to stock only one rare product type, and obtain a (1 − ε) fraction of the optimal expected revenue. This
result is stated in the following lemma.

LEMMA 2. Consider any inventory vector (y1, . . . , yF , y
∗
F+1, . . . , y

∗
n) satisfying

∑F

i=1 yi ≤ (1− ε)C. Let i∗

be the product type that maximizes αipi among all rare product types, i.e., i∗ = arg maxi≥F+1αipi. Then,

E

RM
(
y1, . . . , yF ,0, . . . ,0,C −

F∑
i=1

yi,0, . . . ,0︸ ︷︷ ︸
only i∗

)≥ (1− ε) ·E
[
RM(y1, . . . , yF , y

∗
F+1, . . . , y

∗
n)
]
.

In fact, we will show that a fraction of at least (1− ε) of the total expected revenue from the rare product
types, in any solution in which frequent product types are allocated a total capacity of at most (1− ε)C, can
be obtained by stocking only product type i∗. We start by introducing some notation:
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• Let RI and RII be the random revenues obtained from rare product types in the inventory vectors
(y1, . . . , yF , y

∗
F+1, . . . , y

∗
n) and (y1, . . . , yF ,0, . . . ,0,C −

∑F

i=1 yi,0, . . . ,0), respectively.
• Let Zi∗ be the random number of customers with a preference list containing product type i∗, arriving

after all units of frequent product types have been consumed; let Zi∗ = 0 if the frequent product types were
not fully consumed.
• Let A denote the event “all units of frequent product are consumed”.

Clearly, E[RI] = Pr[A] ·E[RI|A] and E[RII] = Pr[A] ·E[RII|A]. Therefore, to prove Lemma 2, it is suffi-
cient to prove that E[RII|A]≥ (1− ε)E[RI|A]. The proof relies on two properties of the random variable
Zi∗ . Specifically, we show that two properties of the random variable M , the total number of customers, are
preserved in [Zi∗ |A]. In Lemma 3 it is shown that even conditioning on the event that all units of frequent
product types are consumed (i.e., the eventA), then product type i∗ can still be considered as a rare product
type. In Lemma 4, it is proven that, like M , the distribution of [Zi∗ |A] is also IFR. We proceed by stating
Lemmas 3 and 4; the corresponding proofs are deferred, and we first show that these lemmas can be used
to establish Lemma 2.

LEMMA 3. E[min{Zi∗ ,C −
∑F

i=1 yi}|A]≤ ε2C.

LEMMA 4. The distribution of [Zi∗ |A] is IFR. In particular, E[Zi∗ − k|Zi∗ ≥ k,A]≤ E[Zi∗ |A] for every
integer k≥ 0.

Proof of Lemma 2. We show that Lemmas 3 and 4 imply that E[RII|A]≥ (1− ε)E[RI|A], from which
the proof of Lemma 2 follows immediately. Note that

E[Zi∗ |A] = E

min

{
Zi∗ ,C −

F∑
i=1

yi

}
+

[
Zi∗ −

(
C −

F∑
i=1

yi

)]+∣∣∣∣∣∣A
 (1)

= E

[
min

{
Zi∗ ,C −

F∑
i=1

yi

}∣∣∣∣∣A
]

+ Pr

[
Zi∗ ≥C −

F∑
i=1

yi

∣∣∣∣∣A
]
·E

[
Zi∗ −

(
C −

F∑
i=1

yi

)∣∣∣∣∣Zi∗ ≥C −
F∑
i=1

yi,A

]

≤ E

[
min

{
Zi∗ ,C −

F∑
i=1

yi

}∣∣∣∣∣A
]

+ ε ·E[Zi∗ |A]

The first inequality holds since by Lemma 4 we have E[Zi∗ − (C −
∑F

i=1 yi)|Zi∗ ≥ C −
∑F

i=1 yi,A] ≤
E[Zi∗ |A] and by Lemma 3, we have Pr[Zi∗ ≥C −

∑F

i=1 yi|A]≤ ε, since

ε2C ≥ E

[
min

{
Zi∗ ,C −

F∑
i=1

yi

}∣∣∣∣∣A
]

≥ Pr

[
Zi∗ ≥C −

F∑
i=1

yi

∣∣∣∣∣A
]
·

(
C −

F∑
i=1

yi

)

≥ εC ·Pr

[
Zi∗ ≥C −

F∑
i=1

yi

∣∣∣∣∣A
]
.

The last inequality follows from the assumption
∑F

i=1 yi ≤ (1 − ε)C. By rearranging Inequality (1), it
follows that E[min{Zi∗ ,C −

∑F

i=1 yi}|A]≥ (1− ε) ·E[Zi∗ |A]. We conclude the proof by noting that

E[RII|A] = E

[
min

{
Zi∗ ,C −

F∑
i=1

yi

}∣∣∣∣∣A
]
· pi∗ ≥ (1− ε) ·E[Zi∗ |A] · pi∗ ≥ (1− ε) ·E[RI|A],
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where the last inequality follows from the upper bound derived by the uncapacitated variant discussed in
Section 4.2. �

4.5. Proofs of Lemmas 3 and 4

In what follows, we will use the following definition and theorems.

DEFINITION 2. For two real-valued random variables X and Y with cumulative distribution functions FX
and FY , respectively, X is stochastically larger than Y (written as X ≥st Y ) if FX(x)≤ FY (x) for every
x∈R.

THEOREM 5 (Theorem 1.2.8 in Müller and Stoyan (2002)). For two real-valued random variables X
and Y , X ≥st Y if and only if E[ψ(X)] ≥ E[ψ(Y )], for every nondecreasing function ψ. In particular,
E[X]≥E[Y ].

THEOREM 6 (Theorem 1.2.1.5 in Müller and Stoyan (2002)). Let X , Y and Θ be real-valued random
variables. If [X|Θ = θ]≥st [Y |Θ = θ] for every value θ in the support of Θ, then X ≥st Y .

Proof of Lemma 3. By Theorem 5, to prove E[min{Zi∗ ,C−
∑F

i=1 yi}|A]≤ ε2C, it is sufficient to show
that [Zi∗ |A]≤stXi∗ , since the latter claim will imply

E

[
min

{
Zi∗ ,C −

F∑
i=1

yi

}∣∣∣∣∣A
]
≤E

[
min

{
Xi∗ ,C −

F∑
i=1

yi

}]
≤E[min{Xi∗ ,C}]≤ ε2C.

The last inequality follows since product type i∗ is rare.
Now let L be the random index of the customer that consumed the last unit of frequent product types,

when the inventory levels of the frequent product types are (y1, . . . , yF ); if no such customer exists, we
define L = M + 1. It is straightforward to check that [M ≥ L] = A. Thus, Xi∗ ∼ B(M,αi∗), whereas
[Zi∗ |A] ∼ B([M − L|M ≥ L], αi∗). Consequently, to prove [Zi∗ |A] ≤st Xi∗ it remains to show [M −
L|M ≥L]≤stM . However, for every x≥ 0, we have

Pr [M −L≤ x|M ≥L] =
∞∑

`=
∑F

i=1 yi

Pr [L= `|M ≥L] ·Pr [M −L≤ x|M ≥L,L= `]

=
∞∑

`=
∑F

i=1 yi

Pr [L= `|M ≥L] ·Pr [M − `≤ x|M ≥ `]

≥
∞∑

`=
∑F

i=1 yi

Pr [L= `|M ≥L] ·Pr [M ≤ x]

= Pr [M ≤ x] .

The second equation holds since

Pr [M −L≤ x|M >,L= `] = Pr [M − `≤ x|M ≥ `,L= `] = Pr [M − `≤ x|M ≥ `] .

To better understand the latter equation, note that the event [L= `] is measurable with respect to the choices
of the first ` arrivals (i.e., after the first ` arrivals, we know whether it occurred or not). On the other hand,
the number of arrivals after the `-th arrival, given that there were at least ` arrivals, is independent on the
choices of the first ` arrivals. The first inequality above holds since [M −`|M ≥ `]≤stM , by Assumption 2
that M is IFR. �
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Proof of Lemma 4. We will prove that [Zi∗ |A] is IFR, and in particular, [Zi∗ − k|Zi∗ ≥ k,A] ≤st
[Zi∗ |A], for every k ≥ 0. This implies that, for each integer k ≥ 0, we have E[Zi∗ − k|Zi∗ ≥ k,A] ≤
E[Zi∗ |A] (See Theorem 5). To this end, let Lk be the random index of the k-th customer with a preference
list containing product type i∗, arriving after all the units of frequent product types have been consumed
(i.e., a customer that is willing to buy product type i∗); if no such customer exists, we define Lk =M + 1.
It is not difficult to verify that [Zi∗ − k|Zi∗ ≥ k,A] ∼ B[M − Lk|Zi∗ ≥ k,A], αi∗) ∼ B([M − Lk|M ≥
Lk], αi∗). In addition, using the notation introduced in proof of Lemma 3, we have already observed that
[Zi∗ |A]∼B([M −L|A], αi∗). Consequently, to prove [Zi∗ − k|Zi∗ ≥ k,A]≤st [Zi∗ |A], it suffices to show
[M −Lk|M ≥Lk]≤st [M −L|A] = [M −L|M ≥L].

In the remainder of the proof, we will use Theorem 6 to prove that [M−Lk|M ≥Lk]≤st [M−L|M ≥L]
taking Θ =L. Thus, it suffices to show that, for every ` in the support of L, we have

[M −Lk|M ≥Lk,L= `]≤st [M − `|M ≥ `,L= `] = [M − `|M ≥ `] ,

where the equality above follows by the same arguments used in the proof of Lemma 3 above. Now for
every integer m, we have

Pr [M −Lk ≤m|M ≥Lk,L= `]

=
∞∑
`k=`

Pr [Lk = `k|M ≥Lk,L= `] ·Pr [M − `k ≤m|M ≥Lk,L= `,Lk = `k]

=
∞∑
`k=`

Pr [Lk = `k|M ≥Lk,L= `] ·Pr [M − `k ≤m|M ≥ `k]

≥
∞∑
`k=`

Pr [Lk = `k|M ≥Lk,L= `] ·Pr [M − `≤m|M ≥ `]

= Pr [M − `≤m|M ≥ `] .

The first equality holds since the event [L = `,Lk = `k] is measurable with respect to the choices of the
first `k customers, and thus condition on the event [M ≥ `k], is independent of M − `k. The first inequality
follows from M being IFR. The same arguments can be used to show [M −Lk|M ≥Lk]≥ [M −L′k|M ≥
L′k], for each k < k′. This implies that [Zix|A] is indeed IFR. �

4.6. Algorithm Running Time
We have provided a constructive proof of Theorem 3. In particular, one can enumerate O(CO(log(1/ε))) solu-
tions to obtain (1−3ε)4 fraction of the optimal expected revenue. However, this is only pseudo-polynomial
is the size of the input. In fact, one can improve the running time to O((logC)O(log(1/ε))), which is poly-
nomial in the input size. For this purpose, let S = {i1, . . . , iK} be the subset of O(log(1/ε)) product types
identified by our algorithm, and let n∗k ∈ {0, . . . ,C} be the number of units of product type ik in the best
solution that stocks only i1, . . . , iK . For every 1≤ k ≤K, we consider the following O(logC) choices for
the number of units to stock from product type ik:

{0}∪
{
b(1 + ε)`c : 0≤ `≤ blog(1+ε)Cc

}
.

Clearly, when n∗k > 0, this value is located between two consecutive exponents of 1 + ε, say (1 + ε)`k ≤
n∗k < (1 + ε)`k+1. If we stock b(1 + ε)`kc units of product type ik instead of n∗k, we obtain a fraction of at
least 1/(1 + ε)≥ 1− ε from the total expected revenue of each product type. It follows that with running
time polynomial is the size of the input, one can obtain at least (1− 3ε)5 of the optimal expected revenue.

Note that in Theorem 3, we claim that for any 0 ≤ ε ≤ 0.5, there is a sparse assortment with only
O(log(1/ε)) product types that obtains at least (1− ε) fraction of the optimal expected revenue. However,
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we show instead that the revenue of the approximate sparse assortment computed by our PTAS is at least
(1− 3ε)5 of the optimal expected revenue. To reconcile this and obtain a solution that guarantees at least
(1− ε) of the optimal expected revenue, we can run the algorithm with accuracy level

ε̂=
1

3

(
1− (1− ε)1/5

)
≈ ε

15
.

5. Extension to Quality Categories
In this section, we extend the PTAS presented above to a model in which customers differentiate between
product types not only based on price but also based on quality. This model is richer and captures additional
important practical settings. The details of the models are as follows.

Model description. As before, we assume that product types are numbered such that the per-unit selling
price is monotone non-decreasing, that is, p1 ≤ · · · ≤ pn. In addition, product types are partitioned into qual-
ity categories. Specifically, let 1 = i1 < i2 < · · ·< ik < ik+1 = n+ 1, define k quality categories [il, il+1),
l= 1, . . . , k, where the quality increases in l (i.e., in the price range). For each category [il, il+1), the product
types il, il + 1, . . . , il+1− 1 are of similar quality, and are differentiated only by price. Each preference list
of an arriving customer consists of some quality category, say [il, il+1), and a price threshold p < pil+1

.
Thus, such customer is willing to buy product types within [il, il+1), with preference to the cheapest avail-
able product type available within this category up to price threshold p. The assumption is that the price
ranges of different quality categories are well separated. We believe that this choice model captures practical
situations in retailing environments.

Extending the PTAS with known category capacities. Observe that the total demand for product types in
quality category [il, il+1) is not affected by the stocking levels of product types in other categories. Now
suppose that one has already decided to allocate capacities C1, . . . ,Ck to the product types in categories
1, . . . , k, respectively. Then, the optimal allocation of the capacity Cl to different product types within the
l-th quality category can be solved separately using the PTAS discussed in Section 4.

Focusing on a single category [il, il+1), let qj be the probability that the preference list of a customer
is il, il + 1, . . . , j, for j = il, . . . , il+1 − 1, and let Ql =

∑l

j=1 qj be the probability that the preference list
of the customer belongs to category l. Consider the model discussed in Section 2, under Assumptions 1
and 2, with capacity Cl and product types il, . . . , il+1 − 1. The preference list of an arriving customer is
il, il + 1, . . . , j with probability qj/Ql. Thus, we can use the PTAS described in the previous section to
obtain a near optimal inventory solution for this subproblem.

Determining near-optimal capacities. It follows that, when one knows the allocation of capacities to
the different quality categories in the optimal solution, it is possible to devise a PTAS. However, these
quantities are generally unknown. Instead, we will show that one can find near-optimal capacities by means
of dynamic programming. Let fk(t) be the optimal expected revenue if t ∈ {1, . . . ,C} units are stocked
in quality categories {k, k+ 1, . . . , l} and let µk(t′) be the optimal expected revenue from units in quality
category k if a total of t′ units are allocated to product types within the quality category [ik, ik+1). Note that
(1− ε)-approximations can be computed to µk(t) for all k ∈ {1,2, . . . , l}, t ∈ {1, . . . ,C} using the PTAS
described earlier. Now for any k < l,

fk(t) = max
0≤t′≤t

(µk(t
′) + fk+1(t− t′)) .

Using the above dynamic program, we can obtain a PTAS for f1(C).

THEOREM 7. There is a PTAS for the model described in Section 2, where the preference lists are based
on quality categories.

Note that the dynamic programming algorithm described above is only pseudo-polynomial due to its linear
dependency onC. However, we can improve the running time to polynomial in the input size by discretizing
the state space of the dynamic program. We sketch the details in Appendix A.3.
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6. General Stochastic Demand
In this section, we show that if the number of customers M follows a general distribution (not necessarily
IFR), then it is not possible in general to construct a near-optimal solution with only a constant number of
product types. In particular, we prove the following theorem.

THEOREM 8. There are instances of the capacitated assortment planning problem with nested preferences,
where stocking any single product achieves only O(1/n) of the optimal revenue where n is the number of
product types.

Theorem 8 immediately implies that any solution with only constant number of product types also obtains
only O(1/n) of the optimal expected revenue.

Consider the following instance with n product types and capacity C = n. Let M denote the random
number of customers, and let n,n2, . . . , nn be the possible values that M can take. In what follows, β =
β(n)∈ (0,1) is a parameter which value will be specified later. For 1≤ i≤ n, we set

Pr
[
M = ni

]
=
βi−1(1−β)

1−βn
, pi =

1

βi−1(1−β)
, αi =

1

ni
.

In the next two lemmas, we prove that the revenue from stocking n units of any product achieves at most
O(1/n) times the optimal revenue.

LEMMA 5. By stocking one unit of each product, the expected revenue obtained is Ω(n).

Proof. Given that M = ni, the probability that the unit of product i is consumed when the inventory
vector contains one unit of each product is greater or equal to the analogous probability when we stock i−2
units of product i− 2, one unit of product i− 1, and one unit of product i. The latter event contains, in
particular, the intersection of three (independent) events:

1. Product i − 2 appears in the preference list of at least i − 2 customers from within the first ni/4
customers. To lower bound the probability of this event, let X be the random number of customers
until product i− 2 appears in the preference list of exactly i− 2 customers, in an infinite sequence of
customers. Clearly, X ∼NB(i− 2, αi−2) and E[X] = (i− 2)/αi−2 ≤ ni−1. Then, the probability of
the desired event is at least Pr[X ≤ ni/4] ≥ Pr[X ≤ 2E[X]] ≥ 1/2, where in the first inequality we
assumed n≥ 4.

2. Product i− 1 appears in the preference list of at least one customer from within the next ni/4 cus-
tomers. This event occurs with probability 1− (1−αi−1)n

i/4.
3. Product i appears in the preference list of at least one customer from within the last ni/2 customers.

The probability of this event is 1− (1−αi)n
i/2.

As a result of the above discussion, letting Bi denote the event “product i is consumed”, we have

Pr
[
Bi|M = ni

]
≥ 1

2
·
(

1− (1−αi−1)n
i/4
)
·
(

1− (1−αi)n
i/2
)

≥ 1

2
·
(

1− e−αi−1n
i/4
)
·
(

1− e−αin
i/2
)

=
1

2
·
(
1− e−n/4

)
·
(
1− e−1/2

)
≥ 1

40
.

Therefore, the expected revenue from stocking one unit of each product is

E[RM(1, . . . ,1)] =
n∑
i=1

Pr
[
M = ni

]
·E
[
RM(1, . . . ,1)|M = ni

]
≥

n∑
i=1

Pr
[
M = ni

]
·Pr

[
Bi|M = ni

]
·E
[
RM(1, . . . ,1)|Bi,M = ni

]
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≥
n∑
i=1

Pr
[
M = ni

]
·Pr

[
Bi|M = ni

]
· pi

≥ 1

40

n∑
i=1

βi−1(1−β)

1−βn
· 1

βi−1(1−β)
≥ n

40
.

�

LEMMA 6. By stocking n units of any single product i, the expected revenue obtained is O(1).

Proof. Let ȳ be the inventory vector, indicating that n units of product i are stocked. Then

E[RM(ȳ)] =
i∑

j=1

Pr
[
M = nj

]
·E
[
RM(ȳ)|M = nj

]
+ Pr

[
M ≥ ni+1

]
·E
[
RM(ȳ)|M ≥ ni+1

]
.

We proceed by separately upper bounding each of the two terms above. Let us now fix β = 2/n and assume
that n is sufficiently large (n≥ 4 is enough).

First term. Here, we will make use of the inequality E[RM(y)|M = nj]≤ njαipi (assuming nj units can
be stocked), to obtain

i∑
j=1

Pr
[
M = nj

]
·E
[
RM(y)|M = nj

]
≤

i∑
j=1

Pr
[
M = nj

]
·njαipi

=
i∑

j=1

βj−1(1−β)

1−βn
·nj · 1

ni
· 1

βi−1(1−β)

=
1

1−βn
i∑

j=1

(
1

βn

)i−j

=
1

1− (2/n)n

i∑
j=1

(
1

2

)i−j
≤ 4 .

Second term. In this case, we use the inequality E[RM(y)|M ≥ ni+1]≤ npi, and get

Pr
[
M ≥ ni+1

]
·E
[
RM(y)|M ≥ ni+1

]
=

n∑
j=i+1

Pr
[
M = nj

]
·npi

= n
n∑

j=i+1

βj−1(1−β)

1−βn
· 1

βi−1(1−β)

≤ n

1−βn
∞∑
j=1

βj =
nβ

(1−βn)(1−β)

=
2

(1− (2/n)n)(1− 2/n)
≤ 8 .

�

7. Computational Experiments
In this section, we describe computational experiments that were designed to evaluate the performance of
our PTAS on instances where Assumption 1 (nested preference lists) is not satisfied. Even though the algo-
rithm and its analysis are presented in Section 4 under the assumption that the collection of preference lists
is nested, we can easily adapt the overall approach to more general settings. Furthermore, the computational
results below show that the performance of our algorithm is indeed good for fairly general choice models.
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7.1. General Choice Model

We consider the following choice model as defined by the random utility model. Let the utility Uij of
product type j for customer i be given as,

Uij =Uj + εij,

where εij is a random utility shock distributed according to a known distribution fj . Note that εij is i.i.d for
each customer i and Uj is the base utility of product type j, where U1 ≥ U2 ≥ · · · ≥ Un. As before, let pj
denote the per-unit price of product type j, with p1 ≤ p2 ≤ · · · ≤ pn. We also assume that the no-purchase
option (henceforty, product type 0) has a base utility U0 = 0 and each customer i has utility Ui0 for item 0,
given by Ui0 =U0 + εi0 = εi0, where εi0 is distributed according to the PDF f0. Recall that for any product
type j, αj denotes the probability that a customer is willing to buy product type j, i.e., product type j
appears in the preference list of the customer. For any product j, given the base utility Uj and the PDF fj for
the random shock, we can compute αj as follows. Product type j appears in the preference list for customer
i if and only if Uj + εij ≥ εi0. Therefore,

αj = Pr [Uj + εij ≥ εi0] ,

which can be computed when f0, . . . , fn are known. Note that this choice model is fairly general. For
instance, if fj is a log-weibull distribution for all j = 0,1, . . . , n, this model is equivalent to the widely used
multinomial logit (MNL) choice model. For our computational experiments, we assume that fj(x) = cj for
some constant cj for all j = 0,1, . . . , n, i.e., εij is distributed according to some uniform distribution (possi-
bly different for different product types). We make this assumption just for simplifying the computation of
αj , noting that the algorithm can be adapted for any distributions fj .

7.2. Parameter Settings

We next describe the parameters for our computational experiments. We use the following values for the
base utilities, Uj: U0 = 0 and Uj = 1/j for j = 1, . . . , n. For every customer i, the random utility shock εij
is distributed uniformly between 0 and Rj where

R0 =
3

2
; R1 = 0.499 ; Rj =

4

j2
, j ≥ 2.

Knowing the values of Uj and distributions of εij for all j = 0,1, . . . , n, we can compute the values of
αj, j = 1, . . . , n as follows:

αj =


1− (R0−Uj)2

2R0Rj
if (Uj +Rj)>R0

Uj
R0

+
Rj
2R0

otherwise
(2)

Each customer i samples the random utility shocks εij from the given distribution and computes utilities
Uij = Uj + εij for all product types j = 0,1, . . . , n. Let Si = {j : Uij > Ui0}. Customer i buys the highest
utility product from Si that is available. If none of the products in Si is available, then he/she buys nothing.
We use randomly generated values for the product prices. In particular, we use the following values: p0 = 0,
p1 = c, and for any j > 1,

pj =

{
pj−1 + (1 + τj)∆ w.p. 0.9
(2 + τj)pj−1 w.p. 0.1

where τj is uniformly random between 0 and 1, and ∆ is a constant. We use c = 10 and ∆ = 0.8 in our
computational experiments.
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7.3. Our PTAS Adapted to General Choice Model
Even though our PTAS can be directly adapted for the above choice model, we explicitly describe the
resulting procedure. For any product type j, let Xj denote the number of customers whose preference list
contains j. Recall that a product type is frequent if E[min{Xj,C}]≥ ε2C and rare otherwise. Also, recall
that a product type j is cheap if pj ≤ ε3pF , where pF is the price of the most expensive frequent product.
Note that these definitions are valid for all choice models. Our algorithm proceeds along the lines described
in the proof of Lemma 1, as shown in Figure 1.

Adapted PTAS
1. Eliminate cheap product types with price smaller than ε3pF .
2. Allocate εC capacity to

argmaxj αjpj.

3. Allocate remaining capacity as follows.
(a) Geometrically partition the range [ε3pF , pF ]
(b) Consider O(log(1/ε)) product types at the boundary of the geometric partition.
(c) Select best solution from all possible inventory levels for O(log(1/ε)) types, such that the total

capacity is at most (1− ε)C.
Figure 1 Adaptation of the PTAS for more general choice models.

From an implementation point of view, the expected revenue for a given assortment is computed by
simulation. In what follows, we denote the expected revenue of the assortment computed by our algorithm
as Alg. We set a time limit of 7200 secs and report the best solution found within that time frame.

7.4. Other Heuristics
We compare the performance of our PTAS against three different heuristics: ii) local search, ii) projected
gradient descent, and iii) hybrid algorithm. We describe the three algorithms below.

Local Search We consider the following local search heuristic where in each step, the algorithm either
increases the inventory of some product type if total capacity is less than C or finds a pair of product types
such that increasing the inventory of one product type and decreasing the inventory of the other product
type improves the expected revenue. The algorithm terminates with a local maximum solution when no
such local swap is possible. The specifics of this algorithm are given in Figure 2.

Local Search Algorithm (LS)
1. Initial feasible solution: yj =C if product type j maximizes αjpj and 0 otherwise.
2. While (y1, . . . , yn) is not local optimum:

(a) Find product types i, j such that moving one unit from i to j increases the expected revenue.
(b) The new solution is obtained by yi← yi− 1 and yj← yj + 1.

Figure 2 The local search algorithm.

We denote the expected revenue computed by the above local search algorithm as LS. We use a time limit
of 7200 secs for this algorithm. However, this algorithm terminated in less than 40 seconds, and converged
to a local maximum for all instances in our experiments.

Projected Gradient Descent. We consider an adaptation of the stochastic gradient descent algorithm
of Mahajan and van Ryzin (2001) for our dynamic assortment problem under capacity constraint. Note
that Mahajan and van Ryzin (2001) considered a per-unit selling price and per-unit cost for each item type
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and the goal was to maximize the expected profit. There were no constraints on the inventory in their model.
In our model, there is a capacity constraint on the total number of the units of all product types that can be
stocked and the goal is to maximize the expected revenue. Moreover, the revenue function is defined only
for integer values of inventory.

To implement a gradient descent algorithm for our problem, we define a continuous extension of the
revenue function following Lovász extension of a discrete function. For the revenue function f :Zn+→R+,
we define the continuous extension f̂ :Rn+→R+ as follows.

f̂(y1, . . . , yn) = f(by1c, . . . , bync) +
n∑
i=1

[
f

(
i∑

j=1

1π(j)

)
− f

(
i−1∑
j=1

1π(j)

)]
·
(
dyπ(i)e− byπ(i)c

)
,

where π ∈Π({1, . . . , n}) is a permutation such that

yπ(1) ≥ yπ(2) ≥ . . .≥ yπ(n).

We implement the gradient descent for the continuous extension f̂ . The gradient of f̂ can be expressed as
follows.

∂

∂yπ(i)
f̂ = f

(
i∑

j=1

1π(j)

)
− f

(
i−1∑
j=1

1π(j)

)
, i= 1, . . . , n,

which can be computed via sampling. Since there is capacity constraint on the total number of items stocked,
after each solution update we need to project the solution to the feasible set. Therefore, in any iteration k,
we update the solution as follows.

yk =
C · (yk−1 + ak∇f̂(yk−1))

eT (yk−1 + ak∇f̂(yk−1)
,

where e is the vector of all ones and ak is the step size in iteration k. The algorithm terminates when we
find a stationary point, i.e., yk = yk−1. This essentially translates to the condition

∇f̂(yk) = τyk,

for some τ ∈R. The complete algorithm is described in Figure 3.

Projected Gradient Descent Algorithm (PGD)
1. Initial feasible solution: y1 = 0, k= 1.
2. Let step size ai = 1

i
in iteration i.

3. While (||yk−yk−1||∞ ≥ ε)
(a) Compute ∇f̂(yk).
(b) Update

yk+1 =
C · (yk + ak∇f̂(yk))

eT (yk + ak∇f̂(yk)
.

(c) Update k← k+ 1.
4. Return the continuous solution yk.

Figure 3 Projected Gradient Descent algorithm.
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Note that the solution y computed by the above gradient descent is not integral and thus, not precisely
feasible. Also, it is not clear how to efficiently compute an integral solution whose expected revenue is close
to f̂(y). The solution yu where

yuj = dyje, ∀j = 1, . . . , n,

violates the capacity constraint; and solution yl, where

ylj = byjc, ∀j = 1, . . . , n,

can have significantly lower expected revenue as compared to f̂(y). Therefore, it is possible that f̂(y) is
higher than the optimal expected revenue for some instances.

Hybrid Algorithm. We also consider a hybrid algorithm that is a combination of projected gradient descent
algorithm and the local search algorithm. We first compute a fractional stationary point using the projected
gradient search algorithm and then a local search algorithm to compute an integer local maximum close to
the fractional stationary point. The algorithm can be described as follows.

Hybrid Algorithm (Hybrid)
1. Compute a stationary point y using Proj-Gradient-Descent.
2. Let ylj = byjc for all j = 1, . . . , n.
3. Update yl1 =C − (yl2 + . . .+ yln).
4. While (yl1, . . . , y

l
n) is not local optimum:

(a) Find product types i, j such that moving one unit from i to j increases the expected revenue.
(b) The new solution is obtained by yli← yli− 1 and ylj← yj + 1.

5. Return yl.
Figure 4 Hybrid algorithm.

Note that the hybrid algorithm starts with a feasible integer solution obtained by rounding down the frac-
tional solution obtained by the projected gradient descent algorithm. The expected revenue of the rounded
down solution can be significantly lower than the value of the fractional stationary solution. However, after
the local swap operations, it is possible that the hybrid algorithm finds a feasible integer solution with value
higher than that of the fractional stationary point.

7.5. Results
In addition to testing the algorithms mentioned above, we also compute the optimal expected revenue,
denoted by OPT, using enumeration for additional comparisons. However, for several instances the exhaus-
tive does not terminate even after 96 hours. Therefore, we report the best solution obtained within a time
limit of 7200 secs as well. Table 1 summarizes the experimental results.

The results of the computational experiments show that our algorithm performs significantly better than
all the three heuristics. The projected gradient descent algorithm performs better than the local search heuris-
tic on almost all instances. However, we should note that the solution obtained using the projected gradient
descent algorithm is fractional and thus, infeasible for the original problem. The hybrid algorithm performs
the best among the three heuristics. However, our adapted PTAS (Alg) obtains a solution with a significantly
higher expected revenue than even the hybrid algorithm for all instances. The value of the solution obtained
by our algorithm is better by around 8.5% on average as compared to the hybrid algorithm.

For instances where OPT found an optimal solution within 96 hours, the expected revenue of the solution
computed by Alg is within 4% of the optimal expected revenue. We use ε= 0.1 for Alg in our experiments
which provide a theoretical guarantee of being within 10% of the optimal. Therefore, the numerical results
for instances from a more general choice model are significantly better than even the worst-case theoretical
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n m C Alg LS Grad-descent Hybrid OPT* OPT

1. 10 40 15 189.76 175.14(8.35%) 170.48(11.31%) 188.75(0.54%) 194.46 194.46

2. 10 40 20 240.19 215.31(11.56%) 215.84(11.28%) 234.58(2.39%) 243.639∗ 244.70

3. 10 40 25 291.01 247.15(17.75%) 258.13(12.74%) 272.86(6.65%) 247.191∗ 293.87

4. 10 50 30 352.03 300.10(17.30%) 308.19(14.22%) 319.35(10.23%) 240.263∗ −
5. 10 100 40 507.3 412.80(22.89%) 475.26(6.74%) 498.5(1.77%) 381.025∗ −
6. 10 100 50 609.16 483.80(25.91%) 540.67(12.67%) 554.07(9.94%) 379.663∗ −
7. 10 150 80 967.51 678.93(42.50%) 793.97(21.86%) 829.74(16.60%) 487.144∗ −
8. 10 200 100 1227.87 905.85(35.54%) 1007.55(21.87%) 1026.55(19.61%) 642.956∗ −
9. 12 100 50 563.083 496.70(13.36%) 515.56(9.22%) 534.05(5.44%) 294.715∗ −
10. 15 40 15 227.18 191.55(18.60%) 168.52(34.81%) 197.96(14.76%) 153.2∗ 235.42

11. 15 40 20 264.2 206.39(28.01%) 212.27(24.46%) 245.34(7.69%) 150.914∗ −
12. 20 50 25 327.36 314.76(4%) 250.41(30.73%) 306.07(6.96%) 218.952∗ −
Table 1 Here, (∗) = the algorithm reached the time limit, and (−) = the optimal algorithm did not terminate within 96 hours.

For each heuristic, LS, Grad-descent, and Hybrid, we note the % improvement in expected revenue Alg over each of the
heuristics in brackets.

bounds of our algorithm for the special case of nested preferences. We would like to re-emphasize that our
algorithm is fairly general and can be adapted for very general choice models. While we present theoretical
guarantees only for the case of nested preference lists, our algorithm performs reasonably well as compared
to OPT for significantly more general choice models.

Furthermore, Alg performs significantly better than other known heuristics including local search and
projected gradient descent (suitably adapted from Mahajan and van Ryzin (2001)). It is worth noting that,
during our experiments, we discovered that there are many local maxima in this problem, and that the
convergence to a particular solution is very sensitive to the initial solution. The running time of LS is small
due to the presence of many local maxima, which make the algorithm converge to one near the initial
solution very quickly. We experimented with several initial solutions including: (1) C units of the most
expensive product type, (2) C units of the least expensive product type, and (3) C units of product type j
that maximizes αjpj . In Table 1, we report results for the best initial solution, which was the one in item (3)
for all instances.

8. Concluding Remarks
Approximability of general model. Our main results indicate that the model under consideration is indeed

NP-hard for general choice models, and can be efficiently approximated within any degree of accuracy for
certain classes of choice models. However, even though we were able to establish a lower bound of 1− 1/e
on the approximability of an extremely simple model (with a single customer), it is quite possible that
stronger complexity results could be obtained for the model in its utmost generality (i.e., arbitrary number of
customers with arbitrary preferences). For this reason, it would be interesting to investigate such complexity
issues as part of future research, and possibly complement them by corresponding upper bounds through
algorithmic methods.

Hardness of nested preferences. Under the technical restrictions listed in Section 4, where customer pref-
erences are assumed to be nested and where the number of arriving customers is assumed to be drawn from
an IFR distribution, we were able to devise a polynomial-time approximation scheme (PTAS). However, we
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do not know if this variant is NP-hard or can be solved in polynomial time. We pose the task of fully char-
acterizing the hardness of nested preferences model as an interesting direction for future research. Although
we would like to note that even if this model can be optimally solved in polynomial time, the managerial
insights from the structure of a near-optimal solution (that a constant number of product types are sufficient)
obtained by our algorithm are useful. Moreover, our algorithm provides

1. An immediate way to recognize the products involved.
2. A very efficient enumeration method, to spread the capacity C between these products. Here, only
O((logC)O(log 1/ε)) =O((1/ε)O(log logC)) inventory vectors need to be evaluated.

Furthermore, the computational experiments show that our PTAS performs well for significantly general
choice models derived from random utility models and thus, can be used as a practical method for assort-
ment optimization problems.
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Appendix A: Additional Proofs
A.1. Quasi-PTAS for Purchasing Costs
Let us consider a model where, instead of capacities, we are given per-unit purchasing costs (c1, . . . , cn),
and per-unit selling prices (p1, . . . , pn). The objective is to compute an inventory vector such that its total
purchasing costs falls within a budget ofB and such that the expected total revenue is maximized. Our basic
assumption, in addition to the nested preference structure (see Section 4) is that the purchasing cost of any
product increases with its selling price, i.e., c1 ≤ · · · ≤ cn and p1 ≤ · · · ≤ pn; on the other hand, we will not
be needing Assumption 2, meaning that the number of customers M can follow any distribution over the
non-negative integers, instead of being restricted to IFR ones.

Suppose that, in the optimal solution, we gain an expected revenue of R∗. Then, based on the technical
ideas given in Section 4.3, the following algorithm can be easily shown to obtain a fraction of at least 1− ε
of the optimal revenue R∗ while meeting the budget constraint:
• We partition the collection of products 1, . . . , n into cost classes C1, . . . ,CK , as well as into price classes

P1, . . . ,PL, where

Ck =
{
i : (1 + ε)k−1c1 ≤ ci ≤ (1 + ε)kc1

}
and P` =

{
i : (1 + ε)`−1p1 ≤ pi ≤ (1 + ε)`p1

}
.

Here, K =O(log(cn/c1)) whereas L=O(log(pn/p1)). With these definitions at hand, let Ik` be the set of
products that belong to the k-th cost class and to the `-th price class, that is, Ik` = Ck ∩P`. It is not difficult
to verify that each Ik` forms a sub-interval of 1, . . . , n and that only O(K + L) sets out of {Ik`}k,` are
non-empty.
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• For every non-empty set Ik`, we approximately guess (from below, up to 1−ε) the number of units Uk`
that are purchased from Ik` in the optimal solution. As a result, we get an estimate of (1−ε)Uk` ≤ Ûk` ≤Uk`.
The total number of guesses to consider is(

O

(
log

B

c1

))O(K+L)

=

(
O

(
log

B

c1

))O(log(cn/c1)+log(pn/p1))

=O

(
cn
c1
· pn
p1

)O(log log(B/c1))

,

since bB/c1c is an obvious upper bound on the number of units purchased from any Ik`.
• Based on these guesses, in each Ik` we order Ûk` units of the minimal index product, which also

has to be the least expensive and the least profitable product in Ik` by the assumptions c1 ≤ · · · ≤ cn and
p1 ≤ · · · ≤ pn.

Due to the nested preference lists, it follows that within each Ik`, the t-th unit we order (of the minimal
index product) is consumed with probability at least as high as the t-th unit ordered in the optimal solution
(counting from the least profitable to the most profitable product in Ik`). Furthermore, if and when this unit
is indeed consumed, the resulting revenue is at least 1/(1 + ε) ≥ (1− ε) times its revenue in the optimal
solution, since the selling prices within Ik` differ by a factor of at most 1 + ε. It follows that, out of the
optimal expected revenue R∗, we obtain at least (1− ε)R∗, as our guess for the number of units purchased
from Ik` satisfies Ûk` ≥ (1− ε)Uk`. This explanation handles the revenue question, but still, it remains to
argue that the budget B is not exceeded. For this purpose, if we use (y∗1 , . . . , y

∗
n) to denote the optimal

inventory vector, the total purchasing cost can be bounded by∑
k,`

Ûk` · min
i∈Ik`

ci ≤
∑
k,`

Uk` · min
i∈Ik`

ci ≤
∑
k,`

∑
i∈Ik`

ciy
∗
i =

n∑
i=1

ciy
∗
i ≤B ,

where the first inequality holds since Ûk` ≤Uk`, and the second inequality follows from observing that the
optimal solution pays at least mini∈Ik` ci for each of the Uk` units it purchases from Ik`. As far as running
time is concerned, it is sufficient to evaluate the expected revenue for each of the guesses mentioned above
and pick the best one, which indeed amounts to quasi-polynomial time when the purchasing costs and
selling prices are not extremely far apart; cn/c1 =O(npolylog(n)) and pn/p1 =O(npolylog(n)) is enough.
A.2. Computing the Expected Revenue
Suppose that the number of arriving customers, M , has a finite support, say on {0, . . . , T}. We argue that
the expected revenue of every inventory vector (y1, . . . , yn) can be computed in time polynomial in n and
T . We begin by pointing out that since

E[RM(y1, . . . , yn)] =
T∑

m=0

Pr [M =m] ·E[Rm(y1, . . . , yn)] ,

it is sufficient to evaluate the expected revenue for each fixed number of customers. For this purpose, number
the units stocked in increasing order of product indices as 1, . . . ,

∑n

i=1 yi, and denote by type(u) the product
type of unit u. In particular, when u ∈ {1, . . . , y1} we have type(u) = 1, when u ∈ {y1 + 1, . . . , y1 + y2}
we have type(u) = 2, and so on. For a unit 1≤ u≤

∑n

i=1 yi and a customer 1≤ k ≤m, let P [u,k] be the
probability that unit u is consumed by customer k. With this definition in mind, note that

E[Rm(y1, . . . , yn)] =

∑n
i=1 yi∑
u=1

m∑
k=1

P [u,k] · ptype(u) ,

implying that it remains to compute the probabilities P [u,k], a task that can be accomplished by means of
dynamic programming, as

P [u,k] =
k−1∑
`=1

P [u− 1, `] ·
(
1−αtype(u)

)k−`−1 ·αtype(u) .
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Making the support of M finite. In the remainder of this section, we show that even though the number
of customers M may not be upper bounded, we can still define a corresponding random variable M̃ that
satisfies the following properties:

1. M̃ ∈ {0, . . . , dpnCE[M ]

εOPT
e}.

2. M̃ is stochastically smaller than M .
3. For any inventory vector (y1, . . . , yn) with capacity at most C, we have

E[RM̃(y1, . . . , yn)]−E[RM(y1, . . . , yn)]≤ ε ·OPT .

To this end, we define M̃ by truncating the original number of customers at dpnCE[M ]

εOPT
e, that is, M̃ =

min{M, dpnCE[M ]

εOPT
e}. In this case,

E[RM̃(y1, . . . , yn)] = Pr

[
M̃ ≤

⌈
pnCE[M ]

εOPT

⌉]
·E
[
RM̃(y1, . . . , yn)

∣∣∣∣M̃ ≤ ⌈pnCE[M ]

εOPT

⌉]
+ Pr

[
M̃ >

⌈
pnCE[M ]

εOPT

⌉]
·E
[
RM̃(y1, . . . , yn)

∣∣∣∣M̃ >

⌈
pnCE[M ]

εOPT

⌉]
≤ E[RM(y1, . . . , yn)] +

εOPT

pnC
·Cpn

= E[RM(y1, . . . , yn)] + εOPT ,

where the inequality above follows from applying Markov’s inequality, and since the expected revenue from
any inventory vector with capacity at most C is clearly upper bounded by Cpn. It is worth mentioning
that, for our particular purposes, the inventory vectors whose revenue needs to be evaluated do not contain
any cheap items (see proof of Lemma 1), implying that OPT ≥ ε2CpF . Consequently, the newly-defined
random variable M̃ is actually upper bounded by dpnCE[M ]

εOPT
e ≤ dE[M ]

ε3
· pn
pF
e.

A.3. Sketch of the Polynomial Time Algorithm for Quality Categories
We can assume without loss of generality that a polynomial-factor estimate ÕPT ∈ [OPT, k · OPT] of
the optimal objective value is known in advance. To enforce this assumption, one can separately apply our
basic algorithm (described in Section 4) to each of the quality classes 1, . . . , k, and consider the one whose
expected revenue is maximized. Clearly, this revenue resides within the interval [OPT/k,OPT], and we
can therefore obtain ÕPT with appropriate scaling.

For every 1≤ `≤ k and φ∈ [0, ÕPT], let h(`,φ) be the minimum number of units to stock from classes
1, . . . , ` such that an overall expected revenue of at least φ is achieved. If we were able to compute h(`,φ) for
all possible values of ` and φ, then the optimal objective value would obviously be max{φ : h(k,φ)≤C}.
However, since φ is continuous, we will limit this parameter to take integer multiples of ∆ = εÕPT/k,
noting that if t is the maximal integer for which t∆≤ φ, then h(k, t∆)≤ h(k,φ) whereas the revenue loss
is at most φ− t∆≤∆ = εÕPT/k ≤ εOPT. With this discretization in mind, we will focus on computing
an approximate version h̃(·, ·) of the function h(·, ·), satisfying the following properties: (1) h̃(`, t∆) ≤
h(`, t∆) for every 1≤ `≤ k and 0≤ t≤ dk/εe; and (2) it is possible to stock at most h̃(`, t∆) units from
classes 1, . . . , ` such that an overall expected revenue of at least (1− ε)t∆− `∆ is achieved.

Computing h̃(1, t∆). These values can be determined by applying our basic algorithm to the quality
class 1. To ensure that the running time is polynomial in logC, instead of testing 0, . . . ,C as the potential
capacity of class 1, we conduct a binary search over this interval to find the minimal number of units that
obtain an expected revenue of at least (1− ε)t∆ . Clearly, h̃(1, t∆) will satisfy properties (1) and (2) above,
since h(1, t∆) units are sufficient to obtain an expected revenue of at least t∆ (by definition), and since the
performance guarantee of our algorithm is (1− ε).
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Computing h̃(`, t∆) for ` ≥ 2. In this case, for every 0 ≤ t′ ≤ t, we try to obtain an expected revenue
of at least t′∆ from classes 1, . . . , `− 1 (using h̃(`− 1, t′∆)), as well as an expected revenue of at least
(t− t′)∆ from class `, as explained in the previous item. It remains to show that this method is good enough
to have h̃(`, t∆) satisfy properties (1) and (2). For this purpose, suppose that to achieve an expected revenue
of t∆ from classes 1, . . . , `, one has to stock u units of classes 1, . . . , `−1 (with revenue φ) and h(`, t∆)−u
units of class ` (with revenue at least t∆− φ). Let t′ be the maximal integer for which t′∆≤ φ. Then, in
terms of capacities, we will stock at most h̃(`− 1, t′∆)≤ h(`− 1, t′∆)≤ h(`− 1, φ)≤ u units of classes
1, . . . , `− 1, and at most h(`, t∆)−u units of class `. In addition, we are guaranteed to obtain an expected
revenue of at least (1− ε)t′∆− (`− 1)∆ + (1− ε)(t− t′− 1)∆≥ (1− ε)t∆− `∆.


