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A Markov Chain Approximation to Choice Modeling

JOSE BLANCHET, GUILLERMO GALLEGO, and VINEET GOYAL, Columbia University

Assortment planning is an important problem that arises in many industries such as retailing and airlines. One of the key
challenges in an assortment planning problem is to identify the “right model” for the substitution behavior of customers from
the data. Error in model selection can lead to highly sub-optimal decisions. In this paper, we present a new choice model
that is a simultaneous approximation for all random utility based discrete choice models including the multinomial logit,
the nested logit and mixtures of multinomial logit models. Our model is based on a new primitive for substitution behavior
where substitution from one product to another is modeled as a state transition of a Markov chain. We show that the choice
probabilities computed by our model are a good approximation to the true choice probabilities of a random utility discrete
based choice model under mild conditions. Moreover, they are exact if the underlying model is a Multinomial logit model.
We also show that the assortment optimization problem under our choice model can be solved efficiently in polynomial
time. In addition to the theoretical bounds, we also conduct numerical experiments and observe that the average maximum
relative error of the choice probabilities of our model with respect to the true probabilities for any offer set is less than 3%

(the average being taken over different offer sets). Therefore, our model provides a tractable data-driven approach to choice
modeling and assortment optimization that is robust to model selection errors. Moreover, the state transition primitive for
substitution provides interesting insights to model the substitution behavior in many real-world applications.
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1. INTRODUCTION
Assortment optimization is an important problem that arises in many industries such as retailing and
airlines where the decision maker needs to select an optimal subset of products to offer to maximize
the expected rewards, which can be revenues or profit contributions. The demand and the revenue of
any product depends on the complete set of offered products since customers potentially substitute
to an available product if their most preferred product is not available. Such a substitution behavior
is captured by a customer choice model that can be thought of as distribution over preference lists (or
permutations of products). A customer with a particular preference list purchases the most preferable
product that is available. It is possible that the no-purchase alternative is the most preferable among
the offered products in which case the customer leaves without purchasing any product. Therefore,
the choice model specifies the probability that a customer selects a particular product for every
offer set. One of the key challenges of any assortment planning problem is to find the “right choice
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model” to describe the substitution behavior when we only observe historical sales data for a small
number of assortments. The underlying customer preferences is latent and unobservable.

Many parametric choice models have been extensively studied in the literature in several areas
including marketing, transportation, economics and operations management. Typically, the decision
maker selects a parametric form for the choice model where the parameters are estimated from the
data. The tractability of the parameter estimation and assortment optimization problems are impor-
tant factors in the model selection. For these reasons, the multinomial logit (MNL) model is one
of the most widely used parametric choice model in practice even though the model justifications
(for instance, Independence from Irrelevant alternative (IIA) property) are not reasonable for many
applications. A more complex choice model can capture a richer substitution behavior but leads to
increased complexity of the assortment optimization problem and runs the risk of over-fitting the
data.

1.1. Our Contributions
We present a new computationally tractable data-driven approach to choice modeling that is robust
to model selection errors. Our approach is based on a new primitive to model the substitution be-
havior. In general, the substitution behavior of any customer is captured by his preference list over
the products where he selects the most preferred product that is available (possibly the no-purchase
alternative). This selection process can be interpreted as sequential transitions from one product to
another in the order defined by the preference list until the customer finds an available product.
Markov Chain based Choice Model. Motivated by the above interpretation, we present a new
choice model where substitution behavior is modeled as a sequence of state transitions of a Markov
chain. We consider a Markov chain where there is a state for each product including the no-purchase
alternative, and model the substitution behavior as follows: a customer arrives in the state corre-
sponding to his most preferable product. If that product is not available, he/she transitions to other
product states according to the transition probabilities of the Markov chain. Therefore, the sequen-
tial transitions based on the preference list are approximated by Markovian transitions in the Markov
chain based choice model.

The Markov chain based choice model is completely specified by the arrival probabilities in
each state and the transition probability matrix. We show that both the arrival probabilities to each
state and the transition matrix can be estimated efficiently from choice probability data for a small
number of assortments (O(n) where n is the number of products). Furthermore, given the arrival
probabilities and the transition probabilities, we can efficiently compute the choice probabilities for
all assortments for the Markovian substitution model. For any assortment S ⊆ N = {1, . . . , n}, we
modify the Markov chain to make all states corresponding to products j ∈ S as absorbing. Then the
stationary distribution over all absorbing states (including the no-purchase alternative) gives us the
choice probabilities of all products in S. These can be computed efficiently by solving a system of
linear equations.

Approximation Bounds. A natural question that arises is to study how accurately does the Markov
chain model approximate the true underlying model given the data. We show that the Markov chain
choice model provides a good approximation for all random utility discrete choice models under
mild assumptions. The class of models arising from a random utility model is quite general and
includes all models that can be expressed as distributions over permutations. This class includes
MNL, Nested logit (NL) and mixture of MNL (MMNL) models (see [McFadden and Train 2000]).
We present lower and upper bounds, related to the spectral properties of the Markov chain, on the
ratio of the choice probability computed by the Markov chain model and the true underlying model.
These bounds show that the Markov chain model provides a good approximation for all random
utility based choice models under very mild assumptions.

Furthermore, we show that the Markov chain model is exact if the underlying model is MNL.
In other words, if the Markov chain model parameters are estimated from data from an underlying
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MNL model, then the choice probability computed by the Markov chain model coincides with the
probability given by the MNL model for all products and all assortments.

We would like to emphasize that the estimation of the Markov chain is data-driven and does not
require any knowledge about the type of underlying model that generates the data. Therefore, the
Markov chain model circumvents the challenging model selection problem for choice modeling and
provides a simultaneous approximation for all discrete choice models.

Computational Study and Asymptotic Bounds. In addition to the theoretical approximation
bounds, we present a computational study to compare the choice probability estimates of the Markov
chain model as compared with the choice probability of the true model. In particular, we consider
random instances of mixture of MNL models and compare out of sample performance of the Markov
chain model with respect to the true mixture of MNL model. The numerical experiments show that
our model performs extremely well on random instances of mixture of MNLs. In particular, the max-
imum relative error of choice probabilities estimates as compared to the true choice probabilities is
less than 3% on average over different offer sets.

Assortment Optimization. We show that the assortment optimization problem can be solved opti-
mally in polynomial time for the Markov chain choice model. In an assortment optimization prob-
lem, the goal is to find an assortment (or offer set) that maximizes the total expected revenue, i.e.,

max
S⊆{1,...,n}

r(S) =
∑
j∈S

rj · π(j, S),

where rj is the revenue per unit of product j and π(j, S) denotes the choice probability of product j
when the offer set is S. This result is quite surprising since in the Markov chain based choice model,
we can not even express π(j, S) as a simple functional form of the model parameters. Therefore,
we are not able to even formulate the assortment optimization problem as a mathematical program
directly. However, we present a policy iteration algorithm to compute an optimal assortment in poly-
nomial time for the Markov chain based choice model. In particular, we show that we can compute
an assortment S ⊆ N with revenue within ε > 0 of the optimal assortment in O(log 1/ε) policy
iterations. By choosing a sufficiently small ε, we converge to an optimal solution in polynomial
time. Moreover, our algorithm shows that the optimal assortment is independent of the arrival rates
λi, i ∈ N . This provides interesting insights about the structure of the optimal assortment.

Furthermore, we show under mild conditions that if Markov chain model is estimated from data
generated by some underlying latent choice model, then the optimal assortment for the Markov
chain model is also a good approximation for the assortment optimization problem over the under-
lying latent model.

1.2. Related Work
Discrete choice models have been studied very widely in the literature in a number of areas including
Transportation, Economics, Marketing and Operations. There are two broad fundamental questions
in this area: i) learn the choice model or how people choose and substitute among products, and
ii) develop efficient algorithms to optimize assortment or other decisions for a given choice model.
The literature in Transportation, Economics and Marketing is primarily focused on the choice model
learning problem while the Operations literature is primarily focused on the optimization problem
over a given choice model. Since this paper considers both these fundamental problems, we give a
brief but broad review of the relevant literature.

A choice model, in the most general setting, can be thought of as a distribution over permutations
that arise from preferences. In the random utility model of preferences, each customer has a utility
uj+εj for product j where uj depends on the attributes of product j and εj is a random idiosyncratic
component of the utility, i.i.d according to some distribution. The preference list of the customer is
given by the decreasing order of utilities of products. Therefore, the distribution of εj completely
specified the distribution over permutations, and thus, the choice model. This model was introduced
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by [Thurstone 1927] in the early 1900s. A special case of the model is obtained when εj’s are i.i.d
according to a normal distribution with mean 0 and variance 1. This is referred to as the probit
model.

Another very important special case of the above model is obtained assuming εj’s are i.i.d accord-
ing to an extreme value distribution such as Gumbel. This model also referred to as the Plackett-
Luce model and was proposed independently by [Luce 1959] and [Plackett 1975]. It came to be
known as the Multinomial logit model (or the MNL model) after [McFadden 1973] referred to it as
a conditional logit model. Before becoming popular in the Operations literature, the MNL model
was extensively used in the areas of transportation (see [McFadden 1980], [Ben-Akiva and Ler-
man 1985]), and marketing (see [Guadagni and Little 1983] and surveys by [Wierenga 2008] and
[Chandukala et al. 2008]). In the Operations literature, the MNL model is by far the most popu-
lar model as both the estimation as well as the optimization problems are tractable for this model.
The assortment optimization for the MNL model can be solved efficiently and several algorithms
including greedy, local search, and linear programming based methods are known (see [Talluri and
Van Ryzin 2004], [Gallego et al. 2004] and [Farias et al. 2011]). However, the MNL model is not
able to capture any heterogeneity in substitution behavior and also suffers from the Independence
from Irrelevant Alternatives (IIA) property ([Ben-Akiva and Lerman 1985]).

More complex choice models such as the Nested logit model [Williams 1977], [McFadden 1978]
and the mixture of MNL models have been studied in the literature to model a richer class of
substitution behaviors. These generalizations avoid the IIA property but are still consistent with the
random utility maximization principle. However, both the estimation and the resulting optimization
problem become difficult when we use a richer class of parametric models. Moreover, we also
run the risk of over-fitting to data in the estimation problem. [Rusmevichientong et al. 2010] show
that the assortment optimization problem is NP-hard for a mixture of MNL model even for the
case of mixture of only two MNL models. [Davis et al. 2011] show that the assortment optimization
problem is NP-hard for the Nested logit model in general and give an optimal algorithm for a special
case of the model parameters. We refer the readers to surveys ([Kök et al. 2009], [Lancaster 1990],
[Ramdas 2003]) for a comprehensive review of the state-of-the-art in assortment optimization under
general choice models.

In a recent paper, [Rusmevichientong and Topaloglu 2012] consider a model where the choice
model is uncertain and could be any one of the given MNL models. They show that an optimal robust
assortment can be computed in polynomial time. However, they consider uncertainty over model
parameters and not over the class of choice models. It is quite challenging to select the appropriate
parametric model and model mis-specification error can be costly in terms of performance. In this
paper, we propose a data-driven approach to choice modeling that circumvents this model selection
problem. The work by [Farias et al. 2012] and [van Ryzin and Vulcano 2011] are most closely related
to this paper. [Farias et al. 2012] consider a non-parametric approach where they use the distribution
over permutations with the sparsest support that is consistent with the data. Interestingly, they show
that if a certain ‘signature condition’ is satisfied, the distribution with the sparsest support can be
computed efficiently. However, the resulting assortment optimization problem can not be solved
efficiently for the sparsest support distribution. [van Ryzin and Vulcano 2011] consider an iterative
expectation maximization algorithm to learn a non-parametric choice model where in each iteration
they add a new MNL to the mixture model. However, optimization over mixture of MNLs is NP-
hard ([Rusmevichientong et al. 2010]).

Outline. The rest of the paper is organized as follows. In Section 2, we present our Markov chain
based data-driven choice model. In Section 3, we show that our model is exact if the underlying
choice model is MNL. In Section 4, we present approximations bounds for the choice probability
estimates computed by the Markov chain model for general choice models. In Section 5, we consider
the assortment optimization problem and present an optimal algorithm for our Markov chain based
choice model. In Section 6, we present results from our computation study.
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2. MARKOV CHAIN BASED CHOICE MODEL
In this section, we present the Markov chain based choice model. We denote the universe of n
products by the set N = {1, 2, . . . , n} and the outside or no-purchase alternative by product 0. For
any S ⊆ N , let S+ denote the set of items including the no-purchase alternative, i.e., S+ = S∪{0}.
And for any j ∈ S+, let π(j, S) denote the choice probability of item j ∈ S+ for offer set, S.

We consider a Markov chainM to model the substitution behavior using Markovian transitions
in M. where there is a state corresponding to each product in N+ including a state for the no-
purchase alternative 0. A customer with a random preference list is modeled to arrive in the state
corresponding to the most preferable product. Therefore, for any i ∈ N+, a customer arrives in
state i with probability λi = π(i,N ) and selects product i if it is available. Otherwise, the customer
transitions to a different state j 6= i (including the state corresponding to the no-purchase alternative)
with probability ρij that can be estimated from the data. After transitioning to state j, the customer
behaves exactly like a customer whose most preferable product is j. He selects j if it is available and
continues the transitions otherwise. Therefore, we approximate the linear substitution arising from
a preference list by a Markovian transition model where transitions out of state i do not depend on
the previous transitions. The model is completely specified by initial arrival probabilities λi for all
states i ∈ N+ and the transition probabilities ρij for all i ∈ N , j ∈ N+. Note that for every state
i ∈ N , there is a probability of transitioning to state 0 corresponding to the no-purchase alternative
in which case, the customer leaves the system. For any j ∈ N+, we use j to refer to both product j
and the state corresponding to the product j in the Markov chainM.

2.1. Estimation of Choice Model Parameters from Data
The arrival probabilities, λi for all i ∈ N+ can be interpreted as the arrival rate of customers
who prefer i when everything is offered. The transition probability ρij , for i ∈ N , j ∈ N+ is
the probability of substituting to j from i given that product i is the most preferable but is not
available. We can estimate these probabilities from the choice probability data for a small number
of assortments.

Suppose we are given the choice probabilities for the following (n+1) assortments, S = {N ,N\
{i} | i = 1, . . . , n}. We estimate arrival probabilities, λi and transition probabilities, ρij for all
i ∈ N , j ∈ N+ as follows.

λi = π(i,N ), and ρij =


1, if i = 0, j = 0
π(j,N \ {i})− π(j,N )

π(i,N )
, if i ∈ N , j ∈ N+, i 6= j

0, otherwise.

(1)

Note that π(i,N ) is exactly the fraction of customers whose most preferable product is i. For all
i ∈ N , j ∈ N+, i 6= j, the numerator in the definition of ρij , δij = π(j,N \ {i}) − π(j,N ), is
the increase in probability of selecting j when i is removed from the assortment. Therefore, we can
interpret the definition of ρij as the conditional probability that a customer substitutes from product
i to product j given that product i is the most preferable product but is not offered. This is consistent
with the Markov chain interpretation.

In (1), we assume that accurate choice probability data for (n+ 1) assortments S is available. We
can estimate the transition probability parameters from other choice probability data as well. For
instance, suppose we have the choice probability data for offer set S where i, j ∈ S and offer set
S \ {i}. We can estimate ρij as follows.

ρij = τ · π(j, S \ {i})− π(j, S)

π(i, S)
, (2)

where τ is an appropriate normalizing factor. The above expression can be similarly interpreted as
the probability of substituting to product j from i given that i is the most preferable product in S
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and is not available. Therefore, if we are given a collection of all one and two product assortments,
we can estimate the transition probabilities using (2).

We would like to mention that in practice, we typically have access to partial and noisy choice
probability data. Therefore, it is important to study robust statistical estimation procedures for esti-
mating the parameters of the Markov chain model from noisy partial data. However, our main focus
in this paper is to introduce the Markov chain based choice model, analyze its performance in mod-
eling random utility based choice models, and study the related assortment optimization problem.
We leave the study of robust statistical estimation procedures from data for future work.

2.2. Computation of Choice Probabilities
Given the parameters λi and ρij for all i ∈ N+, j ∈ N , let us now describe how we can compute
the choice probabilities for any S ⊆ N , j ∈ S+. Our primitive for the substitution behavior is that a
customer arrives in state i with probability λi, and continues to transition according to probabilities
ρij until he reaches a state corresponding to a product in S. Therefore, for any offer set S ⊆ N , we
define a Markov chain,M(S) over the same state space,N+. We modify the transition probabilities
such that all states i ∈ S+ become absorbing, i.e., ρii(S) = 1 and ρij(S) = 0 for all i ∈ S+ and
j 6= i. Note that there are no transitions out of any state i ∈ S+. The choice probability for any
j ∈ S+, π̂(j, S) can be computed as the probability of absorbing in state i inM(S). In particular,
we have the following theorem.

THEOREM 2.1. Suppose the parameters for the Markov chain model are given by λi, ρij for
all i ∈ N , j ∈ N+. For any S ⊆ N , letB = ρ(S̄, S+) denote the transition probability sub-matrix
from states S̄ = N \ S to S+, and C = ρ(S̄, S̄) denote the transition sub-matrix from states in S̄
to S̄. Then for any j ∈ S+,

π̂(j, S) = λj + (λ(S̄))T (I −C)−1Bej , (3)

where λ(S̄) is the vector of arrival probabilities in S̄ and ej is the jth unit vector.

PROOF. The transition probability matrix for Markov chain M(S) where states in S+ are ab-
sorbing is given (after permuting the rows and columns appropriately) by

P(S) =

[
I 0
B C

]
. (4)

Here the first |S|+ 1 rows and columns of P(S) correspond to states in S+ and the remaining rows
and columns correspond to states in S̄. Let p = |S|. Then, I is a (p+ 1)× (p+ 1) identity matrix,
B ∈ R(n−p)×(p+1)

+ and C ∈ R(n−p)×(n−p)
+ . For any j ∈ S+, the choice probability estimate

π̂(j, S) can be computed as follows.

π̂(j, S) = lim
q→∞

λTPq(S)ej = λT
[

I 0

(I −C)
−1
B 0

]
ej , (5)

where the last equality follows from the fact that all row sums of C are strictly less than 1 (since
ρi0 > 0 for all i ∈ N ). Therefore,C is aM -matrix and

∑∞
j=0C

j = (I−C)−1, limq→∞C
q = 0.

Therefore,

π̂(j, S) = λj + (λ(S̄))T (I −C)−1Bej ,

where ej is the jth unit vector in Rp+1. Note that Y = (I−C)−1B is a |S̄|× |S|matrix where for
any i ∈ S̄, j ∈ S+, Yij denotes the resulting probability of transitioning to state j conditional on
arrival in state i. In other words, Yij is the probability of substituting to product j given that product
i is the most preferable product but is not available in offer set S. �
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Therefore, for any S ⊆ N , we can compute the choice probabilities of all products j ∈ S+

by computing the stationary probabilitiesM(S). The parameters λi and ρij for i ∈ N+, j ∈ N ,
therefore give a compact representation of choice probabilities for all offer sets that can be computed
efficiently. However, unlike several commonly used parametric choice models such as MNL, Nested
logit and mixture of MNL, we do not have easy functional form for the choice probabilities since
computing stationary probabilities requires a matrix inversion.

3. MULTINOMIAL LOGIT (MNL) AND MARKOV CHAIN MODEL
In this section, we show that the Markov chain model is exact if the underlying choice model is
MNL. In other words, if the parameters λi, ρij for all i ∈ N , j ∈ N+ are computed using choice
probability data from a MNL model, then for any assortment S ⊆ N , the choice probability for any
j ∈ S+ computed using the Markov chain model is exactly equal to the choice probability given
by the underlying MNL model. Suppose the parameters of the MNL model are given by u0, . . . , un
where u0+. . .+un = 1. We would like to emphasize that the parameter estimation (1) is completely
data-driven and does not require any structural information of the underlying model.

THEOREM 3.1. Suppose the underlying model is Multinomial logit (MNL) for the given choice
probability data, π(j, S) for all S ∈ {N ,N \ {i}, i = 1, . . . , n}. Then for all S ⊆ N , j ∈ S+,

π̂(j, S) = π(j, S),

where π̂(j, S) is the choice probability computed by the Markov chain model (3) and π(j, S) is true
choice probability given by the underlying MNL model.

PROOF. Suppose the parameters for the underlying MNL model are u0, . . . , un > 0. We can
assume wlog. that u0 + . . .+un = 1. Therefore, from (1), we can compute for any i ∈ N , j ∈ N+,
j 6= i, ρij =

uj
1−ui . We show that the Markov chainM is equivalent to another Markov chain M̂

with the transition matrix ρ̂ where for any i ∈ N , j ∈ N+, ρ̂ij = uj that is independent of i. The
probability of state transitions from i to j for all i 6= j in M̂ is

∞∑
q=0

(ρ̂ii)
qρ̂ij =

∞∑
q=0

(ui)
quj =

uj
1− ui

= ρij .

Note that the transition probability matrix of M̂ has rank 1 as all the rows are identical.
Consider any offer set S ⊆ N . For ease of notation, let S = {1, . . . , p} for some p ≤ n.

Now, π̂(j, S) is the stationary probability of state j in Markov chainM(S) where the states corre-
sponding to S+ are absorbing states. From the equivalence of Markov chains,M and M̂ , we can
equivalently compute the stationary probability of state j in Markov chain M̂(S) where states in
S+ are absorbing, and the transition probabilities ρ̂ij(S) are defined as described earlier where

ρ̂ij(S) =

{
1 if j = i, i ∈ S+,
0 if j 6= i, i ∈ S+

uj if i /∈ S.

For all i /∈ S, ρ̂ij(S) = uj that does not depend on i. Therefore, transition to any state j ∈ S+ from
states in S̄ is proportional to uj which implies that the stationary probability,

π̂(j, S) = π(j,N ) + α · uj = uj(1 + α),

where the second equality follows as π(j,N ) = uj for all j ∈ N+. Also,
∑
j∈S+

π̂(j, S) = 1

which imples (1 + α) = 1/(
∑
j∈S+

uj). �

Therefore, if the underlying choice model is a multinomial logit model, then for any offer set S ⊆
N , the Markov chain based model exactly computes the choice probabilities for all the products.
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The above proof shows that the MNL model can be represented by an equivalent Markov chain, M̂ ,
whose transition matrix has rank one. Conversely, we can also show that if the transition matrix has
rank one, then the Markov chain model is equivalent to an MNL model using similar arguments as
above.

4. GENERAL CHOICE MODELS
In this section, we discuss the performance of the Markov chain based model for general choice
models. From Theorem 3.1, we know that the model is exact if the underlying choice model is MNL
and Algorithm 1 computes an optimal assortment for the underlying MNL model (Corollary 5.3).
However, Markov chain is not an exact approximation for general discrete choice models, i.e., if the
Markov chain model is estimated from data arising from a general choice model such as mixture
of two MNL models, then the choice probability estimates computed by the Markov chain model
can be different from the true probabilities of the underlying model. In fact, we can construct patho-
logical instances where the two probabilities are significantly different (see Section 4.2). However,
under a fairly general assumption, we show that the Markov chain model is a good approximation
for all random utility based discrete choice model Furthermore, we also show that we can compute
a good approximation to the optimal assortment problem for the true model using the Markov chain
model.

4.1. Bounds for Markov chain choice probability approximation
Here, we show that the choice probabilities from the Markov chain approximation for any discrete
choice model are a good approximation to the true probabilities of the underlying model. To prove
such an approximation result, we need to show that for every discrete choice model, the Markov
chain model computes good choice probability estimates if the data arises from that choice model.
The following theorem from McFadden and Train [McFadden and Train 2000] allows us to restrict
to proving our result for the mixture of multinomial logit (MMNL) model.

THEOREM 4.1 (MCFADDEN AND TRAIN [MCFADDEN AND TRAIN 2000]). Any random
utility based discrete choice model can be approximated as closely as required by a mixture of
multinomial logit models (MMNL).

Therefore, it suffices for us to prove that the Markov chain model is a good approximation for
the mixture of multinomial logit (MMNL) model with an arbitrary number of segments. Consider a
MMNL model given by a mixture of K multinomial logit models. Let θk, k = 1, . . . ,K denote the
probability that a random customer belongs to the MNL model k. We also refer to the MNL model k
as segment k. For segment k = 1, . . . ,K, let ujk, j = 0, . . . , n denote the utility parameters for the
corresponding MNL model. We assume wlog that for all k = 1, . . . ,K,

∑n
j=0 ujk = 1, and u0k >

0. Also, for any k = 1, . . . ,K and any S ⊆ N+, let uk(S) =
∑
j∈S ujk. The choice probability

π(j, S) for any offer set S and j ∈ S+ for the mixture of MNLs model can be expressed as follows.

π(j, S) =

K∑
k=1

θk ·
ujk

1−
∑
i∈S̄ uik

=

K∑
k=1

θkujk ·

(
1 +

∞∑
q=1

(
uk(S̄)

)q)
, (6)

where the last equality follows from the fact that uk(S̄) < 1 since u0k > 0 for all k = 1, . . . ,K.
Here S̄ = N \ S.

We show that for any S ⊆ N and j ∈ S+, the choice probability π̂(j, S) computed by the Markov
chain model is a good approximation of π(j, S). For any S ⊆ N , let

α(S) =
K

max
k=1

∑
i∈S

πk(i,N ) =
K

max
k=1

∑
i∈S

uik, (7)

where πk(i,N ) is the probability that a random customer from segment k selects i ∈ S when the
offer set is N . Therefore, α(S) is the maximum probability that the most preferable product for a
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random customer from any segment k = 1, . . . ,K belongs to S. We prove lower and upper bounds
on the relative error between π̂(j, S) and π(j, S) that depend on α(S̄). In particular, we prove the
following theorem.

THEOREM 4.2. For any S ⊆ N , j ∈ S+, let π̂(j, S) be the choice probability computed by the
Markov chain model, and π(j, S) be the true choice probability given by the mixture of MNL model.
Then, (

1− (α(S̄))2
)
· π(j, S) ≤ π̂(j, S) ≤

(
1 +

(α(S̄))2

1− α(S̄)

)
· π(j, S).

If the offer set S is sufficiently large, then α(S̄) would typically be small and we get sharp
upper and lower bounds for π̂(j, S). However, the bounds get worse as α(S̄) increases or the size
of offer set S decreases. It is reasonable to expect this degradation as we estimate the transition
probability parameters from choice probability data for offer sets N and N \ {i} for i ∈ N and
make a Markovian assumption for the substitution behavior. For significantly smaller offer sets, the
number of state transitions for a random demand before reaching an absorbing state is large with
high probability and the error due to Markovian assumption gets worse.

To prove the above theorem, we first compute upper and lower bounds on the choice probability
π̂(j, S) for any S ⊆ N , j ∈ S+ in the following two lemmas.

LEMMA 4.3. For any S ⊆ N , j ∈ S+, let π̂(j, S) denote the choice probability of product j
for offer set S computed by the Markov chain model. Then

π̂(j, S) ≥
K∑
k=1

θkujk

1 +
∑
i∈S̄

( ∞∑
q=1

(uik)q

) .

The above lower bound on the choice probability π̂(j, S) for j ∈ S+ is computed by considering
only a one-step substitution to another product if the first choice product is not available. According
to our Markov chain model, a customer with product i as the first choice product transitions to
another state if product i is not available. The transitions continue according to the transition matrix
P(S) until the customer ends up in an absorbing state. Therefore, by considering only a single
transition in the Markov chain M(S), we obtain a lower bound on π̂(j, S) for any j ∈ S+. We
present the proof of Lemma 4.3 in the Appendix.

In the following lemma, we prove an upper bound on π̂(j, S) for any S ⊆ N , j ∈ S+. The bound
depends on the spectral radius of the transition sub-matrix C = ρ(S̄, S̄) of transition probabilities
from S̄ to S̄.

LEMMA 4.4. For any S ⊆ N , j ∈ S+, let π̂(j, S) be the choice probability of product j ∈ S+

for offer set S computed by the Markov chain model. Let C = ρ(S̄, S̄) denote the sub-matrix of
transition probabilities from states S̄ = N \ S to S̄, and let γ be the maximum eigenvalue of C.
Then

π̂j(S) ≤
K∑
k=1

θkujk

1 +
1

1− γ
·

∑
i∈S̄

∞∑
q=1

(uik)q

 .

In the following lemma, we show the spectral radius of the transition sub-matrix C = ρ(S̄, S̄) is
related to the parameter α(S̄) defined in Theorem 4.2.

LEMMA 4.5. Consider any S ⊆ N and let α = α(S̄). Let C = ρ(S̄, S̄) be the probability
transition sub-matrix of P(S) from states S̄ to S̄. Then the maximum eigenvalue of C, γ is at most
α.
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We present the proofs of Lemmas 4.4 and 4.5 in the Appendix. Now, we are ready to prove the
main theorem.

Proof of Theorem 4.2 Let α = α(S̄). From (6), we know that

π(j, S) =

K∑
k=1

θkujk

(
1 +

∞∑
q=1

(
uk(S̄)

)q)
,

and from Lemma 4.3, we have that

π̂(j, S) ≥
K∑
k=1

θkujk

1 +
∑
i∈S̄

( ∞∑
q=1

(uik)q

) ≥ K∑
k=1

θkujk
(
1 + uk(S̄)

)
,

where the second inequality follows as uik > 0 for all i ∈ N+, k = 1, . . . ,K. Therefore,

π(j, S)− π̂(j, S) ≤
K∑
k=1

θkujk

(
1 +

∞∑
q=1

(
uk(S̄)

)q)− K∑
k=1

θkujk
(
1 + uk(S̄)

)
=

K∑
k=1

θkujk ·
(
uk(S̄)

)2 ·( ∞∑
q=0

uk(S̄)q

)

≤ α2 ·

(
K∑
k=1

θkujk ·

( ∞∑
q=0

uk(S̄)q

))
= α2π(j, S), (8)

where (8) follows from the fact that uk(S̄) ≤ α for all k = 1, . . . ,K.
Let γ denote the maximum eigenvalue of C = ρ(S̄, S̄), the transition sub-matrix from S̄ to S̄.

From Lemma 4.5, we know that γ ≤ α. Therefore, from Lemma 4.4, we have that

π̂j(S) ≤
K∑
k=1

θkujk

1 +
1

1− α
·
∑
i∈S̄

∞∑
q=1

uqik

 ≤ K∑
k=1

θkujk

(
1 +

1

1− α
·
∞∑
q=1

uk(S̄)q

)
,

where the second inequality follows as uik > 0 for all i ∈ N+, k = 1, . . . ,K. Therefore,

π(j, S)− π̂(j, S) ≥
K∑
k=1

θkujk

(
1− 1

1− α

)
·

( ∞∑
q=1

(
uk(S̄)

)q)

≥ −α2

1− α
·
K∑
k=1

θkujk ·

( ∞∑
q=0

(
uk(S̄)

)q)

=
−α2

1− α
· π(j, S), (9)

where the second inequality follows as uk(S̄) ≤ α for all k = 1, . . . ,K.

We would like to emphasize that the lower and upper bounds in Theorem 4.2 are approximate
and can be quite conservative in practice. For instance, in computing the lower bound on π̂(j, S)
in Lemma 4.3, we only considers a one-step substitution in the Markov chain to approximation the
stationary probability of state j ∈ S+ in Markov chainM(S). To further investigate this gap be-
tween theory and practice, we do a computational study to compare the performance of the Markov
chain model with the true underlying model. In the computational results, we observe that the per-
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formance of our model is significantly better than the theoretical bounds. The results are presented
in Section 6.

4.2. A Tight Example
We show that the bounds in Theorem 4.2 are tight. In particular, we prove the following theorem.

THEOREM 4.6. For any ε > 0, there is a MMNL choice model over N , S ⊆ N , j ∈ S such
that the approximation bound in Theorem 4.2 is tight up to a factor of nε.

PROOF. Consider the following MMNL choice model that is a mixture of two MNL models
each with probability 1/2, i.e., θ1 = θ2 = 1/2. Let u,v ∈ Rn+1

+ denote the utility parameters of
the two MNL models. Let n0 = (n− n1−ε). For all j = 0, . . . , n, let

uj =

 n2−ε, if j = 0
1, if j = 1 or j > n0

n− j + 1, otherwise

 and vj =

{
1, if j = 0 or j ≥ n0

j, otherwise.

}
Let S = {1}, j = 1. The true choice probability, π(1, S) > 1

4 . Let s1 =
∑n
j=0 uj = Θ(n2), s2 =∑n

j=0 vj = Θ(n2). For all j = 2, . . . , n, ρj1 = O
(

1
n2

)
, and

λj =


Θ

(
1

n

)
, if 2 ≤ j ≤ n0

Θ

(
1

n2

)
, otherwise

 and ρj0 =


Ω

(
1

n2ε

)
if j ≤ n0

Ω

(
1

n1+ε

)
otherwise


Let c, c1, c2 be some constants. Therefore, we can bound π̂(1, S) as follows.

π̂(1, S) ≤ π(1,N ) +

(
n0∑
i=2

λi

)
·

( ∞∑
q=0

(
1− c1

n2ε

)q)
· c
n2

+

n∑
i=n0

λi ·

( ∞∑
q=0

(
1− c2

n1+ε

)q)
· c
n2

≤ O

(
1

n2

)
+O

(
1

n2−2ε

)
+O

(
1

n2

)
= O

(
1

n2−2ε

)
· π(1, S), (10)

where the first inequality follows as ρj1 = O(1/n2) for all j = 2, . . . , n, ρj0 = Ω(1/n2ε) for all
j = 2, . . . , n0 and ρj0 = Ω(1/n1+ε) for j ≥ n0. Inequality (10) follows as π(1,N ) = O(1/n2),
and

∑n0

j=2 λj ≤ 1,
∑n
j=n0+1 λj ≤ O

(
1

n1+ε

)
. Also, (1−α(S̄)2) = Θ

(
1
n2

)
. From Theorem 4.2, we

have

π̂(1, S) ≥ (1− α2) · π(1, S) = Θ

(
1

n2

)
· π(1, S),

which implies that the lower bound is almost tight up to a factor of n2ε. �

It is important to note that the family of instances in Theorem 4.6 are pathological cases where
the parameters are carefully chosen to show that the bound is tight. The choice model is a mixture
of two MNLs where the MNL parameters of one class are increasing and the second class are
decreasing for almost all products. If we change the example slightly, we can observe that the
bounds in Theorem 4.2 are conservative.

5. ASSORTMENT OPTIMIZATION FOR MARKOV CHAIN MODEL
In this section, we consider the problem of finding the optimal revenue assortment for the Markov
chain based choice model. For any j ∈ N , let rj denote the revenue of product j. The goal in an
assortment optimization problem is to select an offer set S ⊆ N such that the total expected revenue
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is maximized, i.e.,

max
S⊆N

∑
j∈S

rj · π̂(j, S), (11)

where for all j ∈ S, π̂(j, S) is the choice probability of product j given by the Markov chain
model (3). [Rusmevichientong et al. 2010] show that the assortment optimization problem is NP-
hard for a general choice model, in fact even for a mixture of two MNL models.

We present a polynomial time algorithm for the assortment optimization problem (11) for the
Markov chain based choice model. The result is quite surprising as we can not even express the
choice probability π̂(j, S) for any S ⊆ N , j ∈ S+ using a simple functional form of the model
parameters. The computation of π̂(j, S) in (3) requires a matrix inversion where the coefficients of
the matrix depend on the assortment decisions.

We give an iterative algorithm that computes an optimal solution in a polynomial number of
iterations. The algorithm crucially exploits the fact that the choice model is specified by a Markov
chain. Therefore, if product i is the most preferable product for any customer, and it is not offered
in the assortment, then the customer substitutes to product j ∈ N+ (including the no-purchase
alternative) with probability ρij .

For all i ∈ N and S ⊆ N , let gi(S) denote the expected revenue from a customer that arrives
in state i (i.e. the most preferable product is i) when the offer set is S. If product i ∈ S, then the
customer selects product i and gi(S) = ri. Otherwise, the customer substitutes according to the
transitions in the Markov chain and gi(S) =

∑
j∈N Pijgj(S) and the total expected revenue for

offer set S is given by
∑
j∈N λj · gj(S). Therefore, we can reformulate the assortment optimiza-

tion (11) as follows.

max
S⊆N

∑
j∈N

λj · gj(S), (12)

where gj(S) denotes the expected revenue from a customer with most preferable product is j when
the offer set is S. This optimization problem is equivalent to selecting an optimal set of stopping (or
absorbing) states in the Markov chain,M.

Motivated by the reformulation (12), we consider the following approach. For all i ∈ N , let gi be
the maximum expected revenue that can be obtained from a customer whose first choice is product i,
where the maximization is taken over all offer sets. We can compute gi using an iterative procedure.
For t ∈ Z+, i ∈ N , let gti denote the maximum expected revenue starting from state i in at most
t state transitions where we can stop at any state. Stopping at any state j corresponds to selecting
product j resulting in revenue rj . Therefore, for all i ∈ N , g0

i = ri since the only possibility is to
stop at state i when no state transitions are allowed. Algorithm 1 describes an iterative procedure to
compute gj for all j ∈ N , by computing gtj for t ≥ 1 until they converge.

We show that Algorithm 1 computes an optimal assortment for the Markov chain based choice
model in a polynomial number of iterations. In particular, we prove the following theorem.

THEOREM 5.1. Algorithm 1 computes an optimal assortment for the assortment optimiza-
tion problem (12). Furthermore, the number of iterations is O

(
1/δ · log (rmax/rmin)

)
, where

δ = minj ρj0 > 0, rmax = maxj rj and rmin = minj rj .

To prove the above theorem, we first show that Algorithm 1 converges in a polynomial number
of iterations and correctly computes gj for all j ∈ N .

LEMMA 5.2. Consider g ∈ Rn as computed by Algorithm 1. Then for all j ∈ N , gj is the
maximum possible expected revenue from a customer arriving in state j.
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Algorithm 1 Compute optimal assortment for Markov chain Choice Model
1: Initialize: g0

j := rj for all j ∈ N , ∆ := 1, t := 0
2: while (∆ > 0) do
3: t := t+ 1
4: for i = 1→ n do

4: gti := max

ri, ∑
j 6=i

ρij · gt−1
j


5: end for
6: ∆ := ||gt − gt−1||∞
7: end while
8: Return:

(
g := gt, S := {j ∈ N | gj = rj}

)

PROOF. We first prove that for all t ∈ Z+, for all j ∈ N , gtj computed in Algorithm 1 is the
maximum expected revenue starting from state j after at most t state transitions, and gtj is increasing
in t. We prove this by induction.

Base Case (t = 0, t = 1). Clearly, g0
j = rj for all j ∈ N when no state transitions are allowed. For

t = 1, we can either stop in state j or stop after exactly one transition. Therefore, for all j ∈ N ,

g1
j = max

(
rj ,
∑
i∈N

ρji · ri

)
= max

(
rj ,
∑
i∈N

ρji · g0
i

)
≥ rj = g0

j .

Induction Step (t = T ). For any j ∈ N , the maximum expected revenue in at most T transitions
starting from state j is either obtained by zero state transition (i.e. stopping at state j) or at least one
transition. In the former case, the revenue is rj . For the latter, we transition to state iwith probability
ρji. From state i, we can make at most T − 1 transitions and by induction hypothesis, gT−1

i is the
maximum expected revenue that can be obtained starting from state i in at most T − 1 transitions.
Therefore, gTj for all j ∈ N computed in Algorithm 1 as

gTj = max

(
rj ,
∑
i∈N

ρji · gT−1
i

)
,

is the maximum expected revenue in at most T state transitions starting from state j. Also, by
induction hypothesis, gT−1

i ≥ gT−2
i for all i ∈ N . Therefore, for all j ∈ N .

gTj = max

(
rj ,
∑
i∈N

ρji · gT−1
i

)
≥ max

(
rj ,
∑
i∈N

ρji · gT−2
i

)
= gT−1

j .

Therefore, for all j ∈ N , gtj is an increasing sequence upper bounded by rmax = maxi∈N ri and it
converges to gj . This implies that Algorithm 1 correctly computes gj for all j ∈ N .

To prove that the algorithm converges in a small number of iterations, let δ =
mini∈N ρi0, and rmin = mini∈N ri. We assume that δ is polynomially bounded away from zero.
Therefore, in each transition, there is at least a probability of δ to transition to state 0 which cor-
responds to zero revenue. If starting from any state j, we stop after t transitions, the maximum
possible expected revenue is (1− δ)t · rmax. Therefore, if (1− δ)t · rmax ≤ rj , it is better to stop at
state j itself as compared to continuing the transitions. This implies that Algorithm 1 converges in
at most 1

δ · log
(
rmax

rmin

)
iterations. Since δ is polynomially bounded away from zero, the algorithm

converges in polynomial number of iterations. �
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Proof of Theorem 5.1 Suppose Algorithm 1 returns (g, S) where g = limt→∞ g
t, and S = {j ∈

N | gj = rj}. From Lemma 5.2, we know that for all j ∈ N , gj is the maximum expected revenue
starting from state j when we can stop at any state after any number of iterations. Recall that for any
Q ⊆ N , gj(Q) denotes the expected revenue starting from state j in Markov chainM(Q) where
all states in Q are absorbing states.

We claim that gj(S) = gj for all j ∈ N . Clearly, for any j ∈ S, gj = rj = gj(S). For all j /∈ S,
gj > rj . Therefore,

gj =
∑
i∈N

ρji · gi =
∑
i∈S

ρji · ri +
∑
i/∈S

ρjigi, ∀j /∈ S. (13)

Let C = ρ(S̄, S̄) be the probability transition sub-matrix from states in S̄ to S̄, and B = ρ(S̄, S).
Then, the above equation can be formulated as

(I −C)gS̄ = BrS , (14)

where gS̄ is the restriction of g to S̄ and similarly, rS is the restriction of r on S. Note that for all
j /∈ S, gj(S) also satisfy (13) and consequently (14). Since (I − C) is an M -matrix, (14) has a
unique non-negative solution which implies gj = gj(S) for all j ∈ N .

Now, consider an optimal assortment, S∗ for (12). Therefore, OPT = r(S∗) =
∑
j∈N λj ·gj(S∗)

where gj(S∗) is the expected revenue starting from state j and stopping on the set of states in S∗.
Clearly, for all j ∈ N , gj(S∗) ≤ gj . Therefore,

r(S) =
∑
j∈N

λj · gj(S) =
∑
j∈N

λj · gj ≥
∑
j∈N

λj · gj(S∗) = OPT,

where the second equality follows as gj(S) = gj for all j ∈ N , and the third inequality follows as
gj ≥ gj(S∗) for all j.

Therefore, Algorithm 1 computes an optimal assortment for the Markov chain choice model. If
the Markov chain model is estimated from data arising from an underlying MNL model, then the
Markov chain model is exact (Theorem 3.1). Therefore, optimal assortment for the Markov chain
model also corresponds to an optimal assortment for the underlying MNL model and we have the
following corollary.

COROLLARY 5.3. Suppose the parameters of the Markov chain based choice model, λj , ρij
for all i ∈ N , j ∈ N+ are estimated from data (using (1)) arising from an underlying MNL model.
Then Algorithm 1 computes an optimal assortment for the underlying MNL choice model.

5.1. Assortment Optimization for General Choice Models
In this section, we show that if the Markov chain model parameters are estimated from data arising
from a general random utility choice model, then the optimal assortment for the resulting Markov
chain model is a good approximation for the underlying choice model as well. Since a general
random utility based choice model can be approximated as closely as required by a mixture of
MNL model as [McFadden and Train 2000], we can assume wlog. that the underlying choice model
is a mixture of MNL model. In Theorem 4.2, we show that a mixture of MNL model can be well
approximated by a Markov chain model. Therefore, an optimal assortment for the corresponding
Markov chain model can be a good approximation for the underlying mixture of MNL model. In
particular, we prove the following theorem.

THEOREM 5.4. Suppose the parameters of the Markov chain model are estimated from data
arising from an underlying mixture of MNL model, π(·, ·). Let S∗ be an optimal assortment for the
mixture of MNL model and let S be an optimal assortment for the Markov chain model computed
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using Algorithm 1. Then

∑
j∈S

π(j, S) · rj ≥
(1− (α(S̄∗))2)(1− α(S̄))

1− α(S̄) + (α(S̄))2
·

∑
j∈S∗

π(j, S∗) · rj

 .

where α(·) is as defined in (7).

PROOF. Suppose the underlying mixture model is a mixture of K MNL segments with param-
eters ujk for j = 0, . . . , n and k = 1, . . . ,K. We can assume wlog. that u0k + . . . + unk = 1 for
all k = 1, . . . ,K. Let the Markov chain parameters λj , ρij for all i = 1, . . . , n and j = 0, . . . , n
be estimated as in (1) and let π̂(·, ·) denote the choice probabilities computed from the Markov
chain model (3). Therefore, we know that the assortment S computed by Algorithm 1 maximizes∑
j∈S π̂(j, S)rj . Let α1 =

(
1 + α(S̄)2

1−α(S̄)

)
, α2 = (1− α(S̄∗)2). From Theorem 4.2, we know that

π̂(j, S) ≤ α1 · π(j, S), ∀j ∈ S, and π̂(j, S∗) ≥ α2 · π(j, S∗), ∀j ∈ S∗. (15)

Then∑
j∈S

π(j, S) · rj ≥
1

α1
·
∑
j∈S

π̂(j, S) · rj ≥
1

α1
·
∑
j∈S∗

π̂(j, S∗) · rj ≥
α2

α1
·
∑
j∈S∗

π(j, S∗) · rj ,

where the first inequality follows from (15). The second inequality follows as S is an optimal as-
sortment for the Markov chain choice model, π̂ and the last inequality follows from (15). �

The performance bound of the assortment, S computed from the Markov chain choice model
depends on α(S̄∗) and α(S̄) where S∗ is the optimal assortment for the true model. If size of either
S or S∗ is o(n) (say less than

√
n), the performance bound in Theorem 5.4 is not good. In this case,

we can recalibrate the Markov chain model by estimating the transition probability matrix only for
the states in S and ignoring the other states. Then, we can recompute an optimal assortment for the
new Markov chain choice model.

6. COMPUTATIONAL RESULTS
In this section, we present a computational study on the performance of the Markov chain choice
model in modeling random utility based discrete choice models. In Theorem 4.2, we present theo-
retical bounds on the relative error between the choice probabilities computed by the Markov chain
model and the true choice probability. While in Theorem 4.6, we present a family of instances where
the bound is tight but these can be conservative in general. In this computational study, we compare
the performance of the Markov chain choice model for random instances of the mixture of MNLs
model.

We generate random instances of the mixture of MNLs model and estimate the Markov chain
parameters, λi, i ∈ N and transition probabilities, ρij , i ∈ N , j ∈ N+ using the choice probability
data for only assortments S = {N ,N \ {i} |; i = 1, . . . , n} using (1). We then compare the choice
probability compute by the Markov chain model with the true choice probability for out of sample
offer sets, S ⊆ N where S /∈ S.

Random MMNL instances. We generate the random instances of the MMNL model as follows.
Let n denote the number of products andK denote the number of customer segments in the MMNL
model. For each k = 1, . . . ,K, the MNL parameters of segment k, u0k, . . . , unk are i.i.d samples
of the uniform distribution in [0, 1]. Also, for all k = 1, . . . ,K, the probability of segment k,
θk = 1/K.

For a random instance, we only use the choice probability data for assortments S = {N ,N \
{i} |; i = 1, . . . , n} to compute the Markov chain choice model parameters as described in (1).
We would like to reemphasize that in estimating the parameters for the Markov chain model, we
do not require any knowledge of the MMNL model parameters or even the number of segments
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Table I. Relative Error in choice probabilities of the
Markov chain model and the MNL model with re-
spect to true MMNL choice model with random pa-
rameters. Here n is the number of products and K
is the number of segments in the MMNL model

n K errMNL(%) errMC(%)

1. 10 3 12.53 3.10

2. 20 3 11.07 2.42

3. 30 4 8.62 2.52

4. 40 4 4.87 2.42

5. 60 5 4.24 1.96

6. 80 5 6.66 1.60

7. 100 5 4.78 1.63

8. 150 6 4.09 1.26

9. 200 6 3.70 1.14

10. 500 7 2.21 0.81

11. 1000 7 1.43 0.65

Table II. Relative Error in choice probabilities of
the Markov chain and the MNL models with re-
spect to the random permutation MMNL choice
model

n K errMNL(%) errMC(%)

1. 10 3 7.38 3.15

2. 20 3 6.07 2.74

3. 30 4 6.71 3.02

4. 40 4 5.48 2.51

5. 60 5 4.01 1.81

6. 80 5 3.96 1.82

7. 100 5 3.20 1.51

8. 150 6 2.92 1.39

9. 200 6 2.78 1.33

10. 500 7 1.70 0.82

11. 1000 7 1.28 0.62

K in the MMNL model. In addition, we also consider the MNL approximation of the MMNL
model where we approximate the MMNL model by a single MNL model with parameters vj =∑K
k=1 θkujk, ∀j = 0, . . . , n. In the computational experiments, we also compare the performance

of the MNL approximation with the true MMNL choice probability.

Experimental Setup. To compare the out of sample performance of the Markov chain model and
MNL approximation, we generate T random offer sets of size between n/3 and 2n/3 and compare
the choice probability computed by the Markov chain model with the true choice probability. We
use n ≥ 10, K = dlog ne and T = 500. For all assortments S1, . . . , ST , we compute the maximum
relative errors of the choice probability of the Markov chain model and MNL approximation with
respect to the true choice probability. For any S ⊆ N , j ∈ S+, let πMC(j, S), πMNL(j, S), and
π(j, S) denote the choice probability of the Markov chain model, approximate MNL model, and
the true MMNL model respectively. Then for all t = 1, . . . , T ,

errMC(t) = 100·max
j∈St

|πMC(j, St)− π(j, St)|
π(j, St)

, errMNL(t) = 100·max
j∈St

|πMNL(j, St)− π(j, St)|
π(j, St)

,

and let errMC and errMNL denote the average maximum relative error over T subsets.
We present the computational results for the average maximum relative error in Table I. We

observe that the relative error of the choice probability computed by the Markov chain model with
respect to the true MMNL choice probability is less than 3.2% for all values of n,K presented in the
table. Moreover, the Markov chain model performs significantly better than the MNL approximation
for the MMNL model; for all value of n and K in our computational experiments, the relative error
for the MNL approximation is more than twice the relative error for the Markov chain model. We
would also like to note that the average size of the offer sets, S1, . . . , ST is approximately n/2.
Therefore, |S̄t| and α(S̄t) is large on average and the approximation bounds in Theorem 4.2 are
quite conservative as compared to the computational experiments.

Alternate Family of Random MMNL Instances. We consider another random family of instances
of the mixture of MNLs model to compare the performance of the Markov chain choice model.
Motivated by the bad example in Theorem 4.6 that shows that the tightness of approximation bounds
for the Markov chain model, we consider the following family of MMNL instances. As before, let
K denote the number of customer segments each occurring with probability 1/K. For the first two
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segments, the parameters are given by

uj1 = j + 1, uj2 = n+ 1− j, ∀j = 0, . . . , n,

i.e. the MNL parameters belong to {1, . . . , n + 1} and are in increasing order for segment 1 and
in decreasing for segment 2. For segments k = 3, . . . ,K, the ujk, j = 0, . . . , n are a random
permutation of {1, . . . , n + 1}. This construction is similar to the structure of the bad example in
Theorem 4.6 that is a mixture of two MNL models with increasing parameters for one model and
decreasing for another for almost all the products.

As before, we use n ≥ 10, K = dlog ne, and generate T = 500 random offer sets of size
between n/3 and 2n/3. For each offer set St, t = 1, . . . , T , we compute the maximum relative
error in πMC(j, St) and πMNL(j, St) with respect to the true MMNL choice probability, π(j, St).
We present our results in Table II. The computational results are similar to the other family of
random MMNL instances with relative error less than 3.2% for the Markov chain model for all
values of n,K. Furthermore, as in the other case, the relative error of the Markov chain model is
significantly lower (less than a factor half) than that of the MNL approximation.

Therefore, on these set of instances, the Markov chain model is an extremely good approximation
of the choice probabilities of the MMNL model. Since we get a very good approximation of the
choice probabilities using the Markov chain model, Algorithm 1 can be used to also obtain a good
approximation for the assortment optimization problem for the MMNL model.

7. CONCLUDING REMARKS
In this paper, we address the problem of selecting the “right” choice model from the data and intro-
duce a tractable Markov chain based model. This model is based on a new primitive for substitution
behavior where substitutions from one product to another are modeled as Markovian transitions
between the states corresponding to the two products. We give a data-driven procedure to estimate
the parameters for the Markov chain choice model that does not require any knowledge of the un-
derlying choice model except the choice probability data for certain collection of assortments. We
also show that if the data comes from an underlying MNL model, we show that the Markov chain
model is exact, i.e., the choice probabilities computed by the Markov chain model are equal to the
true choice probabilities for all offer sets. Furthermore, we show that under mild assumptions, the
Markov chain model is a good approximation for general random utility based choice models and
we give approximation bounds and a family of instances that show that the bound is tight. We also
consider the assortment optimization problem for the Markov chain choice model and present a
policy iteration based algorithm that computes the optimal assortment in polynomial time.

In addition to the theoretical bounds, we also present computational results to compare the perfor-
mance of the Markov chain model. Our results show that for random instances of the MMNL model,
the Markov chain model performs extremely well and the relative error for all values of n,K in our
experiments is less than 3.2%. The empirical performance is significantly better than the theoretical
bounds. The theoretical and computational results presented in this paper make the Markov chain
model a promising practical data-driven approach to modeling choice. In this paper, we present es-
timation procedures for the Markov chain model assuming we have noiseless and complete data for
certain collection of assortments. An important future step would be to study statistical estimation
methods to compute Markov chain model parameters from partial noisy data that is typical in most
practical applications.
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APPENDIX
Proof of Lemma 4.3 Let λ(S) denote the vector of choice probabilities for j ∈ S+ and λ(S̄)

denote the choice probabilities for j /∈ S. Therefore, λT = [λ(S)T λ(S̄)T ]. From Theorem 2.1,
we know that

π̂(j, S) = λj +
(
λ(S̄)

)T
(I −C)

−1
Bej

= λj + λ(S̄)T

( ∞∑
t=0

Ct

)
Bej

≥ λj + λ(S̄)TBej = λj +
∑
i∈S̄

λiρij ,

where the second last inequality follows as Cij ≥ 0 for all i, j ∈ S̄ and λ ≥ 0. Using (1), for any
i ∈ S̄, we can compute

ρij =

K∑
k=1

θkuik
π(i,N )

· ujk
1− uik

.

Therefore,

π̂(j, S) ≥ λj +
∑
i∈S̄

λi ·

(
K∑
k=1

θkuik
π(i,N )

· ujk
1− uik

)

= π(j,N ) +
∑
i∈S̄

π(i,N )

(
K∑
k=1

θkuik
π(i,N )

· ujk
1− uik

)

=

K∑
k=1

θkujk +
∑
i∈S̄

K∑
k=1

θk · uik ·
ujk

1− uik

=

K∑
k=1

θkujk

1 +
∑
i∈S̄

uik
1− uik


=

K∑
k=1

θkujk

1 +
∑
i∈S̄

( ∞∑
q=1

(uik)q

) ,

where the second equality follows as λj = π(j,N for all j ∈ N+ and (16) follows from the
definition of π(j,N ) for the mixture of MNL model. The last equality follows as uik < 1 for all
i ∈ N+, k = 1, . . . ,K.

Proof of Lemma 4.4 From Theorem 2.1, we know that

π̂(j, S) = λj +
(
λ(S̄)

)T
(I −C)

−1
Bej

= λj +

∞∑
q=0

λ(S̄)TCqBej .

We claim that for any q ∈ Z+,

λ(S̄)TCqBej ≤ γq · λ(S̄)TBej , (16)
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where γ is the maximum eigenvalue ofC = ρ(S̄, S̄). Note thatC is a M -matrix with all row sums
strictly less than one. Therefore, γ is also strictly less than one. Now,

π̂(j, S) = λj +

∞∑
q=0

λ(S̄)TCqBej

≤ λj +

∞∑
q=0

γqλ(S̄)TBej (17)

= λj +
1

1− γ
· λ(S̄)TBej

= π(j,N ) +
1

1− γ
·
∑
i∈S̄

π(i,N )ρij (18)

=

K∑
k=1

θkujk +
1

1− γ
·
∑
i∈S̄

π(i,N )

(
K∑
k=1

θkuik
π(i,N )

· ujk
1− uik

)
(19)

=

K∑
k=1

θkujk

1 +
1

1− γ
·
∑
i∈S̄

uik
1− uik


=

K∑
k=1

θkujk

1 +
1

1− γ
·

∑
i∈S̄

∞∑
q=1

(uik)q

 ,

where (17) follows from (16). Equations(18) and (19) follows from substituting the values of the
parameters λj and ρij for all i ∈ S̄.

Proof of Lemma 4.5 Note that α < 1 since u0k > 0 for all k = 1, . . . ,K. For any i, j ∈ S̄, i 6= j,
Cij = ρij > 0 and Cii = 0. Therefore, C is irreducible since C2

ij > 0 for all i, j ∈ S̄. From
Perron-Frobenius theorem ([Perron 1907]), this implies that the maximum eigenvalue of C is at
most

max
i∈S̄

∑
j∈S̄

Cij = max
i∈S̄

∑
j∈S̄

ρij

= max
i∈S̄

∑
j∈S̄,j 6=i

K∑
k=1

θkuik
π(i,N )

· ujk
1− uik

= max
i∈S̄

K∑
k=1

θkuik
π(i,N )

·
∑
j∈S̄,j 6=i ujk

1− uik

≤ max
i∈S̄

K∑
k=1

θkuik
π(i,N )

· α− uik
1− uik

(20)

< αmax
i∈S̄

K∑
k=1γ

θkuik
π(i,N )

· 1− uik/α
1− uik

≤ α,

where (20) follows as uk(S̄) ≤ α < 1 for all k = 1, . . . ,K, and the last inequality follows as
θkuik ≤ π(i,N )
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