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Abstract In this paper, we address the following probabilistic version (PSC) of the
set covering problem: min{cx | P(Ax ≥ ξ) ≥ p, x ∈ {0, 1}N } where A is a 0-1 matrix,
ξ is a random 0-1 vector and p ∈ (0, 1] is the threshold probability level. We introduce
the concepts of p-inefficiency and polarity cuts. While the former is aimed at deriving
an equivalent MIP reformulation of (PSC), the latter is used as a strengthening device to
obtain a stronger formulation. Simplifications of the MIP model which result when one
of the following conditions hold are briefly discussed: A is a balanced matrix, A has the
circular ones property, the components of ξ are pairwise independent, the distribution
function of ξ is a stationary distribution or has the disjunctive shattering property. We
corroborate our theoretical findings by an extensive computational experiment on a
test-bed consisting of almost 10,000 probabilistic instances. This test-bed was created
using deterministic instances from the literature and consists of probabilistic variants
of the set covering model and capacitated versions of facility location, warehouse
location and k-median models. Our computational results show that our procedure is
orders of magnitude faster than any of the existing approaches to solve (PSC), and in
many cases can reduce hours of computing time to a fraction of a second.
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1 Introduction

In this paper, we address the following probabilistic variant of the set covering pro-
blem,

min cx
s.t

P(Ax ≥ ξ) ≥ p
x j ∈ {0, 1} j ∈ N

(PSC)

where A is a 0-1 matrix defined on row-index set M and column-index set N , ξ is a 0-1
random M-vector, p ∈ (0, 1] is the value of the threshold probability (also called the
reliability level) and c ∈ R

N is the cost vector. Indeed, if we replace the probabilistic
constraint P(Ax ≥ ξ) ≥ p in (PSC) by Ax ≥ 1 we recover the well-known set
covering problem.

(PSC) belongs to a class of optimization problems commonly referred to as proba-
bilistic programs. Probabilistic programming was introduced by Charnes and Cooper
[7] in the late fifties and has since then been studied extensively [19]. We refer the
reader to Prékopa [20] for a review of recent developments in this area. (PSC) is a
very challenging problem in the field of stochastic mixed integer programming which
combines inherent complexity of both mixed integer programming and stochastic pro-
gramming. Several set covering models which can be solved in a matter of seconds by
state-of-art MIP solvers (such as CPLEX or XPRESS) can give rise to probabilistic
problems which can take several minutes (at times hours) to solve [5]. One of the
notions which has played a pivotal role in the algorithmic development of (PSC) is
that of p-efficiency. Originally introduced by Prékopa [18], the concept of p-efficiency
of a discrete probability distribution has been the focus of intense research in recent
years [5,6,12,16,21].

In a recent development, Beraldi and Ruszczyński [5] proposed an algorithm to
solve (PSC). Their algorithm involves enumerating the complete set of p-efficient
points of the distribution, and then solving a deterministic set covering problem for
each one of the p-efficient points. Some discrete distributions can have an extremely
large number of p-efficient points, even at a high reliability level, which makes the
enumeration phase very expensive. Solving MIPs from each one of these p-efficient
points is a different proposition altogether. Beraldi and Ruszczyński [5] experimen-
ted with some hybrid techniques to improve their algorithm, but concluded that the
enumeration of p-efficient points continued to be the bottleneck in their procedure.

In this paper, we focus on the case when the random variable ξ can be decom-
posed into L blocks say {ξ1, . . . , ξ L} such that ξ t is a 0-1 random Mt -vector for
t ∈ {1, . . . , L} (where M1, . . . , ML is a partition of M), and ξ i and ξ j are independent
random vectors for distinct i, j . While the idea of using random variables which have
this kind of block structure was originally proposed by Beraldi and Ruszczyński [5]
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to construct a test-bed of problem instances for (PSC), its detailed theoretical and
computational investigation is presented for the first time in the current paper. In parti-
cular, we show that in the presence of this additional structure the enumeration phase
in the algorithm of [5] can be encoded as a mixed integer program thereby combi-
ning (MIPing1) the two phases into one integrated MIP. Expressing the enumeration
problem as a mixed integer program allows us to use a state-of-art MIP solver to per-
form efficient enumeration thereby reaping the benefits of developments in the field of
mixed-integer programming. Indeed, our computational experiments conducted over a
test-bed of almost 10,000 probabilistic instances demonstrate that (PSC) derived from
simple and moderately difficult set covering problems can themselves be formulated
as simple or moderately difficult MIPs. As a byproduct of our research, we introduce
the concept of p-inefficiency and polarity cuts. While the former is aimed at reducing
the number of constraints in our model, the latter is used as a strengthening device to
obtain stronger formulations.

Recently, Luedtke et al. [17] studied the linear programming problem with proba-
bilistic right-hand sides. While being closely related, there are two crucial differences
between our work and the one presented in [17]. First, the underlying deterministic
problem in our case, namely the set covering problem, is itself a NP-hard problem,
whereas the corresponding problem in the framework of [17] is the polynomially sol-
vable linear programming problem. Second, we do not make any assumptions about
the distribution function of ξ t except that the underlying random variable is 0-1 valued;
Luedtke et al. [17], on the other hand, place no restrictions on the domain of the random
variable but assume that it has a finite distribution.

The rest of the paper is organized as follows. In Sect. 2 we introduce the notion of
p-inefficiency and use it to construct a MIP reformulation of (PSC). We also discuss
simplifications of the MIP reformulation which arise when A is a balanced matrix
or has the circular ones property. In Sect. 3 we discuss a class of cutting planes for
(PSC), which we refer to as polarity cuts. We derive a linear programming based
separation algorithm for these cuts and discuss techniques to reduce the coefficient
matrix densities of the resulting linear programs. The MIP reformulation introduced
in Sect. 2 involves enumeration of the p-inefficient frontier of the distribution of ξt for
t ∈ {1 . . . L}. Special properties of the distribution functions can at times be used to
circumvent this enumeration phase. In Sect. 4 we discuss one such distribution, namely
the stationary distribution, and give a compact (polynomial sized) MIP reformulation
of (PSC) for this special case. We generalize the notion of stationary distribution and
characterize a large class of distributions which share this property. Finally, we dis-
cuss our computational results in Sect. 5. We corroborate our theoretical findings by
a computational experiment conducted on a test-bed consisting of almost 10,000 pro-
babilistic instances. This test-bed was constructed from probabilistic variants of set
covering models and capacitated versions of facility location, warehouse location and
k-median models. In Sect. 6 we present some concluding remarks. Detailed compu-
tational results and proofs of some of the results presented in this paper can be found
in [22].

1 The phrase MIPing was coined by Matteo Fischetti and Andrea Lodi at the Ninth International meeting
on Combinatorial Optimization (2005) at Aussois, France.
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2 MIP formulation

In this section we discuss a mixed integer programming formulation of (PSC). Hen-
ceforth, for z ∈ R

M we denote by zt the sub-vector of z formed by components in Mt

for t = 1 . . . L . Furthermore, let F : {0, 1}M → R denote the cumulative distribution
function of ξ and let Ft denote the restriction of F to Mt for t = 1 . . . L . In other
words, for z ∈ {0, 1}M , F(z) = P(ξ ≤ z) and Ft (zt ) = P(ξ t ≤ zt ). In order to
express the formulation succinctly we need the following definition.

Definition 2.1 A point v ∈ {0, 1}m is called a p-inefficient point of the probability
distribution function F if F(v) < p and there is no binary point w ≥ v, w �= v

such that F(w) < p. The set of all p-inefficient points of F is called the p-inefficient
frontier of F .

The notion of p-inefficiency is closely related to the notion of p-efficiency intro-
duced by Prékopa [18]. A point v ∈ {0, 1}m is called a p-efficient point of the dis-
crete probability distribution function F if F(v) ≥ p and there is no binary point
w ≤ v, w �= v such that F(w) ≥ p. The set of all p-efficient points of F is called the
p-efficient frontier of F . If S is the set of binary vectors which are either p-efficient
or dominate2 a p-efficient point, and T is the set of binary vectors which are either
p-inefficient or are dominated by a p-inefficient point, then {S, T } defines a partition
of the lattice {0, 1}m .

For t ∈ {1 . . . L}, let St denote the set of binary vectors which are either p-efficient
or dominate a p-efficient point of Ft and let It denotes the set of p-inefficient points
of Ft . The theorem that follows gives a MIP reformulation of (PSC).

Theorem 2.2 (PSC) can be reformulated as the following mixed integer program.

min(x,z,η) cx
s.t

Ax ≥ z
∑L

t=1 ηt ≥ ln p

ηt ≤ (ln Ft (v))
(
1−∑

i∈Mt ,vi =0 zi

)
∀v∈ St ∀t ∈{1 . . . L}

1 ≤ ∑
i∈Mt ,vi =0 zi ∀v∈ It ∀t ∈{1 . . . L}

x j ∈ {0, 1} ∀ j ∈ N
zi ∈ {0, 1} ∀i ∈ M

(MIP1)

Proof Suppose x is a feasible solution to (PSC). Let zi = min(aT
i x, 1) i ∈ M , where ai

denotes the i th row of A; zi = 1 if and only if the i th row of A is covered by x . Let ηt =
ln Ft (zt ) for t ∈ {1 . . . L}. Note that p ≤ P(Ax ≥ ξ) = P(z ≥ ξ) = �L

t=1 Ft (zt ) and

ln p ≤ ∑L
t=1 ln Ft (zt ) = ∑L

t=1 ηt . Let t ∈ {1 . . . L} and v ∈ St ∪It . If v ∈ It then zt
�

v (since Ft (zt ) ≥ p) and
∑

i∈Mt ,vi =0 zi ≥ 1. If v ∈ St and
∑

i∈Mt ,vi =0 zi ≥ 1 then

ηt ≤ (ln Ft (v))
(

1 − ∑
i∈Mt ,vi =0 zi

)
is trivially satisfied; if

∑
i∈Mt ,vi =0 zi = 0 then

zt ≤ v and ηt = ln Ft (zt ) ≤ ln Ft (v). Hence (x, z, η) is a feasible solution to (MIP1).

2 If x, y ∈ {0, 1}M then x is said to dominate y if x ≥ y.
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Fig. 1 Number of points above the p-inefficient frontier

Conversely, suppose (x, z, η) is a feasible solution to (MIP1). If zt /∈ St then ∃v ∈ It

such that zt ≤ v,
∑

i∈Mt ,vi =0 zi = 0, contradicting the feasibility of (x, z, η); hence
zt ∈ St ∀t ∈ {1 . . . L}. By choosing v = zt ∈ St , we get ηt ≤ (ln Ft (v))

(
1 −

∑
i∈Mt ,vi =0 zi

) = ln Ft (zt ). Since ln p ≤ ∑L
t=1 ηt ≤ ∑L

t=1 ln Ft (zt ), it follows that

p ≤ �L
t=1 Ft (zt ) = F(z) = P(Ax ≥ ξ), and x is a feasible solution to (PSC). 	


Note that (MIP1) has constraints arising only from points which are either
p-inefficient or dominate a p-inefficient point of Ft . In theory, the number of such
points can be exponential; however, in practice the number of such points is only a
small fraction of the total number of lattice points.

Figure 1 shows this information graphically for two distributions, namely Circular
and Star (see [5] for the definition of these distributions). The horizontal axis represents
the reliability level p, whereas the vertical axis gives the number of points which are
either p-inefficient or dominate a p-inefficient point, averaged over 1,000 randomly
generated instantiations (block size = 10) of the Circular and Star distributions. Note
that, even at a reliability level of 0.8 less than 20% of the lattice points qualified the
above condition. As an interesting consequence of this observation, it follows that
our model can handle significantly large block sizes provided there exists an efficient
algorithm to enumerate points which lie on or above the the p-inefficient frontier. Such
an enumeration algorithm, clearly, would need to exploit properties of the specific
distribution involved and its investigation goes beyond the scope of this paper.

Let (MIP1’) denote the relaxation of (MIP1) obtained by replacing the integrality
conditions on z variables by 0 ≤ z ≤ 1. Let opt(MIP1) and opt(MIP1’) denote the
optimal values of (MIP1) and (MIP1’), respectively. The proposition that follows
shows that (MIP1’) is also a valid reformulation of (PSC).

Proposition 2.3 opt (M I P1) = opt (M I P1′).

Proof It suffices to show that opt (M I P1) ≤ opt (M I P1′). Suppose (x, z, η) is an
optimal solution to (MIP1’). Let z̄ ∈ {0, 1}M be defined as, z̄i = 1 if and only if
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aT
i x ≥ 1 where ai denotes the i th row of A for i ∈ M . Note that for v ∈ St ∪ It (t =

1 . . . L),
∑

i∈Mt ,vi =0 zi ≤ ∑
i∈Mt ,vi =0 z̄i , which implies that (x, z̄, η) is also a feasible

solution to (MIP1), and opt (M I P1) ≤ opt (M I P1′). 	


(MIP1) and (MIP1’) provide two contrasting alternatives to solve (PSC). While
(MIP1’) has fewer number of binary variables, the integrality constraints on the z
variables in (MIP1) can be used to generate strong valid cutting planes which might
assist the overall solution procedure. We used a hybrid model in our experiments
which combines the attractive features of both of these models. In Sect. 3 we discuss
a class of strong valid cutting planes for the (MIP1) formulation, called polarity cuts,
which do not cut off the optimal solution to (MIP1’). In our computational experiments
we strengthened the (MIP1’) formulation at the root node by these polarity cuts, and
then applied CPLEX to the strengthened formulation. As our computational results
(Sect. 5) demonstrate, this hybrid model is substantially better than (MIP1) or (MIP1’),
considered individually.

There is a crucial difference between our approach and the one pursued in [5]. For the
sake of discussion, consider the case of one block (L = 1). In this case, while both of
these approaches entail enumeration of the p-efficient frontier [5] or of the points which
lie on or above the p-inefficient frontier (MIP1’), the manner in which the enumerated
points are used in the respective algorithm is entirely different. The solution approach
in [5] potentially involves the solution of a mixed-integer program for every point on the
p-efficient frontier whereas our approach favors utilizing these points in constructing
an equivalent MIP reformulation (MIP1’) of (PSC). Alternatively, (MIP1’) can be
viewed as encoding the enumerative aspect in the algorithm of [5] by using auxiliary
continuous variables (z, η) thereby facilitating the MIP solver to perform efficient
enumeration. Indeed as the number of blocks L increases, the approach in [5] becomes
prohibitively expensive as compared to our approach, since it involves computation
of the p-efficient frontier of the distribution of ξ which can grow exponentially even
if |St ∪ It | is polynomially bounded for t ∈ {1 . . . L} (see Sect. 5).

Next we illustrate Theorem 2.2 on a small example. Consider the following pro-
babilistic set covering problem in which the reliability level p is equal to 0.8 and the
right-hand side is a 5-dimensional random 0-1 vector whose cumulative distribution
function is given in Table 1.

min
5∑

j=1

x j

s.t

P

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

x1 + x2 ≥ ξ1

x2 + x3 ≥ ξ2

x3 + x4 ≥ ξ3

x4 + x5 ≥ ξ4

x5 + x1 ≥ ξ5

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

≥ 0.8

x j ∈ {0, 1} j = 1, . . . , 5

(2.1)
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Table 1 Cumulative probability
distribution

0-1 Vector v P(ξ ≤ v) ln P(ξ ≤ v) Type of v

00000 0.36834 −0.99876 T

00001 0.36834 −0.99876 T

00010 0.36834 −0.99876 T

00011 0.37243 −0.98769 T

00100 0.36834 −0.99876 T

00101 0.36834 −0.99876 T

00110 0.95672 −0.04424 S

00111 0.96736 −0.03318 S

01000 0.36834 −0.99876 T

01001 0.36834 −0.99876 T

01010 0.36834 −0.99876 T

01011 0.37243 −0.98769 T

01100 0.37243 −0.98769 T

01101 0.37243 −0.98769 T

01110 0.96736 −0.03318 S

01111 0.97812 −0.02212 S

10000 0.36834 −0.99876 T

10001 0.37243 −0.98769 T

10010 0.36834 −0.99876 T

10011 0.37658 −0.97663 T

10100 0.36834 −0.99876 T

10101 0.37243 −0.98769 T

10110 0.95672 −0.04424 S

10111 0.97812 −0.02212 S

11000 0.37243 −0.98769 T

11001 0.37658 −0.97663 T

11010 0.37243 −0.98769 T

11011 0.38077 −0.96557 I

11100 0.37658 −0.97663 T

11101 0.38077 −0.96557 I

11110 0.97812 −0.02212 S

11111 1.00000 0.00000 S

The first column of the table contains a 5-dimensional binary vector v, the second
column gives the value of P(ξ ≤ v) while the third column contains ln P(ξ ≤ v). The
fourth column categorizes the binary vector v into one of the following three categories;
(S): v is either p-efficient or dominate a p-efficient point, (I ): v is p-inefficient and
(T ): v is dominated by a p-inefficient point. The distribution represented by Table 1 has
8 points of type S and 2 points of type I . The (MIP1) formulation for this probabilistic
instance is given by,
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min
5∑

j=1
x j

s.t
x1 + x2 ≥ z1
x2 + x3 ≥ z2
x3 + x4 ≥ z3
x4 + x5 ≥ z4
x5 + x1 ≥ z5

η1 ≥ −0.22314 (ln 0.8 = −0.22314)

η1 ≤ −0.04424(1 − z1 − z2 − z5)

η1 ≤ −0.03318(1 − z1 − z2)

η1 ≤ −0.03318(1 − z1 − z5)

η1 ≤ −0.04424(1 − z2 − z5)

η1 ≤ −0.02212(1 − z1)

η1 ≤ −0.02212(1 − z2)

η1 ≤ −0.02212(1 − z5)

η1 ≤ 0
z3 ≥ 1
z4 ≥ 1
x j ∈ {0, 1} j = 1 . . . 5
zi ∈ {0, 1} i = 1 . . . 5

(2.2)

In some special cases, structural properties of the matrix A can be used to design
MIP reformulations of (PSC) with fewer number of binary variables as compared to
(MIP1). The proposition that follows gives example of one such property. Recall that a
0-1 matrix A has the circular ones property if in every row either the ones or zeros are
consecutive. Set covering models involving 0-1 matrices with circular ones property
often arise in scheduling problems [3].

Proposition 2.4 If A has the circular ones property, then (MIP1) can be reformulated
as, (n = |N |)

min(x,z,η,y) cx
s.t

Ax ≥ z
∑L

t=1 ηt ≥ ln p

ηt ≤ (ln Ft (v))
(

1 − ∑
i∈Mt ,vi =0 zi

)
∀v ∈ St ∀t ∈ {1 . . . L}

1 ≤ ∑
i∈Mt ,vi =0 zi ∀v ∈ It ∀t ∈ {1 . . . L}

∑
j∈N x j = y

x j ≤ 1 j ∈ N
x j ≥ 0 j ∈ N
zi ∈ {0, 1} ∀i ∈ M
y ∈ {0, 1, . . . , n}

(2.3)
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A fundamental question in polyhedral combinatorics is to determine necessary and
sufficient conditions under which optimal value of the relaxation R of a combinatorial
optimization problem P coincides with the optimal value of P . For instance, it is well
known that the LP relaxation of a pure integer program has integer optimal solution
for every choice of the cost vector and right-hand side, if and only if the coefficient
matrix of the integer program is Totally Unimodular. The proposition that follows
gives a similar result about (PSC). Recall that a 0-1 matrix A is ideal if the polytope
{x | Ax ≥ 1, 0 ≤ x ≤ 1} is integral. Similarly, a 0-1 matrix A is balanced if every
submatrix of A is ideal (Theorem 6.1 of Cornuejols [11]; see also [10]).

Proposition 2.5 Let (R1) denote the relaxation of (MIP1) obtained by replacing the
integrality constraints on x variables by 0 ≤ x ≤ 1. Given a 0-1 matrix A, the
following two statements are equivalent.

1. opt(R1)= opt(MIP1) for every cost vector c, cumulative distribution function F
and threshold probability p.

2. A is a balanced matrix.

3 Polarity cuts

For the sake of brevity, we assume in this section that (PSC) has only one block (L = 1),
unless otherwise stated. The results discussed here can be easily extended to the more
general case (L ≥ 1) by applying them to each one of the blocks independently.
Recall that I denotes the set of p-inefficient points of F and S denotes the set of 0-1
points which are either p-efficient or dominate a p-efficient point of F . Consider the
following set of constraints which constitute (MIP1).

η ≤ (ln F(v))

⎛

⎝1 −
∑

i∈M,vi =0

zi

⎞

⎠ ∀v ∈ S (3.4)

∑

i∈M,vi =0

zi ≥ 1 ∀v ∈ I (3.5)

zi ∈ {0, 1} ∀i ∈ M (3.6)

Let P = clconv{(z, η) | z ∈ {0, 1}M , η ≤ ln F(z), F(z) ≥ p} denote the closed
convex hull of the set of points (z, η) which satisfy (3.4–3.6). A central question in
polyhedral analysis is to examine the strength of the defining inequalities (3.4), (3.5)
with respect to the underlying integer hull P .

For the sake of discussion, consider the example (2.1) introduced in Sect. 2. We
generated the following complete minimal description of P using the PORTA [8]
software.

η ≤ −0.04424 + 0.02212z1 + 0.01106z2 + 0.01106z5

η ≤ −0.04424 + 0.01106z1 + 0.02212z2 + 0.01106z5

η ≤ −0.04424 + 0.01106z1 + 0.01106z2 + 0.02212z5
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η ≤ −0.04424 + 0.02212z2 + 0.02212z5

z3 = 1

z4 = 1

0 ≤ z1 ≤ 1

0 ≤ z2 ≤ 1

0 ≤ z5 ≤ 1

Each one of the above inequalities defines a facet of P . Note that the constraints
in the MIP1 formulation (2.2) derived from points in S do not define facets of P;
in fact, they do not even define non-empty faces of P . Indeed the constraint η1 ≤
−0.04424(1 − z1 − z2 − z5) (derived from (0, 0, 1, 1, 0,−0.04424) ∈ P) is strictly
dominated by the facet-defining inequality η ≤ −0.04424+0.02212z1 +0.01106z2 +
0.01106z5. This suggests that the inequalities derived from points in S can be signi-
ficantly strengthened by coefficient tightening procedures. Strengthening inequalities
by coefficient tightening has two shortcomings. First, such procedures are sequence
dependent and produce different inequalities depending on the order in which the
coefficients are examined. Consequently, several different inequalities can be obtai-
ned by strengthening a single inequality, and it is difficult to decide a priori which of
these will strengthen the formulation most effectively. Second, such procedures can
generate only a subset of all valid (facet-defining) inequalities of P . Next we des-
cribe a procedure to generate valid inequalities of P which overcomes both of these
shortcomings.

The lemma that follows provides crucial insights into the polyhedral structure of
P . Let J = {i ∈ M | zi = 1 ∀z ∈ {0, 1}M s.t F(z) ≥ p}. Let e ∈ {1}M denote a
vector of ones and ei (i ∈ M) denote the i th unit vector.

Lemma 3.1 For i ∈ J , e − ei is a p-inefficient point of F. Furthermore, dim(P) =
m + 1 − |J | and for i ∈ M \ J , zi ≤ 1 defines a facet of P. If αz − βη ≥ � defines
a facet of P different from the ones defined by zi ≤ 1 (i ∈ M \ J ), then β ≥ 0,
αi ≥ 0 ∀i ∈ M\ J and

∑
i∈M\J αi + β > 0.

Proof Clearly for i ∈ J , F(e − ei ) < p and e − ei is a p-inefficient point of P .
Furthermore, since P ⊆ {(z, η) | zi = 1 ∀i ∈ J }, dim(P) ≤ m + 1 − |J |. To see
that dim(P) = m + 1 − |J |, consider the following m + 2 − |J | affinely independent
points in P , {(e − ei , ln F(e − ei )) | i ∈ M \ J } ∪ {(e, 0), (e,−1)}. Using a similar
construction, it can be shown that zi ≤ 1 defines a facet of P for i ∈ M \ J . Suppose
αz−βη ≥ � defines a facet of P different from the ones defined by zi ≤ 1 (i ∈ M\J ).
Since P recedes in the direction (z = 0, η = −1), β ≥ 0. For i ∈ M\ J , there exists
z ∈ {0, 1}M and η ∈ R such that (z, η) ∈ P , αz − βη = � and zi = 0; since
(z + ei , η) ∈ P , αz + αi − βη ≥ � which implies that αi ≥ 0 ∀i ∈ M\ J . 	


Theorem 3.2 Let (ẑ, η̂) ∈ R
M×R such that 0 ≤ ẑ ≤ 1 and

∑
i∈M,vi =0 ẑi ≥ 1∀v ∈ I .

(ẑ, η̂) ∈ P if and only if the optimal value of the following linear program is non-
negative.
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min(α,β,�) αẑ − βη̂ − �

s.t
αz − βln(F(z)) − � ≥ 0 z ∈ S∑

i∈M\J αi + β = 1
αi ≥ 0 i ∈ M\ J
αi = 0 i ∈ J
β ≥ 0

(3.7)

Furthermore, if (α, β,�) is a feasible solution to (3.7) satisfying αẑ − βη̂ − � < 0,
then αz − βη ≥ � is a valid inequality for P which cuts off (ẑ, η̂).

Proof Clearly, if (α, β,�) is a feasible solution to (3.7), then αz − βη ≥ � is a valid
inequality for P; hence if (ẑ, η̂) ∈ P then the optimal value of (3.7) is non-negative.
Conversely, suppose (ẑ, η̂) /∈ P . For i ∈ J , e − ei is a p-inefficient point of F
(Lemma 3.1) and hence ẑi = 1. Consequently, there exists a facet defining inequality
αz−βη ≥ � of P which cuts off (ẑ, η̂). Without loss of generality, we can assume that
αi = 0 ∀i ∈ J . Since 0 ≤ ẑ ≤ 1, the facet defined by αz − βη ≥ � is different from
the ones defined by zi ≤ 1 i ∈ M\J , which implies that αi ≥ 0 ∀i ∈ M\J, β ≥ 0 and∑

i∈M\J αi + β > 0 (Lemma 3.1). If θ = ∑
i∈M\J αi + β, then 1

θ
(α, β,�) is feasible

solution of P , 1
θ
(αẑ − βη̂ − �) < 0 and the optimal value of (3.7) is negative. 	


Several comments are in order. First, the above theorem yields a systematic proce-
dure for iteratively strengthening the (MIP1) formulation by generating cutting planes
which cut off the incumbent fractional solution in each iteration. Furthermore, unlike
the coefficient tightening procedure, the above separation procedure is guaranteed to
produce every valid (facet-defining) inequality of P . Cuts derived using the separation
linear program (3.7) are referred to as polarity cuts in the sequel.

Second, the linear program (3.7) has many more constraints than the number of
variables, which suggests that the dual simplex algorithm is the most suitable linear
programming algorithm for solving (3.7); the associated basis is a (m + 1) × (m + 1)

matrix. Thus for m = 10, the dual simplex method updates the inverse of a 11 × 11
basis matrix. Third, we introduce a penalty term

∑
i∈M wαi in the objective function,

where w = 10−4, which is aimed at favoring sparse cuts over equally good dense cuts
(see Fischetti and Lodi [13] and de Souza and Balas [24] for importance of sparse cuts
in cutting plane procedures).

Fourth, note that (ẑ, η̂) ∈ P if and only if (e − ẑ, η̂) ∈ P̄ where P̄ = {(z, η) |
(e − z, η) ∈ P} and e is a vector of ones. In other words, we can apply an affine
transformation (z, η) 
→ (e − z, η) to (ẑ, η̂), solve the separation linear program (3.7)
in the transformed space and apply the inverse transformation to the cut (if any). The
advantage of such a transformation is the reduction in the number of non-zeros in the
coefficient matrix of (3.7) thereby improving the overall performance of the dual sim-
plex algorithm due to sparsity considerations. To see this, note that 0-1 points z ∈ S
have significantly more number of ones than zeros. Figure 2 illustrates this pheno-
menon for Circular and Star distributions graphically. The horizontal axis represents
the threshold probability p. The vertical axis represents the ratio of the number of
non-zeros in the separation linear program formulated in the transformed space and
original space, respectively, averaged over 1,000 randomly generated instantiations of
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Fig. 2 Reduction in density of the coefficient matrix of separation linear program (3.7)

each one of the distributions (block size = 10). As is evident from Fig. 2, the above
transformation can reduce the density of the coefficient matrix by 30 − 60%.

Finally, note that our separation linear program (3.7) bears a striking resemblance
to the disjunctive programming based strengthening procedure proposed by Sen [23]
in the early nineties. While both of our works draw motivation from the polarity
theory, there is a minor difference in the precise application of the same. As in [5],
Sen suggests computing the p-efficient frontier of the distribution of ξ , and then using
the set of enumerated points to construct the polar linear program. Our approach, on
the other hand, constructs the polar linear program for each individual block thereby
circumventing the expensive enumeration of the p-efficient frontier. Indeed, for the
special case when L = 1 both of these approaches are identical and derive the same
cuts. To the best of our knowledge, the approach of Sen [23] was never computationally
evaluated; the results presented in Sect. 5 highlight the tremendous computational
utility of this approach.

Next we illustrate Theorem 3.2 on example (2.1) introduced in Sect. 2. The separa-
tion linear program for this example in the original and transformed space is given by,

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

min
∑5

i=1 αi ẑi − βη̂ − �

s.t
α3 + α4 + 0.04424β − � ≥ 0

α3 + α4 + α5 + 0.03318β − � ≥ 0
α2 + α3 + α4 + 0.03318β − � ≥ 0

α2 + α3 + α4 + α5 + 0.02212β − � ≥ 0
α1 + α3 + α4 + 0.04424β − � ≥ 0

α1 + α3 + α4 + α5 + 0.02212β − � ≥ 0
α1 + α2 + α3 + α4 + 0.02212β − � ≥ 0

α1 + α2 + α3 + α4 + α5 − � ≥ 0
α1 + α2 + α5 + β = 1

α1, α2, α5, β ≥ 0
α3, α4 = 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

min
∑5

i=1 −αi (1 − ẑi ) − βη̂ − �

s.t
−α1 − α2 − α5 + 0.04424β − � ≥ 0

−α1 − α2 + 0.03318β − � ≥ 0
−α1 − α5 + 0.03318β − � ≥ 0

−α1 + 0.02212β − � ≥ 0
−α2 − α5 + 0.04424β − � ≥ 0

−α2 + 0.02212β − � ≥ 0
−α5 + 0.02212β − � ≥ 0

−� ≥ 0
α1 + α2 + α5 + β = 1

α1, α2, α5, β ≥ 0
α3, α4 = 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Original Space Transformed Space
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The proposition that follows gives an alternative MIP reformulation of (PSC) using
the apparatus of polarity cuts. The assumption that L = 1 is no longer made in the
following discussion. For t = 1 . . . L , let

Pt = clconv {(v, η) | v ∈ St , η ≤ ln(Ft (v))} .

Proposition 3.3 [22] (PSC) can be reformulated as the following mixed integer pro-
gram.

min(x,z,η)

⎧
⎪⎪⎨

⎪⎪⎩

cx

∣
∣
∣
∣
∣
∣
∣
∣

Ax ≥ z, 0 ≤ x, z ≤ 1
∑L

t=1 ηt ≥ ln(p)

(zt , ηt ) ∈ Pt ∀t = 1 . . . L
x ∈ {0, 1}N

⎫
⎪⎪⎬

⎪⎪⎭

(R2)

Some comments are in order. First, the constraint (zt , ηt ) ∈ Pt in (R2) can be
replaced by a system of inequalities which define Pt ; these inequalities, in turn, can
be separated efficiently using the separation algorithm discussed above.

Second, while (R2) and (MIP1’) are both valid reformulations of (MIP1) containing
no additional integer constrained variables, the LP relaxation of (R2) is much stronger
than the LP relaxation of (MIP1’), as confirmed by our computational results (see
Sect. 5). Besides, special properties of the distribution can at times be used to represent
the condition (zt , ηt ) ∈ Pt in (R2) compactly using a polynomial number of additional
constraints and variables, yielding a formulation which can be used to address large
scale problems. See Sect. 4 for an example of such a distribution.

Third, consider the case when all components of the random 0-1 vector ξ are
pairwise independent. In other words, L = m and |Mt | = 1 for t = 1 . . . L . If
Mt = {i} and pt = P(ξi ≤ 0) then

Pt =
{ {(v, η) | 0 ≤ v ≤ 1, η ≤ (ln pt )(1 − v)} if pt ≥ p

{(v, η) | v = 1, η ≤ 0} if pt < p

for t = 1 . . . L (see Fig. 3). Consequently, in this case the (R2) relaxation is identical
to (MIP1’).

4 Stationary distributions

In the previous section, we demonstrated how structural properties of the matrix A can
be used to devise reformulations of (MIP1) with fewer number of integer variables. In
this section, we investigate the same question apropos of the probability distribution
function F .

A cumulative distribution function F : {0, 1}M → R is said to be stationary if
F(v) = F(w) ∀v,w ∈ {0, 1}M such that

∑
i∈M vi = ∑

i∈M wi . Thus the value F(z)
of a stationary distribution depends only on the number of ones in z. More precisely,
any stationary distribution is completely defined by a vector (λ0, . . . , λm) (m = |M |)
where λi represents the value of the stationary distribution at a lattice point with
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Fig. 3 Pt for the case when |Mt | = 1

exactly i ones. Note that if F is a stationary distribution then the corresponding random
variables {ξi | i ∈ M} are Exchangeable Random Variables which have been extensi-
vely studied in the literature (see [15]).

For the sake of an example, consider the vehicle routing problem [25] wherein
the coverage requirements are modelled using the set covering constraints Ax ≥ 1;
the columns of the 0-1 matrix A represent the set of available routes, the rows of A
represent the set of customers, and Ai j = 1 if and only if the j th route covers the
i th customer, for all i, j . In the probabilistic variant of the problem, the constraints
Ax ≥ 1 are replaced by P(Ax ≥ ξ) ≥ p wherein the 0-1 random vector ξ models the
variability in the set of realized customers. In many practical applications of vehicle
routing such as food-delivery systems, coordination of limousine services, design of
emergency logistic support systems, hazardous material distribution systems etc, the
variability in the set of customers behaves as a macro property, i.e. given a number
k, the probability that exactly k customers place a request for service is a function of
k only, and is independent of the specific set of k customers who place the request.
Alternatively, the distribution function of ξ depends only on the number of ones in the
corresponding lattice point, and is hence a stationary distribution.

The proposition that follows gives a polynomial (in m) sized MIP reformulation of
(MIP1) for the case of stationary distributions.

Proposition 4.1 Suppose for t ∈ {1 . . . L}, Ft is a stationary distribution defined by
the vector (pt

0, pt
1 . . . pt

mt
) (mt = |Mt |) and kt = min {k | 0 ≤ k ≤ mt , pt

k ≥ p}.
(MIP1) is equivalent to

min(x,z,η,y,w) cx
s.t

Ax ≥ z

x j ∈ {0, 1} j ∈ N

zi ∈ {0, 1} i ∈ M
∑L

t=1 ηt ≥ ln p

(MIP2)

123



MIP reformulations of the probabilistic set covering problem

yt = ∑
i∈Mt

zi

yt ≥ kt

yt ∈ Z

⎫
⎪⎪⎬

⎪⎪⎭
t = 1 . . . L

yt + wt
k(n − k) ≤ n

yt + wt
k(k + 1) ≥ k + 1

ηt ≤ (ln pt
k)w

t
k

wt
k ∈ {0, 1}

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

k = 1 . . . mt , t = 1 . . . L

Proof Suppose (x, z, η, y, w) is a feasible solution to (MIP2). Let t ∈ {1 . . . L}. Note
that yt = ∑

i∈Mt
zi is equal to the number of ones in zt . Furthermore, wt

k = 1 if
and only if yt ≤ k for k = kt . . . mt . The constraint yt ≥ kt ensures that P(ξi ≤
zi | i ∈ Mt ) ≥ p and zt ∈ St , whereas the constraint ηt ≤ (ln pt

k)w
t
k ensures

that ηt ≤ ln P(ξi ≤ zi | i ∈ Mt ). Hence (x, z, η) is a feasible solution to (MIP1).
Conversely, suppose (x, z, η) is a feasible solution to (MIP1); (x, z, η, y, w) is a
feasible solution to (MIP2) where y, w are defined as: for t = 1 . . . L , yt = ∑

i∈Mt
zi

and for k = kt . . . mt , wt
k = 1 if and only if yt ≤ k. 	


Note that (MIP2) has linear (in m) number of additional variables and constraints,
and hence can be used to handle arbitrarily large block sizes. Suppose F : {0, 1}M →
R is a stationary cumulative distribution function defined by the vector (p0 . . . pm). It
is worth observing that the lattice {0, 1}M associated with F can be partitioned into
(m+1) slices such that the kth slices is composed of 0-1 M-vectors with exactly k ones
for k = 0, 1 . . . m, and the closed convex hull of the set {(z, η) | z ∈ {0, 1}M ,

∑
i∈M

zi = k, η ≤ ln(F(z))} has a compact description given by {(z, η) | 0 ≤ z ≤
1,

∑
i∈M zi = k, η ≤ ln pk}. In other words, stationary distributions posses the

disjunctive shattering property defined below.

Definition 4.2 A cumulative distribution function F : {0, 1}M → R is said to
posses the disjunctive shattering property (DSP) if the lattice {0, 1}M can be parti-
tioned into polynomial (in m) number of subsets, say {0, 1}M = ∪k

j=1 M( j), such
that the closed convex hull of the set {(z, η) | z ∈ M( j), η ≤ ln(F(z))} has
a polynomial (in m) sized compact description {(z, η) | A j z + d jη ≥ b j } for
j = 1 . . . k.

The proposition that follows gives a polynomial sized reformulation of (MIP1)
for the case when each one of the distribution functions Ft possesses the disjunctive
shattering property.

Proposition 4.3 For t ∈ {1 . . . L}, suppose Ft possesses the disjunctive shattering
property and the lattice {0, 1}Mt corresponding to Ft is partitioned into kt subsets,
say {0, 1}Mt = ∪kt

j=1 Mt ( j), and for j = 1 . . . kt , clconv {(v, η) | v ∈ Mt ( j), η ≤
ln Ft (v)} = {(v, η) | A jtv + d jtη ≥ b jt }. (MIP1) is equivalent to,
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min(x,z,η,z̃,η̃,λ) cx
s.t

Ax ≥ z
x j ∈ {0, 1} j ∈ N

∑L
t=1 ηt ≥ ln p

(M I P3)

zi = ∑kt
j=1 z̃ j t

i i ∈ Mt

ηt = ∑kt
j=1 η̃ j t

∑kt
j=1 λ j t = 1

A jt z̃ j t + d jt η̃ j t ≥ λ j t b j t j = 1 . . . kt

λ j t ≥ 0 j = 1 . . . kt

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

t = 1 . . . L

Proof Let t ∈ {1 . . . L}. Note that Pjt = {(v, η) | A jtv + d jtη ≥ b jt } �= ∅ ∀ j =
1 . . . kt , and the following constraints define the extended formulation (see Balas [1])

of Pt = clconv
(
∪kt

j=1 Pjt

)
for t = 1 . . . L .

zi =
kt∑

j=1

z̃ j t
i i ∈ Mt

ηt =
kt∑

j=1

η̃ j t

kt∑

j=1

λ j t = 1

A jt z̃ j t + d jt η̃ j t ≥ λ j t b
j t j = 1 . . . kt

λ j t ≥ 0 j = 1 . . . kt

Consequently, (MIP2) is equivalent to (R2) and the above proposition follows imme-
diately from Theorem 3.3. 	


Note that (MIP3) has polynomial (in m) number of additional variables and
constraints, and has no additional integer constrained variables. (MIP3) can be genera-
lized to handle the case when some or all of the system of inequalities A jt z j t+d jtη j t ≥
b jt have exponential number of inequalities, provided there exists a polynomial time
separation algorithm to identify a violated inequality among A jt z j t + d jtη j t ≥ b jt .
The generalization, however, is technical and is of limited interest in the context of
the current paper.

5 Computational results

Figure 4 gives the flowchart of our algorithm to solve (PSC). We implemented our algo-
rithm using COIN-OR [9] and CPLEX (version 9.0). The linear programming module
(OsiClp) of COIN-OR was used to solve all resulting linear programs, while the final
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Fig. 4 Flow chart of the algorithm

MIP formulation was solved using CPLEX 9.0. All experiments were carried out on
a 2 GHz P4 processor with 2 GB RAM. In this section, we describe the computational
results of our experiment on a test-bed consisting of several thousand probabilistic
instances.

Besides the probabilistic set covering instances, we also ran our code on proba-
bilistic versions of the Single Source Capacitated Facility Location Problem (SSC-
FLP), Capacitated Warehouse Location Problem (CWLP) and Capacitated k-Median
Problem (k-median) instances. We considered the following probabilistic version of
SSCFLP.

min(x,y)

∑
i∈I, j∈J ci j xi j + ∑

i∈I fi yi

s.t
P

(∑
i∈I xi j ≥ ξi ∀ j ∈ J

) ≥ p∑
j∈J w j xi j ≤ si yi ∀i ∈ I

xi j ∈ {0, 1} ∀i ∈ I,∀ j ∈ J
yi ∈ {0, 1} ∀i ∈ I

. (5.8)

Here I is the set of facilities, si is the capacity and fi is the fixed cost associated
with facility i ∈ I , while J is the set of customers, w j is the demand of customer
j and ci j is the cost of serving customer j via the facility i for all i, j . The model
obtained by replacing the integrality constraints on the xi j variables in (5.8) by 0 ≤
xi j ≤ 1 is the probabilistic version of the CWLP. Similarly, appending the constraint

123



A. Saxena et al.

∑
i∈I yi ≤ k (k ≥ 1) to the probabilistic CWLP yields the probabilistic version of

the k-median problem. Note that all of our results in Sect. 2 (except Proposition 2.3),
3 and 4 (except Proposition 4.3) can be applied to probabilistic CWLP and k-median
problems too. Since these results form the basis of the our computational experiments,
we decided to include the probabilistic variants of CWLP and k-median models in our
test-bed.

Table 2 gives detailed information about the deterministic instances we chose from
the literature, which were subsequently used to generate a test-bed of probabilistic
instances as described below. From each problem set, we retained only those instances
which could be solved to optimality by the default version of CPLEX 9.0 within a time-
limit of 1 hr. Note that this selection criterion allows us to generate a test-bed of easy
and moderately difficult instances which can be used to gain insights into the interplay
between the integrality and probabilistic constraints of (PSC). Indeed, some extremely
difficult set covering and SSCFLP instances were excluded by this selection criterion;
these instances are likely to give rise to extremely difficult probabilistic instances
wherein the integrality constraints of (PSC) themselves make the problem difficult to
solve, their interaction with the probabilistic constraints notwithstanding.

From each deterministic instance we generated 20 probabilistic instances in the
following manner. Following [5], we considered two different block sizes, namely 5
and 10. For each one of these block sizes, we considered two different probability
distributions namely, Circular and Star (see [5] for the definition of these distribu-
tions). For sake of completeness, we also considered the case of independent random
variables. In particular, we have assumed that each component ξi (i = 1 . . . m) can
take value 0 with probability qi = q1/ i

0 where 0 < q0 < 1. Following [5], we used
q0 = 0.1 in our experiments. For each one of the five combinations of block sizes and
distribution type, we generated four probabilistic problems differing only in the values
of the threshold probabilities which were chosen from {0.80, 0.85, 0.90, 0.95}.

For the case of Set Covering and SSCFLP instances we used the (MIP1’) formu-
lation whereas for the case of CWLP and k-median instances we used the (MIP1)
formulation. We strengthened the initial formulation by polarity cuts (Sect. 3) for ins-
tances which were generated using the Circular and Star distribution. Since (MIP1’)
formulation cannot be strengthened by polarity cuts for the case of independent dis-
tribution (see Sect. 3), the polarity cuts generator was turned off for these instances.
For each probabilistic instance we ran our code with a time limit of 1 hr.

Tables 9–16 report our key findings. The first four tables give statistics on the
performance of our algorithm while the last four tables give detailed statistics on the
performance of polarity cuts. The results are categorized by distribution type, block
size and threshold probability p which are given in the first, second and third columns
of the tables respectively. Note that for each combination of distribution type, block
size and threshold probability, the test-bed had 60 set covering instances, 70 SSCFLP
instances, 37 CWLP instances and 20 k-median instances as reported in Table 2.
Table 3 summarizes the computational results.

The fourth column in Tables 9–12 gives the number of instances which could not be
solved to optimality within the prescribed time-limit of 1 hr. Of the 3,740 probabilistic
instances on which we had run our code, we were able to solve 3,703 instances to
optimality within 1 hr. In order to assess the performance of our algorithm over the
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unsolved instances, we give the percentage relative gap3 which remained at the end of
1 hr in the fifth column of the table, averaged over instances which could not be solved
to optimality. The next two columns give the total solution time and the number of
branch-and-bound nodes enumerated by CPLEX, averaged over instances which could
be solved to optimality within 1 hr. The eigth column of the table gives the average
value of the probabilistic information, calculated as V O I = 100 × Det (i p)−Prob(i p)

Det (i p)
,

where VOI is the value of probabilistic information, Det(ip) is the optimal value
of the deterministic problem and Prob(ip) is the optimal value of the probabilistic
problem. Note that VOI represents the savings which could be made by incorporating
the probabilistic information into the optimization model.

Tables 13–16 give detailed statistics on the performance of polarity cuts in our
algorithmic framework. The fourth column of these tables reports the average number
of rounds of polarity cuts which were generated by our code. The next column reports
the average duality gap4 closed at the root node after our code ceased to produce
violated polarity cuts. The next two columns report the average time spent on streng-
thening the (MIP1) formulation by means of polarity cuts; the first column reports
the total time spent on strengthening while the following column reports the time
spent exclusively on solving the separation linear programs (3.7). Note that most of
the time spent on strengthening was used to solve the LP relaxations of the (MIP1)
formulation, and a very small fraction (less than 8% on average) was spent on solving
the separation linear programs. This suggests that polarity cuts can be combined with
other families of cutting planes such as Mixed Integer Gomory cuts or split cuts with
very little computational overheads. The next two columns report the total number of
cuts which were generated and the number of cuts which were binding at the final
iteration, respectively, averaged over instances in the respective category.

The last four columns of Tables 13–16 report statistics on the fractionality of the
optimal solution to the LP relaxation of the (MIP1) formulation before and after adding
the polarity cuts. Given a feasible solution (x, z, η) to the (possibly strengthened) LP
relaxation of (MIP1), let fz = |{i ∈ M | 0 < zi < 1| and fg = |{t ∈ {1 . . . L} | ∃i ∈
Mt s.t 0 < zi < 1}|; fz is a measure of fractionality of (x, z, η) in the zi components
whereas fg measures the same in an aggregated form. The last four columns of the
tables report the average values of fz and fg before and after adding the polarity
cuts. Note that polarity cuts reduce the number of fractional z components by 80% on
average. Furthermore, the impact of polarity cuts on the fractionality of the incumbent
solution is more pronounced in the case of SSCFLP instances as compared to the set
covering instances.

It is interesting to note that polarity cuts do not close any fraction of the duality
gap on the k-median instances. This can be attributed to the specific structure of
the k-median instances in the OrLib repository. These instances were generated by
choosing random points in [0, 100] × [0, 100] where every point served as a custo-
mer and potential facility, and the cost of assigning a customer to a facility is the

3 RG = 100 × i p−bb
bb where RG is the percentage relative gap, i p is the value of the best solution and bb

is the value of the best bound available at the end of 1 hr
4 DG = 100 × slp−lp

ip−lp , where DG is the percentage duality gap closed, lp is the value of the LP relaxation
of our model, slp is the value of the relaxation and ip is the value of the optimal solution.
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Table 4 Characteristics of
Beraldi and Ruszczyński’s test
problems

Problem Distribution Group size Number of groups

Test 11 Star 5 40

Test 12 Circular 5 40

Test 13 Star 10 20

Test 14 Circular 10 20

Test 15 Independent 1 200

euclidean distance between the corresponding points, rounded down to the nearest
integer. Consequently, the LP relaxation of these models fractionally assigns the cus-
tomer at (x, y) to the facility at (x, y) thereby giving a relaxation value of 0. The same
argument carries over to the relaxation of the probabilistic version strengthened by
polarity cuts, thus explaining the zeros in column 5 of Table 16. Nevertheless, polarity
cuts are indeed effective in decreasing the fractionality of the optimal LP relaxation
solutions of these instances, as shown by the last 4 columns of Table 16.

Next we compare our results with the earlier work of Beraldi and Ruszczyński [6]
who conducted their experiments on two set covering instances, namely scp41 and
scp42, from the ORLIB repository [4]. Both of these problems have 200 set covering
constraints. They constructed 20 probabilistic instances from these two instances by
considering the five combinations of group sizes and distribution types shown in
Table 4, and two values of the threshold probability p, namely 0.90 and 0.95, for
each combination. They tested several variants of their algorithm and concluded that
a certain variant, which they refer to as the hybrid strategy with simple heuristic,
performs best on their test-bed.

Table 5 compares the performance of our algorithm with the best version of the
algorithm proposed in [6] on the test-bed constructed in [6] (see [6] for description of
these instances). The first column of the table gives the problem description; a suffix
of 1 (2) indicates that the instance was generated from scp41 (scp42). The second
column gives the value of threshold probability p. The next two columns report the
computational results of [6]; the first column gives the total computing time while the
following column gives the number of p-efficient points which were enumerated by
their algorithm. The next two columns report the performance of our algorithm on
these instances. The first column reports the total computing time while the following
column gives the number of branch-and-bound nodes enumerated by CPLEX. Notice
that the computing time of our approach is several orders of magnitude better than
that of [6]. Furthermore, the extent of enumeration in our approach (column 6) is
substantially smaller than in the approach proposed in [6] (column 4). It should,
however, be stressed that our approach is tailored to exploit the block-structure of the
random variable ξ whereas the approach of [6] is a general solution method which does
not attempt to exploit special properties of the ξ . This observation partially explains
the better performance of our approach on these instances.

Next we discuss the importance of polarity cuts in the overall solution procedure
by demonstrating their impact on solving the probabilistic version of a SSCFLP ins-
tance. We chose the instance p31 (30 facilities and 150 customers) from the Holmberg
test-bed [14] and generated its probabilistic variant using the Circular distribution and
threshold probability p = 0.8; the resulting probabilistic instance had 15 blocks of size
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Table 5 Comparison with the Beraldi and Ruszczyński algorithm

Problem p BR SGL

Solution time (sec) PEP Solution time (sec) # B&B nodes

Test 11.1 0.95 6.75 209 0.02 0

Test 11.1 0.90 60.87 935 0.03 0

Test 12.1 0.95 7.76 165 0.06 25

Test 12.1 0.90 448.52 6387 0.02 0

Test 13.1 0.95 3.99 79 0.04 5

Test 13.1 0.90 37.90 463 0.04 0

Test 14.1 0.95 8.83 252 0.02 0

Test 14.1 0.90 380.76 5284 0.02 0

Test 15.1 0.95 8780.02 140274 0.00 0

Test 15.1 0.90 33153.07 529814 0.02 0

Test 11.2 0.95 7.68 221 0.02 0

Test 11.2 0.90 123.41 1881 0.08 0

Test 12.2 0.95 4.02 106 0.06 0

Test 12.2 0.90 400.20 6249 0.04 0

Test 13.2 0.95 8.65 217 0.02 0

Test 13.2 0.90 155.64 1745 0.14 10

Test 14.2 0.95 13.32 297 0.18 27

Test 14.2 0.90 911.31 13267 0.13 6

Test 15.2 0.95 8170.48 130049 0.02 0

Test 15.2 0.90 24581.25 389886 0.02 0

10 each. We ran our code on this instance in three setups. In the first setup we ran the
default version of our algorithm which involves, among other things, adding polarity
cuts at the root node. The second and third setups were identical to the first setup, except
that the generator for polarity cuts was turned off; we used the (MIP1) and (MIP1’)
formulations in the second and third setups, respectively. In the first setup, our code
closed 67.84% of the duality gap at the root node in less than 1 s; CPLEX acting on the
formulation, strengthened by polarity cuts, was able to solve the instance to optimality
in additional 52 s by enumerating 2378 branch and bound nodes. The second setup
involved applying CPLEX to the unstrengthened formulation. Interestingly CPLEX,
unaided by the polarity cuts, was not able to solve the instance to optimality in 2 hr;
it enumerated around 154,100 branch-and-bound nodes and closed only 72% of the
duality gap at the end of two hours. After additional 31 hours CPLEX was able to
solve the instance to optimality by enumerating 1.7 million branch-and-bound nodes.
CPLEX took around 21 hrs to solve the instance to optimality in the third setup and
enumerated 764,006 branch-and-bound nodes. Table 6 summarizes the statistics asso-
ciated with these three setups. As this example demonstrates, polarity cuts have a huge
impact on the overall solution time of our procedure.

An interesting question is to determine if the strengthening which results from the
addition of polarity cuts can also obtained by adding general purpose cutting planes
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Table 6 Probabilistic version of the SSCFLP instance p31

With Polarity Cuts (MIP1’)

% Gap closed at root node 67.84%

Time spent in strengthening 0.83 s

Time spent in solving SepLP 0.30 s

Time Taken by CPLEX 9.0 after Strengthening 52.31 s

No. of Branch-and-Bound nodes enumerated by CPLEX 9.0 2378

Total time taken to solve the instance to optimality 53.14 s

Without Polarity Cuts (MIP1’)

No. of Branch-and-Bound nodes enumerated by CPLEX 9.0 764,006

Total time taken to solve the instance to optimality 77621 s

Without Polarity Cuts (MIP1)

No. of Branch-and-Bound nodes enumerated by CPLEX 9.0 1,717,126

Total time taken to solve the instance to optimality 119,922 s

such as mixed integer Gomory cuts or lift-and-project cuts to the (MIP1) formulation.
In order to answer this question, we tried to strengthen the (MIP1) formulation of
the probabilistic SSCFLP p31 instance (described above) by using other well-known
classes of cutting planes. Table 7 summarizes our key findings. The first column of the
table reports the type of cutting plane procedure; the second column reports the number
of rounds of cuts which were generated. The third column gives the percentage duality
gap closed by the respective class of cutting planes while the last column reports the
total time spent on strengthening. The first row reports the performance of polarity
cuts. The second row reports the performance of cuts generated by CPLEX 9.0 MIP
solver at the root node; CPLEX was used in the “move best bound” mode and all of
its cuts generators (except disjunctive cuts) were used in the “aggressive” mode so
as to extract the best performance of the CPLEX cut generators. The remaining rows
report the performance of mixed integer Gomory (MIG) cuts, mixed integer rounding
(MIR) cuts, reduce-and-split (RedSplit) cuts and lift-and-project (L&P) cuts. We used
the COIN-OR modules CglGomory, CglMixedIntegerRounding and CglRedSplit to
generate MIG, MIR and reduce-and-split cuts, respectively; the lift-and-project cuts
were generated with the code used in Balas and Saxena [2]. Note that among all
classes of cutting planes, polarity cuts close the maximum fraction of the duality gap
in minimum amount of time.

We conclude this section by reporting our computational experience with the (MIP4)
formulation for stationary distributions. Recall that any stationary distribution is com-
pletely defined by a vector (λ0, . . . , λm) (m = |M |) where λi represents the value of
the stationary distribution at a lattice point with exactly i ones. We used the following
scheme to generate m-dimensional stationary distributions.

1. Let a j = 100u j

2 j+1 j = 0 . . . m where u j is a random number in the interval (0, 1).

2. Let µ = ∑m
j=0 a j and let a j := a j

µ
j = 0 . . . m.

3. For j = 0 . . . m, let λ j = ∑ j
k=0 ak�

k−1
i=0

j−i
m−i .
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Table 7 Comparing polarity
cuts with other general purpose
cutting planes

Type of cuts # Rounds % Duality gap closed Time (sec)

Polarity Cuts 5 67.84 0.83

CPLEX − 48.35 16.87

RedSplit 5 8.66 4.27

10 9.99 12.50

MIR 5 11.42 0.67

10 12.21 1.31

MIG 5 26.07 0.40

10 31.71 1.09

15 34.94 1.19

20 36.45 2.18

L&P 5 38.03 37.72

10 44.81 95.09

15 48.15 177.45

20 50.01 292.46

Table 8 Summary results: stationary distribution

Problem class # Probabilistic # Unsolved % RG Solution # B& B nodes
instances instances time (sec)

Set Covering 1920 128 21.34 112.93 9373.60

SSCFLP 2240 17 0.35 9.36 1609.35

CWLP 1184 0 0.00 0.09 5.25

k-Median 640 0 0.00 2.90 156.22

It can be easily verified that (λ0, . . . , λm) obtained by the above procedure defines
a cumulative distribution function of a m-dimensional stationary distribution.

For each deterministic instance (Table 2) we generated 32 probabilistic instances in
the following manner. We considered 8 different block sizes, namely 5, 10, 20, 50, m

4 ,
m
3 , m

2 and m where m denotes the number of probabilistic set covering constraints
in the deterministic instance. For each block, the stationary distribution was defined
using the scheme described above. For each one of these block sizes we generated
four probabilistic problems differing only in the values of the threshold probabilities
which were chosen from {0.80, 0.85, 0.90, 0.95}. We solved each one of the resulting
probabilistic instance by CPLEX 10.1 with a time limit of 1 hr.

Table 8 summarizes our computational results. Our goal in this experiment was to
verify whether special properties of distributions can be exploited to solve probabilistic
problems with arbitrarily large block sizes. As is evident from Table 8 our goal was
largely attained, at least on this test-bed of problem instances.

6 Concluding remarks

In this paper, we set out to explore MIP reformulations of the probabilistic set cove-
ring problem (PSC) which exploit the block structure of the random variable ξ .
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We introduce the concepts of p-inefficiency and polarity cuts. While the former is
aimed at reducing the number of constraints in our model, the latter is used as a
strengthening device to obtain stronger formulations. Simplifications of the MIP model
which result due to special properties of matrix A and distribution function F are brie-
fly discussed. We corroborate our theoretical findings by an extensive computational
experiment on a test-bed consisting of almost 10,000 probabilistic instances. Tables 3
and 8 summarize our computational results.

This paper treads on the interface of two important areas of computational
optimization—probabilistic programming and mixed integer programming. The main
contribution of the paper, however, lies in integrating celebrated concepts from each
one of these fields, namely p-efficiency from probabilistic programming and polarity
from mixed integer programming, to create an algorithmic framework to solve (PSC)
which is orders of magnitude more efficient than any of the existing approaches.

Acknowledgments The authors will like to thank anonymous referees for their useful comments and for
bringing the work of Sen [23] to our knowledge.

Appendix

Table 9 Summary results: set covering instances

Distribution Block p # Unsolved % RG Solution # B&B % VOI
size instances time (sec) nodes

Circular 5 0.80 3 10.41 91.30 3736 9.66

Circular 5 0.85 2 11.81 136.67 5943 7.17

Circular 5 0.90 1 11.34 176.73 8075 4.77

Circular 5 0.95 0 0.00 152.14 8820 2.11

Circular 10 0.80 2 9.94 185.26 5067 10.17

Circular 10 0.85 1 6.63 199.52 8059 7.45

Circular 10 0.90 1 9.36 218.97 10524 5.05

Circular 10 0.95 0 0.00 170.84 9946 2.55

Star 5 0.80 0 0.00 128.08 6075 11.91

Star 5 0.85 2 9.90 81.64 4209 9.98

Star 5 0.90 0 0.00 195.51 11825 7.02

Star 5 0.95 0 0.00 133.14 8836 3.44

Star 10 0.80 2 10.96 262.00 4124 14.51

Star 10 0.85 2 16.18 208.82 3787 12.19

Star 10 0.90 2 12.13 142.89 4618 9.44

Star 10 0.95 1 4.81 178.40 9091 4.69

Independent 1 0.80 0 0.00 91.04 2829 27.55

Independent 1 0.85 0 0.00 79.86 2677 22.15

Independent 1 0.90 0 0.00 132.02 5199 16.31

Independent 1 0.95 2 11.73 108.14 4873 10.14
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Table 10 Summary results: SSCFLP instances

Distribution Block p # Unsolved % RG Solution # B&B % VOI
size instances time (sec) nodes

Circular 5 0.80 0 0.00 50.48 2599 8.88

Circular 5 0.85 0 0.00 29.02 1675 6.51

Circular 5 0.90 2 0.21 23.26 1779 4.21

Circular 5 0.95 1 0.85 45.21 4001 2.10

Circular 10 0.80 1 0.26 26.16 1808 7.15

Circular 10 0.85 0 0.00 72.43 2626 5.44

Circular 10 0.90 1 0.23 61.03 3574 3.40

Circular 10 0.95 0 0.00 35.79 3399 1.54

Star 5 0.80 0 0.00 30.38 1996 10.15

Star 5 0.85 0 0.00 16.22 1073 7.76

Star 5 0.90 0 0.00 11.88 963 5.36

Star 5 0.95 1 1.18 25.87 2174 2.84

Star 10 0.80 6 0.61 57.58 3054 12.64

Star 10 0.85 0 0.00 49.17 1858 9.74

Star 10 0.90 0 0.00 18.44 1028 6.73

Star 10 0.95 0 0.00 35.09 2134 3.47

Independent 1 0.80 2 0.09 58.97 6325 10.35

Independent 1 0.85 1 0.15 25.65 2497 7.90

Independent 1 0.90 1 0.01 9.84 1016 5.48

Independent 1 0.95 0 0.00 41.58 4326 2.75

Table 11 Summary results: CWLP instances

Distribution Block p # Unsolved % RG Solution # B&B % VOI
size instances time (sec) nodes

Circular 5 0.80 0 0.00 0.35 50 35.69

Circular 5 0.85 0 0.00 0.25 18 32.76

Circular 5 0.90 0 0.00 0.27 22 19.61

Circular 5 0.95 0 0.00 0.17 6 17.43

Circular 10 0.80 0 0.00 0.61 74 31.35

Circular 10 0.85 0 0.00 0.40 26 26.49

Circular 10 0.90 0 0.00 0.32 13 15.71

Circular 10 0.95 0 0.00 0.17 2 8.65

Star 5 0.80 0 0.00 0.49 89 32.71

Star 5 0.85 0 0.00 0.35 42 29.51

Star 5 0.90 0 0.00 0.38 48 25.84
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Table 11 continued

Distribution Block p # Unsolved % RG Solution # B&B % VOI
size instances time (sec) nodes

Star 5 0.95 0 0.00 0.19 5 21.73

Star 10 0.80 0 0.00 0.90 157 15.70

Star 10 0.85 0 0.00 0.54 50 12.59

Star 10 0.90 0 0.00 0.47 62 8.78

Star 10 0.95 0 0.00 0.23 16 4.32

Independent 1 0.80 0 0.00 0.29 33 43.71

Independent 1 0.85 0 0.00 0.25 25 34.05

Independent 1 0.90 0 0.00 0.23 11 19.54

Independent 1 0.95 0 0.00 0.17 4 9.24

Table 12 Summary results: capacitated k-median instances

Distribution Block p # Unsolved % RG Solution # B&B % VOI
size instances time (sec) nodes

Circular 5 0.80 0 0.00 55.28 1822 15.11

Circular 5 0.85 0 0.00 32.01 948 11.56

Circular 5 0.90 0 0.00 28.96 1192 7.88

Circular 5 0.95 0 0.00 19.22 1007 3.89

Circular 10 0.80 0 0.00 125.50 3864 16.67

Circular 10 0.85 0 0.00 38.12 1210 12.44

Circular 10 0.90 0 0.00 19.08 524 8.31

Circular 10 0.95 0 0.00 32.15 2189 3.52

Star 5 0.80 0 0.00 86.11 2963 21.24

Star 5 0.85 0 0.00 86.72 2669 16.96

Star 5 0.90 0 0.00 33.70 871 12.40

Star 5 0.95 0 0.00 13.89 410 6.78

Star 10 0.80 0 0.00 212.07 5850 24.64

Star 10 0.85 0 0.00 125.58 3195 19.38

Star 10 0.90 0 0.00 44.88 1558 13.70

Star 10 0.95 0 0.00 17.44 457 7.00

Independent 1 0.80 0 0.00 14.38 708 16.34

Independent 1 0.85 0 0.00 10.36 441 12.80

Independent 1 0.90 0 0.00 11.79 458 8.95

Independent 1 0.95 0 0.00 10.31 398 4.68
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Table 13 Performance of polarity cuts: set covering instances

Distribution Block p # Rounds % Gap Time (sec) # Cuts fg fz
size closed

Total SepLP Total Binding Initial Final Initial Final

Circular 5 0.80 4.6 32.55 0.706 0.012 17.7 14.8 10.2 7.8 29.7 10.1

Circular 5 0.85 4.7 28.90 0.678 0.009 14.4 12.2 8.1 6.3 23.7 7.9

Circular 5 0.90 4.1 20.90 0.584 0.006 9.7 8.0 5.8 4.7 16.6 5.7

Circular 5 0.95 2.5 9.30 0.345 0.003 2.9 2.6 3.9 3.5 6.9 3.8

Circular 10 0.80 5.7 40.44 0.976 0.033 22.5 17.8 10.4 7.5 47.6 11.0

Circular 10 0.85 5.8 38.45 0.842 0.022 19.3 15.3 8.5 6.1 38.3 8.6

Circular 10 0.90 6.0 30.91 0.731 0.013 14.8 11.1 6.4 4.7 28.3 6.5

Circular 10 0.95 3.7 16.27 0.392 0.003 5.2 4.2 3.8 3.2 10.0 3.9

Star 5 0.80 4.2 31.76 0.654 0.015 19.9 15.9 12.7 9.0 36.7 12.1

Star 5 0.85 4.0 30.52 0.642 0.011 16.0 12.9 10.2 7.8 29.5 10.4

Star 5 0.90 4.2 27.47 0.597 0.009 13.4 10.7 7.8 6.1 22.4 7.9

Star 5 0.95 3.0 12.81 0.474 0.003 6.2 5.4 4.9 4.1 12.2 4.7

Star 10 0.80 6.1 53.23 1.652 0.083 29.8 23.3 14.7 9.8 84.9 16.1

Star 10 0.85 6.1 51.18 1.384 0.061 25.6 20.0 12.6 8.4 72.2 13.3

Star 10 0.90 6.4 46.62 1.094 0.034 23.2 17.6 9.8 6.5 55.4 9.7

Star 10 0.95 5.7 35.08 0.748 0.013 16.5 12.1 6.3 4.4 34.0 5.9

Table 14 Performance of polarity cuts: SSCFLP instances

Distribution Block p # Rounds % Gap Time (sec) # Cuts fg fz
size closed

Total SepLP Total Binding Initial Final Initial Final

Circular 5 0.80 7.6 30.71 0.123 0.011 21.9 21.0 6.5 1.0 27.5 3.3

Circular 5 0.85 7.7 27.79 0.121 0.009 20.2 18.6 5.3 1.1 23.4 3.2

Circular 5 0.90 10.0 23.04 0.135 0.009 21.4 17.7 4.3 1.0 19.3 1.8

Circular 5 0.95 3.5 4.66 0.046 0.002 4.8 4.2 2.8 1.0 6.1 1.1

Circular 10 0.80 9.6 33.16 0.218 0.053 22.6 19.5 6.1 1.0 28.8 1.7

Circular 10 0.85 10.2 29.59 0.171 0.024 24.7 20.0 5.4 1.1 25.3 1.9

Circular 10 0.90 9.9 23.61 0.140 0.015 23.0 16.1 4.1 1.1 19.8 1.8

Circular 10 0.95 3.8 6.65 0.052 0.003 5.1 4.2 2.3 1.0 6.4 1.1

Star 5 0.80 5.9 31.83 0.106 0.010 18.4 17.7 8.8 1.1 31.1 1.6

Star 5 0.85 6.4 29.15 0.102 0.009 17.9 17.0 7.1 1.1 25.6 1.6

Star 5 0.90 7.8 24.07 0.108 0.008 17.9 16.1 5.5 1.0 19.6 1.6

Star 5 0.95 6.2 12.43 0.078 0.004 11.1 10.0 4.0 1.1 11.3 1.4

Star 10 0.80 17.8 49.29 0.589 0.128 42.6 27.5 7.7 1.1 52.0 2.4

Star 10 0.85 20.4 46.92 0.550 0.113 54.5 33.6 6.8 1.1 46.5 2.2

Star 10 0.90 18.7 41.72 0.346 0.057 48.7 30.1 6.0 1.1 41.7 1.5

Star 10 0.95 12.9 28.07 0.161 0.018 30.8 20.1 4.4 1.1 27.2 1.4
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Table 15 Performance of polarity cuts: CWLP instances

Distribution Block p # Rounds % Gap Time (sec) # Cuts fg fz
size closed

Total SepLP Total Binding Initial Final Initial Final

Circular 5 0.80 5.0 6.35 0.028 0.002 5.5 5.2 2.5 1.0 5.6 2.5

Circular 5 0.85 3.6 3.79 0.025 0.001 3.4 3.2 2.0 1.0 3.7 1.3

Circular 5 0.90 2.0 1.28 0.014 0.001 1.1 1.1 1.1 1.0 2.5 1.0

Circular 5 0.95 1.1 0.06 0.009 0.000 0.1 0.1 1.1 1.0 1.3 1.0

Circular 10 0.80 7.8 33.78 0.111 0.031 17.6 15.1 4.0 1.1 22.8 1.6

Circular 10 0.85 7.5 29.34 0.071 0.012 12.3 10.6 3.2 1.0 18.1 1.5

Circular 10 0.90 7.5 14.41 0.051 0.006 10.7 7.6 2.2 1.0 13.5 1.0

Circular 10 0.95 2.4 1.20 0.015 0.001 1.4 1.4 1.1 1.0 2.1 1.0

Star 5 0.80 4.5 21.99 0.033 0.004 8.1 7.5 4.7 1.1 15.4 1.2

Star 5 0.85 4.2 24.57 0.035 0.004 7.0 6.6 4.7 1.0 14.3 1.4

Star 5 0.90 6.6 24.49 0.045 0.005 10.8 9.1 3.9 1.1 12.3 1.8

Star 5 0.95 2.9 5.73 0.021 0.002 4.0 3.7 3.0 1.0 6.4 1.1

Star 10 0.80 9.7 38.15 0.102 0.020 15.0 12.7 4.1 1.1 24.0 1.8

Star 10 0.85 11.5 35.02 0.096 0.015 18.7 13.2 4.1 1.2 22.9 2.9

Star 10 0.90 5.8 25.70 0.046 0.008 10.3 8.0 3.9 1.1 18.7 2.0

Star 10 0.95 6.1 8.81 0.039 0.004 8.1 6.7 2.1 1.0 10.4 1.0

Table 16 Performance of polarity cuts: capacitated k-median instances

Distribution Block p # Rounds % Gap Time (sec) # Cuts fg fz
size closed

Total SepLP Total Binding Initial Final Initial Final

Circular 5 0.80 2.6 0.00 0.058 0.002 4.6 4.5 4.1 0.7 6.8 0.8

Circular 5 0.85 2.5 0.00 0.055 0.001 3.7 3.7 3.3 0.6 5.8 0.6

Circular 5 0.90 2.5 0.00 0.053 0.001 2.8 2.7 2.6 0.9 4.3 1.1

Circular 5 0.95 2.2 0.00 0.036 0.000 1.5 1.5 1.4 0.5 2.4 0.5

Circular 10 0.80 3.1 0.00 0.103 0.010 6.8 6.5 4.7 0.5 20.6 0.5

Circular 10 0.85 4.0 0.00 0.097 0.007 6.7 5.8 3.8 0.7 17.2 0.8

Circular 10 0.90 4.5 0.00 0.075 0.004 6.0 4.2 2.8 0.9 10.3 1.0

Circular 10 0.95 2.1 0.00 0.037 0.000 1.1 1.0 1.1 0.5 2.6 0.5

Star 5 0.80 2.3 0.00 0.062 0.003 6.3 6.1 6.1 1.0 13.5 1.0

Star 5 0.85 2.1 0.00 0.055 0.002 5.5 5.5 5.5 0.9 11.7 0.9

Star 5 0.90 2.4 0.00 0.056 0.001 4.9 4.7 4.4 0.6 9.6 0.8

Star 5 0.95 2.4 0.00 0.045 0.001 2.5 2.4 2.3 0.7 4.2 0.7

Star 10 0.80 2.4 0.00 0.151 0.031 5.4 5.1 5.0 1.0 28.7 1.1

Star 10 0.85 3.3 0.00 0.141 0.024 6.2 5.1 4.6 1.0 27.3 1.0

Star 10 0.90 4.2 0.00 0.112 0.012 7.3 5.4 4.0 0.8 24.0 0.8

Star 10 0.95 4.8 0.00 0.084 0.005 6.4 4.6 2.8 0.9 11.8 1.1
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