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Assortment optimization problems arise widely in many practical applications such as retailing and online

advertising. In this problem, the goal is to select a subset from a universe of substitutable products to offer to

customers in order to maximize the expected revenue. We study the robust assortment optimization under

the Markov chain choice model. In this formulation, the parameters of the model are assumed to be unknown

and the goal is to maximize the worst-case expected revenue over all parameter values in an uncertainty

set. Our main contribution is to show a min-max duality result when the uncertainty set is row-wise. To

prove this result, we introduce a framework that captures the robust assortment problem under a more

general class of choice models. Under this class of models, which includes the Markov chain model, the

choice probabilities are given as solutions to a system of linear equations. We show, under certain reasonable

assumptions, a min-max duality result for the robust assortment optimization for this class of choice models.

This is surprising as the objective function does not satisfy the properties usually needed for known saddle

point results. Furthermore, we give an efficient algorithm to compute the optimal robust assortment under

the Markov chain model. Inspired by the min-max relation, this algorithm is iterative in nature. Moreover,

our results yield operational insights towards the effect of changing the uncertainty set on the optimal robust

assortment. In particular, consistent with previous literature, we find that bigger uncertainty set always lead

to bigger assortment, and a firm should offer larger assortments to hedge against uncertainty.

1



: Robust Assortment Optimization under the Markov Chain Model
2 Article submitted to Operations Research; manuscript no. OPRE-2019-03-133

1. Introduction

Assortment optimization problems arise widely in many practical applications such as retailing and

online advertising. In this problem, the goal is to select a subset of products to offer to customers

from a universe of substitutable products in order to maximize the expected revenue. The demand

of any product depends on the substitution behavior of the customers that is captured by a choice

model which specifies the probability a random consumer selects a particular product from any

given offer set. The objective of the decision maker is to identify an offer set that maximizes his

expected revenue. Many parametric choice models have been extensively studied in the literature

in diverse areas including marketing, transportation, economics, and operations management. The

Multinomial logit (MNL) model is by far the most popular model in practice due to its tractability

(McFadden (1978), Talluri and Van Ryzin (2004)). However, the simplicity of the MNL model

comes with commonly recognized limitations such as the Independence of Irrelevant Alternatives

(IIA) property (see Ben-Akiva et al. (1985)). Informally, the IIA property states that the odds of

choosing between two products are not affected by the presence of a third product. This makes the

MNL model inadequate for many applications. To alleviate this limitation, Blanchet et al. (2016)

propose a Markov chain based choice model. In this model, customer substitution is captured by a

Markov chain, where each product, including a dummy product representing a no-purchase option,

corresponds to a state, and substitutions are modeled as transitions in the Markov chain. The

authors show that the Markov chain model provides good choice probability estimates when the

data arises from a wide class of existing choice models. We would like to note that a similar idea had

already been used by Zhang and Cooper (2005) in the context of airline revenue management. This

alternative way to model customer behavior has recently received a lot of attention. Feldman and

Topaloglu (2017) study the network revenue management problem under the Markov chain model.

Şimşek and Topaloglu (2018) propose a method to estimate the parameters of the model from data.

Désir et al. (2020) show that the constrained assortment problem is APX-hard and design efficient

approximation algorithms to tackle the constrained variant of the assortment problem. This paper

adds to this stream of work by considering a robust variant of the assortment problem under the

Markov chain model.

In practice, the parameters of the underlying choice model have to be estimated from data.

Statistical errors in these parameters are therefore unavoidable. By ignoring this uncertainty on the

parameters, “optimal” decisions based on the point estimators could potentially be sub-optimal for

the true parameters, especially when the estimates differ from the true parameters. To account for

this, we instead propose a robust optimization approach where the uncertainty in the parameters

is explicitly captured by a “confidence set” or an “uncertainty set”. Intuitively, this set includes
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the true parameters with high confidence based on the statistical estimation procedure. Given

such an uncertainty set, the goal of the robust assortment problem is to choose an assortment

that maximizes the worst case expected revenue, where the worst case is taken over all possible

parameters values.

1.1. Our contributions

Our main contributions are as follows.

Min-max duality. The robust formulation of the assortment optimization problem consists

of a minimization problem nested inside a maximization problem. Our main result is to show a

min-max duality for the robust assortment optimization under the Markov chain model. When the

uncertainty set is row-wise, i.e. when the uncertainty across the different rows of the transition

matrix are unrelated, the order of the max and min operators in the robust assortment optimization

formulation can be interchanged. This implies that the optimal expected revenue where the decision

maker first chooses the best possible assortment and then an adversary picks the model parameters

to minimize the expected revenue of the selected assortment is equal to the expected revenue where

the adversary makes the model parameter selection first and then the decision maker chooses the

assortment to maximize the expected revenue. We would like to mention that our objective function

does not satisfy the properties such as convexity and concavity with respect to the minimization

and maximization part respectively for which such min-max duality, also known as saddle point

results, holds.

A general framework. To prove our main result, we introduce a more general framework that

captures the robust assortment optimization problem under a broader class of choice models. In

particular, we consider a setting where the choice probabilities, and therefore the revenue function,

are given as solutions to a system of linear equations. A special case of this setting is the Markov

chain choice model, where the substitution behavior is captured by the transitions in an underlying

Markov chain and where the system of linear equations naturally arises as the balance equations

in the Markov chain. The matrix defining the system of linear equations depends on a parameter

belonging to an uncertainty set. The goal in the robust assortment optimization problem is to select

the assortment that achieves the best worst-case expected revenue over all possible parameters in

the uncertainty set. We establish, under certain reasonable assumptions, a min-max duality for

the robust assortment optimization for this class of choice models which then implies our result

for the Markov chain. Interestingly, it also implies a min-max relation for the MNL model under

a general uncertainy set. Note that because the MNL model is a special case of the Markov chain

model (Blanchet et al. (2016)), we are able to obtain a stronger result, i.e. for general uncertainty

set, for the MNL model.
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Optimal algorithms for robust MC and MNL and insights. In addition, we also give

efficient algorithms to compute the optimal robust assortment under both the Markov chain and

MNL model. These algorithms are both iterative procedures solving a fixed point equation inspired

by the min-max relation. We also present operational insights regarding the effect of changing the

uncertainty set on the optimal robust assortment under the Markov chain model. In particular, we

find that bigger uncertainty sets always lead to bigger assortment, and a firm should offer larger

assortments to hedge against uncertainty.

Numerical experiments. Finally, we conduct some numerical experiments that help quantify

the tradeoffs between the capability of hedging against the uncertainty in the model parameters

and the conservativeness of the associated optimal robust assortment. In particular, we present two

computational studies. In the first one, we explore a setting where the underlying ground truth is

a known Markov chain model with uncertain parameters. We then present a more realistic set of

experiments where the ground truth is an unknown ranking-based model. In this case, we assume

that we only have access to choice data and propose a data-driven approach where we first learn

the parameters of Markov chain and then construct uncertainty sets using a procedure inspired by

the bootstrap method. In both cases, we show how choosing the level of uncertainty allows trading

off between the worst-case and average performances. Moreover, in the more realistic setting, our

results show that taking a robust approach indeed yields a higher worst-case performance and can

even generates a higher average performance in many cases. This indicates that our approach is

able to provide robustness without sacrificing much optimality in the revenue when there is model

mis-specification and insufficient amount of training data such that the estimated parameters is

far from the ground truth.

1.2. Related literature

Our work is closely to related to the choice model and assortment optimization literature as well

as the robust optimization literature.

Choice model and assortment optimization. In order to overcome the MNL model lim-

itation and capture a richer class of substitution, many choice models have been proposed. Most

of them increase the model complexity and therefore make the parameters’ estimation and assort-

ment optimization significantly more difficult. One of the key challenges in assortment planing

is choosing a model that strikes a good balance between its predictability and tractability. The

interested readers are referred to Kök et al. (2015) for a comprehensive background reading on the

assortment optimization problems.

The MNL model belongs to the very rich class of random utility models wherein the utility

of each product is modeled as the sum of a deterministic component and a random noise. The
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assumption on the joint distribution of these noises specifies the choice model. For instance, when

the noises are i.i.d. and follow a Gumbel distribution, this results in the MNL model. In this class of

random utility models, generalizations of the MNL model include the nested logit model (Williams

1977) and the mixture of MNL model (McFadden and Train 2000). Under the nested logit model,

the products are grouped into nests and products in the same nest have positively correlated

noises which implies that they are closer substitutes. Under a mixture of MNL model, customer

heterogeneity is added by considering multiple segments with each following a different MNL model.

The assortment optimization problem has been studied under both of these extensions. Under

the mixture of MNL model, the assortment optimization problem becomes NP-hard, even when

the number of mixtures is two (Rusmevichientong et al. (2014)). Under the nested logit model,

the assortment optimization problem is tractable (Davis et al. 2014) even when adding additional

capacity constraints (Gallego and Topaloglu 2014, Désir et al. 2014). One main limitation of this

model is that it depends on a predefined nest structure which is hard to estimate in practice.

Another approach to choice modeling is to represent customer preferences by a distribution over

preference lists, i.e. strict orderings of the products. Each customer draws a preference list and

selects among the offered products the highest ranked option. This approach leads to expressive

models that can capture very complex substitution behavior. Farias et al. (2013) show that this

approach can lead to more accurate revenue predictions than traditional random utility models.

However, the assortment optimization problem becomes untractable under such a general model.

In particular, even when the support of the distribution is sparse, there is no polynomial algorithm

for the assortment optimization problem with an approximation factor better than Ω(1/n1−ε) for

any constant ε > 0 unless P = NP (Aouad et al. 2018). Several special cases of this model lead to

more tractable optimization problems (Honhon et al. (2010), Honhon et al. (2012), Aouad et al.

(2015), Jagabathula and Rusmevichientong (2016)).

In this paper, we focus on the Markov chain based choice model which has recently received a

growing interest (Blanchet et al. 2016, Şimşek and Topaloglu 2018, Feldman and Topaloglu 2017,

Désir et al. 2020). The most related work is Rusmevichientong and Topaloglu (2012) which studies

the robust assortment optimization under the MNL model. Since the Markov chain model is a

strict generalization of the MNL model (see Blanchet et al. (2016)), our results strictly generalize

Rusmevichientong and Topaloglu (2012). Importantly, the approach taken in Rusmevichientong

and Topaloglu (2012) does not extend to the Markov chain model and we have to develop new

tools to solve the robust assortment optimization problem under the Markov chain based model.

Robust optimization. Finally, our paper relates to the robust optimization literature (Ben-

Tal et al. (2009), Ben-Tal and Nemirovski (2000), Bertsimas and Sim (2003), Gorissen et al. (2014),
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Xu and Burer (2016)) which incorporates the uncertainty in the model parameters into the decision

making process. Recently, this paradigm has found some application in the operations management

and revenue management literature such as airline revenue management (Birbil et al. (2009),

Perakis and Roels (2010)), pricing (Thiele (2009)), portfolio selection (Chen et al. (2011), Zhu

and Fukushima (2009)), process flexibility (Wang and Zhang (2015)), appointment scheduling

(Mak et al. (2014)). Gorissen et al. (2014) study a robust linear conic program with column-wise

uncertainty on the transpose of the coefficient matrix, and they show that this problem this problem

is computationally tractable. Even though the setup is related, their results does not apply in our

setting. We give more details after having introduced the notation in Section 2.1.

1.3. Outline

The remainder of this paper is organized as follows. In Section 2, we introduce the model and

the main min-max result. In Section 3, we introduce a more general framework which we use to

prove our main result. Section 4 is dedicated to the proof of the min-max result under the general

framework. In Section 5, we discuss some implications of our main result. In particular, we give

an efficient algorithm to compute the optimal robust assortment and provide some operational

insights. Finally, we conduct some numerical experiments in Section 6 to showcase the benefits of

adopting a robust approach.

2. Model and main result

In this section, we introduce the Markov chain model and formulate the associated robust assort-

ment optimization problem. We then state our main theorem on the min-max result of the robust

assortment model.

2.1. Markov chain model under uncertainty

Model parameters. We consider a universe of n products denoted by N = {1,2, . . . , n}. We

let product 0 be the no-purchase alternative with the convention that N+ =N ∪{0}. Each of the

n products is associated with a revenue (or price) rj ≥ 0. Under the Markov chain model, every

product is treated as a state of some underlying Markov chain. We assume that the customers

arrive at each state i of the Markov chain with some initial arrival probabilities λi. Upon arrival,

the customer either buys the product if it is offered, i.e. i ∈ S, or substitutes to another product

j according to the underlying transition probabilities ρij. The customer continues this random

walk until she either lands on a product in the offer set, at which point she buys the product, or

in the no-purchase state, at which point she leaves the system without purchasing anything. In

other words, the products included in the offer set S are absorbing states of the Markov chain
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and the probability that a customer purchases product i, i.e. the choice probability, is equal to the

absorption probability of the associated state in the Markov chain. The model parameters are:

1. An initial arrival probability λi for each state i∈N , which is the probability that a customer

wants to purchase product i when entering into the system.

2. The transition probabilities ρij for all i∈N , j ∈N+, which can be thought of as the probability

that the customer transits into considering purchasing product j when her favorite product i is

not available.

Let λ= [λ1, · · · , λn]> be the vector of arrival rates. Similarly, for each i, let ρi = [ρi1, · · · , ρin]>

be the vector of out-going probabilities from product i. We also let ρ+
i = [ρi0, · · · , ρin]> be the

augmented vector of out-going probabilities and which a true probability vector, i.e.
∑n

i=0 ρij = 1.

Note that once ρi is fixed, ρ+
i is determined as well. We denote by ρ the transition matrix whose

ith row is given by ρi.

Expected revenue. For any fixed assortment of products S ⊆N and product i, it is useful to

introduce an intermediate variable vi, which denotes the expected revenue from a customer who is

currently considering purchasing product i. This customer could either be in state i because it is

the first state she visits or because she transitioned to state i after having visited several products

that were not offered. Note that by the Markov assumption, vi does not depend on the visit history

of the customer. Moreover, v satisfies the following set of balance equations

vi = ri,∀i∈ S,

vi =
∑
j∈N

ρijvj,∀i /∈ S. (1)

That is, if the state corresponds to an offered product i in the assortment, i.e. i ∈ S, then the

customer buys that product and generates a revenue of ri. Otherwise, the product does not belong

to the assortment, i.e. i 6∈ S, then the customer transits to another state j with probability ρij

at which point she generates an expected revenue of vj. Therefore, given transition matrix ρ and

arrival probability vector λ, if we let v be the unique solution to the system of equations (1), then

the expected revenue achieved by assortment S can be described as:

RMC(S,ρ,λ) =
∑
i∈N

λivi. (Rev MC)

We discuss in Section 2.2 assumptions that guarantee that the system of equations (1) indeed has

a unique solution.
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Assortment optimization. We can now formulate the assortment optimization under the

Markov chain model as follows.

max
S⊆N

RMC(S,ρ,λ). (Assort MC)

Leveraging the system of linear equations (1), Blanchet et al. (2016) and Feldman and Topaloglu

(2017) show that (Assort MC) admits the following dual formulation

min
∑
i∈N

λivi (Dual Assort MC)

s.t. vi ≥ ri,∀i∈N ,

vi ≥
∑
j∈N

ρijvj,∀i∈N .

The following result from Feldman and Topaloglu (2017) shows that this formulation is valid.

Lemma 1 (Theorem 2 from Feldman and Topaloglu (2017)). (Dual Assort MC) correctly

computes the optimal value to (Assort MC).

Note that (Dual Assort MC) is a linear program unlike the formulation (Assort MC) which is com-

binatorial in nature since the decision variables are all possible assortments S ⊆N .

Uncertainty sets and robust assortment optimization. In practice, the parameters are

estimated from data and estimation is prone to error. To account for this uncertainty in the

parameters, we assume that the parameters belong to some uncertainty sets rather than being

fixed. Let Uρ and Uλ be uncertainty sets (possibly nonconvex) that the model parameters ρ and

λ are adversarially selected from. The robust assortment optimization problem under the Markov

chain model can be expressed as

max
S⊆N

min
ρ∈Uρ,λ∈Uλ

RMC(S,ρ,λ). (Robust Assort MC)

In other words, the robust assortment optimization problem consists of choosing an assortment

that maximizes the worst-case expected revenue over the uncertainty sets Uρ and Uλ.

2.2. Min-max result

Our main result is to show that, under some assumptions, there exists a min-max duality relation

for (Robust Assort MC). We begin by stating an assumption that we need on the structure of the

uncertainty set Uρ.

Assumption 1 (Row-wise uncertainty set). We assume that Uρ is a row-wise uncertainty set

Uρ, i.e. there exist uncertainty sets Uρ1 , · · · ,Uρn such that Uρ can be written as a cartesian product,

Uρ = Uρ1 × · · ·×Uρn.
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In other words, for each product i∈N , the transition probabilities (ρij)j∈N belong to an uncer-

tainty set Uρi . Note that the transition probabilities cannot change arbitrarily since for each i∈N ,∑n

j=0 ρij = 1. However, under Assumption 1, the rows of the transition matrix are allowed to vary

independently from each other. Note that some papers work with the transpose of the transition

matrix. In this case, Assumption 1 is referred to as column-wise uncertainty (Gorissen et al. 2014).

We further make the following assumption.

Assumption 2. We assume that the uncertainty sets Uρ and Uλ satisfy the following:

1. For every ρ∈ Uρ, ρ is irreducible and has a spectral radius which is stricly less than 1.

2. For every ρ∈ Uρ and any i∈N , ρii = 0.

3. Uλ ⊆Rn++.

Assumption 2 is standard for the Markov chain model (Blanchet et al. 2016) and is typically stated

for a fixed λ and ρ. Given our robust setting, we require those assumptions to hold for all λ and ρ

in the uncertainty sets. Note that under Assumption 2, the system of linear equations (1) admits

a unique solution. We can now state the main result of this section.

Theorem 1. Under Assumptions 1 and 2,

max
S⊆N

min
ρ∈Uρ,λ∈Uλ

RMC(S,ρ,λ) = min
ρ∈Uρ,λ∈Uλ

max
S⊆N

RMC(S,ρ,λ).

Moreover, the optimal robust assortment can be characterized as follows,

S∗ = {j ∈N |v∗j = rj},

where v∗ is the unique fixed point of the mapping f(v) :Rn→Rn defined for all v ∈Rn as

f(v)i = max

(
ri, min

ρi∈Uρi

∑
j∈N

ρijvj

)
, ∀i∈N . (2)

Our result shows that under a row-wise uncertainty set, the order of the max and min operators is

interchangeable in (Robust Assort MC). This means that the optimal expected revenue where the

decision maker first chooses the best possible assortment and then an adversary picks the model

parameters to minimize the expected revenue of the selected assortment is equal to the expected

revenue where the adversary makes the model parameter selection first and then the decision maker

chooses the assortment to maximize the expected revenue. We would like to mention that the

objective function does not satisfy the properties like convexity and concavity with respect to the

minimization and maximization part respectively for which such min-max duality, also known as

saddle point results, holds. Moreover, our result also comes with a characterization of the optimal
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robust assortment using the fixed point of the mapping f(·). We exploit this characterization to

develop an efficient algorithm to find the optimal assortment in Section 5.1.

We end this section by relating our result to Gorissen et al. (2014) which studies a robust linear

conic program with column-wise uncertainty on the transpose of the coefficient matrix. A subtle

difference is that they are dealing with constraints of the form of vi ≥maxρ
∑
i∈N

ρijvj in the robust

version of the linear program (Dual Assort MC), while as highlighted by the form of f(·) in (2), we

have constraints of the form vi ≥minρ
∑
j∈N

ρijvj. In addition, the uncertainty set in Gorissen et al.

(2014) is required to be convex, but our min-max theorem also holds true non-convex uncertainty

sets. Therefore, the results in Gorissen et al. (2014) are not applicable to our setting.

3. From the Markov chain model to a general framework

In this section, we prove Theorem 1 by showing a min-max result for a more general class of choice

models. In particular, we introduce in Section 3.1 a class of models that encompasses the Markov

chain model. We state a more general min-max result in Section 3.2 and prove in Section 3.3 how

it implies Theorem 1. We defer the proof of the general min-max result to Section 4.

3.1. A more general model

In order to study the robust assortment optimization problem under the Markov chain model,

we present a more general framework that captures the robust assortment optimization problem

under a broader class of choice models. In particular, we consider a model that depends on an

uncertain parameter u which is adversarially selected from an uncertainty set U . We do not make

any assumption about the convexity of U . Given an assortment S ⊆N and the model parameter

u∈ U , we assume that the expected revenue generated by this assortment is given by

RGen(S,u) =
∑
i∈N

λ(u)ivi, (Rev General)

where vi is the unique solution to the following system of balance equations

vi = ri,∀i∈ S,∑
j∈N

A(u)ijvj = b(u)i,∀i /∈ S, (3)

and where the parameters b(u)i ∈R, λ(u)i ∈R for all i∈N and A(u)ij ∈R for all i∈N and j ∈N

all depend on the uncertain parameter u. Note how (Rev General) and (3) generalize (Rev MC)

and (1) respectively. Consequently, it should be clear that the proposed framework is more general

than the Markov chain model.

More generally, under a general choice model, the expression for the expected revenue function

is R(S) =
∑

i∈S riπ(i,S) where π(i,S) is the choice probability, i.e. the probability that product i
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is chosen when the assortment S is offered. Consequently, (Rev General) can be interpreted as an

expected revenue where the choice probabilities are implicitly given by a system of linear equations.

More precisely, using the Markov chain analogy, for a fixed parameter u, it is useful to think of

λ(u)i as the fraction of customers whose most preferred product is i, i.e., who would purchase

product i if it is present in the assortment. Using this clustering of the population, vi represents the

revenue from the customers who want to buy product i. If product i is available in the assortment,

vi is equal to ri, the revenue of product i. Otherwise, the customers substitute to other products

(possibly to the outside option). The revenue generated by these substitutions is captured by the

system of linear equations
∑

j∈N A(u)ijvj = b(u)i for all i /∈ S. Note that in the Markov chain

model, the substitution behavior is captured by the transitions in an underlying Markov chain.

This general framework allows the substitution patterns to be encoded by any matrix A(u). In

Section 3.3, we map this general model to the Markov chain model and explicit the dependence on

u. Note that we also show in Section 5.3 how to map this general model to the MNL model.

We are interested in the following robust assortment optimization problem where the decision

maker wants to maximize worst-case revenue.

max
S⊆N

min
u∈U

RGen(S,u). (Robust Assort General)

As mentioned earlier, our main result is to show that under suitable assumptions, a max-min

relation holds, i.e. that the order of the operators can be switched in (Robust Assort General). It

will be useful to define the worst case revenue for a fixed assortment S.

min
u∈U

RGen(S,u) = min
u∈U,v

∑
i∈N

λ(u)ivi

s.t. vi = ri,∀i∈ S,∑
j∈N

A(u)ijvj = b(u)i,∀i /∈ S.

(Worst-case Rev)

We next detail our technical results.

3.2. General min-max result

We present a set of four assumptions that are needed for our main result. The first two assumptions

concern the uncertainty set.

Assumption 3 (Positivity of λ). For any u∈ U , λ(u)> 0.

Assumption 4 (Irreducibility and diagonally dominance of the constraint matrix).

For any u∈ U , A(u) is a strictly row diagonally dominant matrix with positive diagonal elements

and non-positive off-diagonal elements, i.e.,
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• For all i∈N , A(u)ii > 0.

• For all i, j ∈N such that i 6= j, A(u)ij ≤ 0.

• For all i∈N ,
∑

j∈N A(u)ij > 0.

Moreover, for any U = [u1, . . . ,un] ∈ Un, let A(u) be the matrix whose ith row is the ith row of

A(ui) for i= 1, . . . , n. We further assume that A(u) is irreducible for any U = [u1, . . . ,un]∈ Un.

Note that we do not assume any structure on U . Rather, Assumption 4 imposes some structure

on the constraint matrix A(u). In particular, we require not only that A(u) is irreducible for any

parameter u ∈ U but also that A(u), which is constructed by picking one row from each of n

matrices A(ui), is irreducible for any family u1, . . . ,un ∈ U .

Note that, under the above assumptions, the linear system in defining (Rev General) has a unique

solution, and thus, RGen(S,u) is well defined for all S ⊆N and u∈ U . To proceed with our discus-

sion, we define the following problem:

min
u∈U,v

∑
i∈N

λ(u)ivi

s.t. vi ≥ ri,∀i∈N ,∑
j∈N

A(u)ijvj ≥ b(u)i,∀i∈N .

(Dual Assort General)

Contrasting this with (Dual Assort MC), it can be informally interpreted as the dual

of (Robust Assort General). As we will see in Proposition 4, (Robust Assort General) and

(Dual Assort General) are indeed equivalent when U is a singleton.

We can now state the last two assumptions that we need. In particular, we need that the

optimization problems that we introduced can be reformulated as optimization problems over v

alone and that the uncertainty in the parameter u can be captured through the objective function

and the constraints for the two related problems. More precisely, the assumptions assumes that

the minimization operator over the uncertainty parameter can be pushed around. For the Markov

chain model, these assumptions are closely related to Assumption 1.

Assumption 5. (Dual Assort General) is equivalent to the following optimization problem:

min
v

min
u∈U

∑
i∈N

λ(u)ivi

s.t. vi ≥ ri,∀j ∈N ,

vi ≥min
u∈U

[∑
j 6=i

−A(u)ij
A(u)ii

vj +
1

A(u)ii
b(u)i

]
,∀i∈N .

Under Assumption 5, the minimization over u ∈ U can be done separately over the objective and

right-hand side of the constraint for any fixed v. In other words, the minimization operand can be

pushed into the constraint and objective. We make a similar assumption for (Worst-case Rev).
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Assumption 6. Given S ⊆N , (Worst-case Rev) is equivalent to the following optimization prob-

lem.

min
v

min
u∈U

∑
i∈N

λ(u)ivi

s.t. vi = ri,∀i∈ S,

vi = min
u∈U

[∑
j 6=i

−A(u)ij
A(u)ii

vj +
1

A(u)ii
b(u)i

]
,∀i /∈ S.

We can now state our main result which is a generalization of Theorem 2.

Theorem 2. Under Assumptions 3, 4, 5 and 6,

max
S⊆N

min
u∈U

RGen(S,u) = min
u∈U

max
S⊆N

RGen(S,u).

Furthermore, the optimal robust assortment can be characterized as follows,

S∗ = {j ∈N |v∗j = rj},

where v∗ is the unique fixed point of the mapping f(v) :Rn→Rn defined for all v ∈Rn as

fi(v) = max

{
ri,min

u∈U

[∑
j 6=i

−A(u)ij
A(u)ii

vj +
1

A(u)ii
b(u)i

]}
, ∀ i∈N . (4)

This result not only establishes the min-max relation for the general framework, it also gives a

characterization of the optimal robust assortment. We leverage this to design efficient algorithms

in Section 5.

3.3. Proof of Theorem 1

Before proceeding to the proof of Theorem 2, we show that all its assumptions are indeed satisfied

for the Markov chain model and thus Theorem 1 is an immediate consequence of Theorem 2. First,

note that the Markov chain model is indeed a special case of the more general model introduced

in (Rev General) by letting u = (λ,ρ) and for all u, λ(u) = λ, A(u) = I−ρ and b(u) = 0. It is

immediate to verify that Assumptions 3 and 4 are satisfied under our assumptions on Markov chain

model.

Proposition 1. Under Assumption 1 and 2, both Assumptions 3 and 4 hold.

Under Assumption 1, the rows in the uncertainty set Uρ are unrelated and under Assumption 2,

λj > 0 for all j ∈N . We use those facts to show that Assumption 5 holds.
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Proposition 2. Under Assumptions 1, the Markov chain model satisfies Assumption 5, i.e. θ1 =

θ2 where
θ1 = min

λ∈Uλ,ρ∈Uρ
min
v

∑
i∈N

λivi

s.t. vi ≥ ri,∀i∈N ,

vi ≥
∑
j∈N

ρijvj,∀i∈N

(5)

and
θ2 = min

v
min
λ∈Uλ

∑
i∈N

λivi

s.t. vi ≥ ri,∀j ∈N ,

vi ≥ min
ρ∈Uρ

∑
j∈N

ρijvj,∀i∈N .

(6)

Proof. Suppose (v∗,ρ∗,λ∗) and (v̂, λ̂) are the optimal solutions to (5) and (6) respectively. We

have for all i∈N ,

v∗i ≥
∑
j∈N

ρ∗ijv
∗
j ≥ min

ρ∈Uρ

∑
j∈N

ρijv
∗
j .

This means that (v∗,λ∗) is feasible for (6), and thus
∑

i∈N λ
∗
i v
∗
i ≥

∑
i∈N λ̂iv̂i. On the other hand,

for all i∈N , let

ρ̂i = argminρi∈Uρi
∑
j∈N

ρij v̂j.

The tuple (v̂, ρ̂, λ̂) is feasible for (5) as

v̂i ≥ min
ρ∈Uρ

∑
j∈N

ρij v̂j = min
ρi∈Uρi

∑
j∈N

ρij v̂j =
∑
j∈N

ρ̂ij v̂j.

Note that we have used Assumption 1 in the above equality since it allows us to construct each ρ̂i

independently. Consequently,
∑

i∈N λ
∗
i v
∗
i ≤

∑
i∈N λ̂iv̂i and the conclusion follows. �

We now show that Assumption 6 also holds.

Proposition 3. Under Assumptions 1 and 2, for given assortment S ⊆N , we have θ3 = θ4, where

θ3 = min
λ∈Uλ,ρ∈Uρ

min
v

∑
i∈N

λivi

s.t. vi = ri,∀i∈ S,

vi =
∑
j∈N

ρijvj,∀i /∈ S.

(7)

and
θ4 = min

v
min
λ∈Uλ

∑
i∈N

λivi

s.t. vi = ri, ∀i∈ S,

vi = min
ρ∈Uρ

∑
j∈N

ρijvj, ∀i /∈ S.

(8)
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Proof. Suppose (v∗,ρ∗,λ∗) and (v̂, λ̂) are the optimal solutions to (7) and (8) respectively.

For all i /∈ S, let ρ̂i = arg minρi∈Uρi
∑

j∈N ρij v̂j and let ρ̂ = [ρ̂>1 , · · · , ρ̂>n ]. Again, note that we can

construct such ρ̂ because of the row-wise structure of the uncertainty set, i.e. Assumption 1. The

tuple (v̂, ρ̂, λ̂) is feasible for (7) , and thus∑
i∈N

λ∗i v
∗
i ≤

∑
i∈N

λ̂iv̂i.

Next, we show that v∗i =
∑

j∈N ρ
∗
ijv
∗
j = minρi∈Uρi

∑
j∈N ρijv

∗
j for all i /∈ S. Suppose by contradiction

that we have v∗i > minρi∈Uρi
∑

j∈N ρijv
∗
j for some i /∈ S. In this case, we can decrease the value

of v∗i by a small amount, while maintaining the feasibility of the solution. This combined with

Assumption 2, i.e. λi > 0 for all i ∈ N , leads to a solution providing a strictly smaller objective

value than the optimal solution and therefore a contradiction occurs. Consequently, (v∗,λ∗) is also

feasible for (8), and ∑
i∈N

λ∗i v
∗
i ≥

∑
i∈N

λ̂iv̂i,

which completes the proof. �

4. Proof of the General Min-Max Result

This section is devoted to proving Theorem 2 .

4.1. Preliminary results

We start by relating (Robust Assort General), our problem of interest, to (Dual Assort General) when

there is no uncertainty.

Proposition 4. Fix some u∈ U , let λ :=λ(u),A :=A(u),b := b(u). Let

θ5 = max
S⊆N

∑
i∈N

λivi

s.t. vi = ri,∀i∈ S,∑
j∈N

Aijvj = bi,∀i /∈ S,

(9)

and
θ6 = min

v

∑
i∈N

λivi

s.t. vi ≥ ri,∀i∈N ,∑
j∈N

Aijvj ≥ bi,∀i∈N .

(10)

Under Assumptions 3 and 4, θ5 = θ6.

This result can be interpreted as a generalization of Lemma 1 for the general choice model.
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Proof. We first show that θ5 ≥ θ6. By Assumption 4, for any given i ∈ N , Aii > 0. We can

therefore write ∑
j∈N

Aijvj = bi ⇔ vi =
∑
j 6=i

−Aij
Aii

vj +
1

Aii
bi.

For all i∈N , let

Ãij =


−Aij
Aii

, if j 6= i,

0 , if j = i,

and b̃i = 1
Aii
bi, and let Ã := [Ãij]. Under Assumption 4, Ã has a spectral radius which is strictly

less than 1, and 0<
∑
j∈N

Ãij < 1 for any i∈N . Define the following mapping:

gi(v) = max

{
ri,
∑
j∈N

Ãijvj + b̃i

}
,∀i∈N ,

and g(v) = [g1(v), . . . , gn(v)]>. Note that with this notation, (10) can be equivalently rewritten as

min
v

∑
i∈N

λivi

s.t. v≥ g(v)

(11)

We next show that the mapping g(v) : Rn → Rn has a unique fixed point. To do so, for any

v,v′ ∈Rn, let d(v,v′) = ‖v−v′‖2 be the `2 distance between v and v′. For all v,v′ ∈Rn, we have

d(g(v), g(v′)) = ‖g(v)− g(v′)‖2

≤
∥∥∥Ã(v−v′)

∥∥∥
2

< ‖v−v′‖2 = d(v,v′),

where the first inequality is true because for any a, b, c∈R,

|max{a, b}−max{a, c}| ≤ |b− c| ⇒ |max{a, b}−max{a, c}|2 ≤ |b− c|2 ,

and the second inequality follows because for any matrix Ã with spectral radius strictly less than 1,

sup
x

‖Ãx‖2
‖x‖2

< 1⇒‖Ãx‖2 < ‖x‖2,∀x.

g(·) is therefore a contraction mapping and has a unique fixed point v∗ that satisfies v = g(v) by

Banach’s fixed point theorem. Moreover, v∗ is feasible to (11) .

By Assumption 4, Ãij ≥ 0 for all i, j ∈N . Therefore, g is monotone increasing, i.e., for v ≥ v′,

g(v)≥ g(v′). Consequently, v≥ g(v) implies that for all k,

g(v)≥ g(g(v))≥ . . .≥ gk−1(v)≥ gk(v).
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In addition, gk(v)≥ r for all k. Therefore, the sequence {gk(v)}k=1,2,... associated with any feasible

solution v of (11) is monotonically decreasing and bounded from below. Consequently, it must

converges to the unique fixed point v∗ and

v≥ g(v)≥ g(g(v))≥ . . .≥ v∗.

Therefore, the above fact together with Assumption 3 implies that any feasible solution v 6= v∗

of (11) has a larger objective value than that of v∗. Consequently, v∗ is the optimum of (10).

Moreover, S = {i | v∗i = rj} is feasible for (9) with objective value
∑
i∈N

λiv
∗
i = θ6, which implies that

θ5 ≥ θ6.

We now prove the reverse inequality, i.e. θ6 ≥ θ5. For any assortment S which is feasible for (9),

let

vi(S) :=


ri , i∈ S,∑
j∈N

Ãijvj(S) + b̃i, i /∈ S.

In the following, we want to show that

∑
i∈N

λivi ≤
∑
i∈N

λiv
∗
i , (12)

which in turn will imply that θ6 ≥ θ5 and complete the proof. From the definition of g(·) and the

construction of v, we have g(v)≥ v. Moreover, since g is monotone increasing, it holds that

g0(v) := v≤ g(v)≤ g(g(v))≤ . . .≤ gk−1(v)≤ gk(v),

i.e., the sequence {gk(v)}k=0,1,... is monotonically increasing. Next, we show that {gk(v)}k=0,1,... has

a uniform upper bound. To this end, note that for given j ∈N , Vj := {vj(S) : S ⊆N} is a finite

set and hence is bounded. Let vmax = max
j∈N

max
vj∈Vj

vj. Furthermore, for all i∈N ,

gi(v) = max

{
ri,
∑
j∈N

Ãijvj + b̃i

}

= max

ri,
∑
j∈N

Ãijvj +

(
1−

∑
j∈N

Ãij

)
b̃i

1−
∑
j∈N

Ãij


≤max

ri, v1, · · · , vn, b̃i

1−
∑
j∈N

Ãij


≤max{vmax, δ} ,
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where

δ= max

r1, · · · , rn, b̃1

1−
∑
j∈N

Ã1j

, · · · , b̃n

1−
∑
j∈N

Ãnj

 .

Therefore, the sequence {gk(v)}k=0,1,... is bounded above and converges to the unique fixed point

v∗, which shows that any v defined by the feasible solution S of the maximization problem (9)

satisfies v≤ v∗. By Assumption 3, Equation (12) holds and θ6 ≥ θ5 as desired. �

Remark 1. The following example shows that our assumptions are necessary. In particular, when

A is a strictly diagonal dominant matrix but with positive off-diagonal elements, Proposition 4

fails. For instance, consider

A=

[
1 −0.8

0.8 1

]
,b=

[
0.7
0.2

]
,λ=

[
0.9
0.1

]
.

In this case, the solution of the following two problems are different.

• The maximizer of

max
S⊆N

∑
i∈N

λivi

s.t. vi = ri,∀i∈ S,∑
j

Aijvj = bi,∀i /∈ S

is S∗ = {2} with v∗1 = [0.7,0]>. The corresponding objective value is 0.63.

• The minimizer of

min
v

∑
i∈N

λivi

s.t. vi ≥ ri,∀i∈N ,∑
j

Aijvj ≥ bi,∀i∈N

is v∗2 = [0,0.875]>. The objective is 0.0875.

In this case, Proposition 4 fails because the mapping g(·) in Proposition 4 is no longer monotone

increasing. Moreover, starting from v∗1 , lim
k→∞

gk(v∗1) = [0.329,0.463]> for which the objective is 0.343.

4.2. Proof of Theorem 2

As with most min-max results, one inequality is easily verified. Here, we have that for all S ⊆N

and u ∈ U , minu∈U R(S,u) ≤ R(S,u). Taking the maximum over S ⊆ N on both sides yields

maxS⊆N minu∈U R(S,u)≤maxS⊆N R(S,u) which then immediately implies

max
S⊆N

min
u∈U

R(S,u)≤min
u∈U

max
S⊆N

R(S,u).
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We now prove that the reverse inequality also holds. We start by reformulating the min-max

problem. Denote w(v) = min
u∈U

∑
i∈N

λ(u)ivi. Using Proposition 4 and Assumption 5, we can rewrite

the min-max problem as

min
u∈U

max
S⊆N

R(S,u) = min
v

w(v)

s.t. vi ≥ ri,∀i∈N ,

vi ≥min
u∈U

[∑
j 6=i

−A(u)ij
A(u)ii

vj +
1

A(u)ii
b(u)i

]
,∀i∈N .

(13)

We use the mapping f(·) that was previously defined such that for all v and i∈N ,

fi(v) = max

{
ri,min

u∈U

[∑
j 6=i

−A(u)ij
A(u)ii

vj +
1

A(u)ii
b(u)i

]}
.

We can then rewrite (13) succinctly as

min
v

w(v)

s.t. v≥ f(v).
(14)

In fact, we can show that the optimal solution v∗ of the above problem satisfies v∗ = f(v∗). To

see this, we first show that f is monotonically increasing, i.e., f(v′)≥ f(v′′) for any v′ ≥ v′′ (the

inequality is true componentwise). For any u ∈ U , Assumption 4 ensures that
−A(u)ij
A(u)ii

≥ 0 for all

i, j ∈N . Therefore for any v′ ≥ v′′, denoting u′ = arg min
u∈U

[∑
j 6=i

−A(u)ij
A(u)ii

v′j + 1
A(u)ii

b(u)i

]
, we have for

all i∈N ,

min
u∈U

[∑
j 6=i

−A(u)ij
A(u)ii

v′j +
1

A(u)ii
b(u)i

]
=
∑
j 6=i

−A(u′)ij
A(u′)ii

v′j +
1

A(u′)ii
b(u′)i

≥
∑
j 6=i

−A(u′)ij
A(u′)ii

v′′j +
1

A(u′)ii
b(u′)i

≥min
u∈U

[∑
j 6=i

−A(u)ij
A(u)ii

v′′j +
1

A(u)ii
b(u)i

]
.

As a result, for all i∈N , we have

fi(v
′) = max

{
ri,min

u∈U

[∑
j 6=i

−A(u)ij
A(u)ii

v′j +
1

A(u)ii
b(u)i

]}

≥max

{
ri,min

u∈U

[∑
j 6=i

−A(u)ij
A(u)ii

v′′j +
1

A(u)ii
b(u)i

]}
= fi(v

′′)

which means that f is monotonically increasing as desired. We are now in position to show that

(14) is equivalent to
min
v

w(v)

s.t. v= f(v)
(15)
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By contradiction, assume there exists an optimal solution v∗ of (14) such that v∗i > fi(v
∗) for some

i. Since f is monotonically increasing and λ(u)i > 0 for any i ∈N and u ∈ U due to Assumption

3, we can decrease v∗i by a small amount while strictly decreasing the objective value and not

violating other constraints. This contradicts the optimality of v∗. In summary, we have shown that

the min-max problem (13) is equivalent to (15).

We now investigate the max-min problem. Its inner minimization problem minu∈U R(S,u) is

min
u∈U,v

∑
i∈N

λ(u)ivi

s.t. vi = ri,∀i∈ S,∑
j∈N

A(u)ijvj = b(u)i,∀i /∈ S.

Therefore, according to Assumption 6, it can further be written as

min
u∈U

R(S,u) = min
v

w(v)

s.t. vi = ri,∀i∈ S

vi = min
u∈U

[∑
j 6=i

−A(u)ij
A(u)ii

vj +
1

A(u)ii
b(u)i

]
,∀i /∈ S.

(16)

Before proceeding, we state two claims which are needed to complete the proof. Their proofs are

postponed to Appendix A and B.

Claim 1. For any given S ⊆N , the problem (16) has a unique feasible solution.

Claim 2. The mapping f(·) defined in (4) has a unique fixed point.

Let S∗ ⊆N be the optimal assortment to maxS∈N minu∈U R(S,u) with v∗ being the correspond-

ing optimum of the inner problem (16). By feasibility of v∗, we have

v∗i = min
u∈U

[∑
j 6=i

−A(u)ij
A(u)ii

v∗j +
1

A(u)ii
b(u)i

]
,∀i /∈ S∗ and v∗i = ri, ∀i∈ S∗.

It then follows that for any i∈N ,

fi(v
∗) = max

{
ri,min

u∈U

[∑
j 6=i

−A(u)ij
A(u)ii

v∗j +
1

A(u)ii
b(u)i

]}
≥ v∗i .

On the other hand, take any u0 ∈ U , then

fi(v
∗)≤max

{
ri,
∑
j 6=i

−A(u0)ij
A(u0)ii

v∗j +

∑
jA(u0)ij

A(u0)ii

b(u0)i∑
jA(u0)ij

}
≤B,

where B := max
{
r1, · · · , rn, v∗1 , · · · , v∗n,

∑
j A(u0)1j

A(u0)11

b(u0)1∑
j A(u0)1j

, · · · ,
∑
j A(u0)nj

A(u0)nn

b(u0)n∑
j A(u0)nj

}
. Since f(·) is

monotonically increasing, we can recursively prove that fk−1(v∗)≤ fk(v∗)≤B for any k. It follows
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that the sequence {fk(v∗)}k=1,2,... is monotonically increasing, bounded above, and converges to

a fixed point v̂ of f(·), i.e f(v̂) = v̂ ≥ v∗. Consider Ŝ = {i ∈N | v̂i = ri}. Note that v̂ is a feasible

solution of (16) associated with Ŝ. Combining this fact with Claim 1 implies that v̂ is also optimal

to (16) with respect to Ŝ. Consequently, we have w(v̂)≤w(v∗). On the other hand, v̂≥ v∗ implies

that

w(v̂) = min
u∈U

∑
i∈N

λ(u)iv̂i ≥min
u∈U

∑
i∈N

λ(u)iv
∗
i =w(v∗).

Furthermore, recall that Assumption 3 guarantees that λ(u)i > 0 for any i ∈N and u ∈ U , which

in turn implies v∗ = v̂. Hence, v∗ = f(v∗) and v∗ is a feasible solution to (15). Consequently, the

optimal value of the max-min problem is no less than that of (15), which yields

max
S⊆N

min
u∈U

R(S,u) =w(v∗)≥min
u∈U

max
S⊆N

R(S,u).

Since v∗ = v̂= f(v∗) is the unique fixed point of f(·) by Claim 2, the associated optimal assortment

is S∗ = Ŝ = {j ∈N |v∗i = ri}. This completes the proof. �

Remark 2. According to the proof of Theorem 2, the optimal (S∗,v∗) only depends on Uρ but

not on Uλ. The latter affects the value of the objective function but not the optimal assortment.

5. Implications

5.1. Algorithm for robust Markov chain model

In order to prove the min-max result in Theorem 1, we reformulated the robust assortment opti-

mization problem as a fixed point problem. We present an iterative algorithm that builds on this

reformulation and aims to compute the unique fixed point of the following mapping

f(v)i = max

(
ri, min

ρi∈Uρi

∑
j∈N

ρijvj

)
, ∀i∈N ,

for the Markov chain model. Once this iterative algorithm has converged, we can construct an

optimal solution to (Robust Assort MC) by letting S∗ = {i ∈N | v∗i = ri} where v∗ = f(v∗) is the

fixed point. Algorithm 1 details this procedure.

This iterative procedure converges in polynomial time when the no-purchase probability ρi0 =

1−
∑
j∈N

ρij is polynomially bounded away from zero for any ρi ∈ Uρi and i∈N . More formally, we

need the following to hold true,

δ= min
i∈N

min
ρi∈Uρi

ρi0 = Ω(1/nα) ,

for some constant α.



: Robust Assortment Optimization under the Markov Chain Model
22 Article submitted to Operations Research; manuscript no. OPRE-2019-03-133

Algorithm 1 Iterative algorithm for computing the optimal robust assortment under the Markov
chain choice model

Input: The uncertainty set Uρi for all i∈N

Output: The optimal assortment S∗

1: for t= 1,2, . . . do

2: for i= 1,2, . . . , n do

3: vti←max

(
ri, min

ρi∈Uρi

∑
j∈N

ρijv
t−1
j

)
4: if vt = vt−1 then return S∗ = {i∈N | vti = ri}

Proposition 5. Suppose δ = Ω(1/nα) for some constant α and the uncertainty set Uρ satisfies

Assumption 2. Then Algorithm 1 find an optimal solution to (Robust Assort MC) in polynomially

many steps.

Proof. In the proof of Theorem 2, we have proved that f(·) is monotonically increasing and

bounded above. Therefore, {f t(v0)}t=1,2,... converges to v∗ for any starting point v0. We now prove

that the algorithm terminates in polynomially many steps. Observe that in Algorithm 1, since vt

is increasing, once vti exceeds ri for some for some i∈N , it never goes back to ri again. Denote

rmax = max
i∈N

ri, rmin = min
i∈N

ri, i0 = arg min
i∈N

ri.

Observe that in each iteration, there is a probability of at least δ of being absorbed by state 0.

Therefore, after t steps, the maximum possible expected revenue for i0 is (1−δ)t rmax. Consequently,

the maximum possible iteration number would not be larger than T with (1 − δ)T rmax ≥ rmin.

Therefore, the algorithm terminates in at most log(rmax/rmin)/δ= Ω(nα) log(rmax/rmin) steps.

Consequently, Algorithm 1 converges in polynomially many steps to the fixed point v∗ of f(·).

By Theorem 1, this implies that S∗ is an optimal solution to (Robust Assort MC). �

5.2. Operational insights of robust Markov chain model

In this subsection, we study how the robust optimal assortment changes with respect to the uncer-

tainty set and the revenue of each product under the Markov chain model. Rusmevichientong and

Topaloglu (2012) provide similar results for the MNL model and we are able to extend their insights

for the Markov chain model here.

Recall that we still work under Assumption 1, that is the uncertainty set can be represented as

(Uλ,Uρ) where Uρ = Uρ1 × · · · ×Uρn . Let S∗(Uλ,Uρ) denote the largest robust optimal assortment

and Z∗(Uλ,Uρ) the corresponding objective value for given uncertainty sets Uλ and Uρ. We first

present a sensitivity analysis with respect to the uncertainty sets.
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Proposition 6. For any Uλ ⊆ Ûλ and Uρ ⊆ Ûρ,

Z∗(Ûλ, Ûρ)≤Z∗(Uλ,Uρ) and S∗(Uλ,Uρ)⊆ S∗(Ûλ, Ûρ).

Proposition 6, whose proof is presented in Appendix C, states that when the degree of uncertainty

increases, the optimal worse case revenue will decrease. Moreover, the decision maker should offer

larger assortments to protect against larger uncertainty. Increasing product variety helps hedging

against a larder uncertainty in the parameters. We next provide an alternative characterization

of S∗(Uλ,Uρ) which relates the optimal robust assortment to the optimal assortments when the

parameters are given. In particular, for a given ρ ∈ Uρ, let S∗ρ = S∗(Uλ,{ρ}). We show that the

robust optimal assortment is the largest optimal assortment among {S∗ρ : ρ∈ Uρ}.

Proposition 7. For any (Uλ,Uρ), S∗(Uλ,Uρ) =
⋃
ρ∈Uρ S

∗
ρ .

Proof If follows from Proposition 6 that S∗ρ = S∗(Uλ,{ρ})⊆ S∗(Uλ,Uρ) for any ρ ∈ Uρ. There-

fore,
⋃
ρ∈Uρ S

∗
ρ ⊆ S∗(Uλ,Uρ). To prove the converse inclusion, let (ρ∗,λ∗) denote the optimal solu-

tion to min
ρ∈Uρ,λ∈Uλ

RMC(S∗(Uλ,Uρ), ρ, λ) and let S∗ρ∗ = arg max
S⊆N

RMC(S,ρ∗,λ∗). By Theorem 1, we

have

max
S⊆N

min
ρ∈Uρ,λ∈Uλ

RMC(S,ρ,λ) =RMC(S∗(Uλ,Uρ),ρ∗,λ∗)

= min
ρ∈Uρ,λ∈Uλ

max
S⊆N

RMC(S,ρ,λ) =RMC(S∗ρ∗ ,ρ
∗,λ∗).

Due to the uniqueness of the largest optimal assortment, we have S∗ρ∗ = S∗(Uλ,Uρ). This completes

the proof. �

As a consequence of Proposition 7, the decision marker should focus on the customer types with

transition probabilities that lead to the largest optimal assortment to protect against worst case

scenario. Finally, we present a result showing that the robust optimal assortment shrinks as we

decrease the product revenues. This type of result is particularly helpful in the single resource

revenue management problem. Indeed, in each time period, the decision maker needs to solve a

static assortment optimization problem where the revenue of each product is reduced by the same

amount (see Feldman and Topaloglu (2017)). Understanding how the optimal assortment varies

when all the revenues are reduced by the same amount is therefore helpful is characterizing the

structure of the optimal policy for this problem.

Proposition 8. For any (Uλ, Uρ), let S∗η(Uλ,Uρ) be the optimal robust assortment for the revenues

rη where rηi = ri + η, for all i∈N . For any η > 0,

S∗(Uλ,Uρ)⊆ S∗η(Uλ,Uρ).

In words, additive incremental revenues lead to larger robust assortments. The proof of this result

is presented in Appendix D.
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5.3. Connection to MNL model: general uncertainty set

5.3.1. Recovering the MNL choice model Let p= [p0, p1, . . . , pn] be the MNL parameters

such that
∑n

i=0 pi = 1. Blanchet et al. (2016) show that the MNL model is a special case of the

Markov chain model. Consequently, we can write the expected revenue under the MNL model as

the following system of linear equations.

RMNL(S,p) =
∑
i∈N

pivi, (Rev MNL)

where vi is the unique solution to the following system of equations

vi = ri,∀i∈ S,

vi =
∑
j∈N

pjvj,∀i /∈ S.

It is straightforward to see that this is again a special case of (Rev General) by letting parameters

u= p, λ(u) = p, b(u) = 0 and

A(u)ij =

{
1− pj i= j
−pj i 6= j

.

The robust assortment optimization problem under the MNL model can be expressed as

max
S⊆N

min
p∈Up

RMNL(S,p). (Robust Assort MNL)

In addition, we make the following regularization assumptions.

Assumption 7. In the MNL choice model, we assume that for all p ∈ Up, we have 0< pi < 1 for

all i∈N and
∑

i∈N pi < 1.

Assumption 7 directly implies Assumptions 3 and Assumption 4. Moreover,

min
p∈Up,v

∑
i∈N

pivi

s.t. vi ≥ ri,∀i∈N ,

vi ≥
∑
j∈N

pjvj,∀i∈N

is equivalent to

min
v

min
p∈Up

∑
i∈N

pivi

s.t. vi ≥ ri,∀i∈N ,

vi ≥ min
p∈Up

∑
j∈N

pjvj,∀i∈N

since the terms minp∈Up
∑
i∈N

pivi in the objective and constraint are identical. As a result, Assump-

tion 5 holds and we can similarly show that Assumption 6 also holds. Consequently, using Theo-

rem 2, we have the following result.
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Corollary 1. Under Assumptions 7,

max
S⊆N

min
p∈Up

RMNL(S,p) = min
p∈Up

max
S⊆N

RMNL(S,p).

Note that because MNL is a special case of Markov chain model, we obtain a stronger result under

the MNL model. In particular, Assumption 7 allows for much more general uncertainty set than

Assumptions 1 and 2.

5.3.2. Algorithm to find the optimal robust assortment A similar procedure to Algo-

rithm 1 also applies to the MNL model. Algorithm 2 details this procedure. The convergence result

is similar to that in Algorithm 1, and thus is omitted. This procedure also helps uncover some

Algorithm 2 Iterative algorithm for computing the optimal assortment in robust MNL choice
model

Input: The uncertainty set Up

Output: The optimal assortment S∗

1: for t= 1,2, . . . do

2: γt = min
p∈Up

∑
i∈N

piv
t−1
i

3: vti←max(ri, γ
t), for all i∈N

4: if vt = vt−1 then return S∗ = {i∈N | vti = ri}

interesting structural property of the optimal robust assortment. In particular, in every iteration

t, vti = max(ri, γ
t) for all i ∈N where, importantly, γt does not depend on i. At every iteration t,

let

St = {i∈N | vti = ri}= {i∈N | ri ≥ γt}.

Note that for every t, St is therefore a revenue ordered assortment, i.e. consists of the highest k

revenues products for some k. Since γt is an increasing sequence, {St}t is a sequence of revenue

ordered assortment such that St+1 ⊆ St. This implies that S∗ as a limit point of {St}t is a revenue

ordered assortment, which is consistent with Rusmevichientong and Topaloglu (2012) even though

we present a different approach to the problem.

6. Numerical Experiments

In this section, we present two computational studies to evaluate the performance and benefits of

the robust approaches to assortment optimization. In particular, in Section 6.1, we explore a setting

where the underlying ground truth is a known Markov chain model with uncertain parameters.

We use this ideal setting to showcase the running time of our algorithm as well as the magnitude

of the trade-off between the expected and worst-case revenue when comparing to a deterministic
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approach which does not account for parameters uncertainty. We then present in Section 6.2 a

more realistic set of experiments where the ground truth is an unknown ranking-based model. In

this case, we assume that we only have access to choice data and propose a data-driven approach

where we first learn the parameters of a Markov chain model and then construct some uncertainty

sets. We illustrate the benefits of adopting a robust approach in this case as well.

All the experiments are run on a standard desktop computer with a 3.7 GHz Intel Core i5, 16

GB RAM, running Mac OSX Mojave. Moreover, all the mixed-integer programs (MIPs) are solved

using Gurobi Optimizer v.9.0.3.

6.1. Known ground truth

In this section, we present a numerical study where the underlying ground truth is a known Markov

chain model with uncertain parameters. Note that this is the ideal setting that our theory has been

developed for. We illustrate the trade-off between expected and worst-case performance induced

by our approach and show that the running time of our algorithm nicely scales with the number

of products.

6.1.1. Experimental setup. We begin by describing the family of random instances being

tested in our computational experiments. For each instance, we generate a robust assortment

problem as follows. We assume that each product’s revenue is uniformly distributed over the

interval [0,1]. We then generate a modal Markov chain by generating (n+1)2 independent random

variables Xij, each picked uniformly over the interval [0,1]. We then set ρmodal
ij =Xij/

∑n

k=0Xik for

all i, j ≥ 1 such that i 6= j. We do not allow self-loops, i.e. ρii = 0 for all i. For the arrival rates, we

then generate n independent random variables Yi, each picked uniformly over the interval [0,1],

and set λmodal
i = Yi/

∑n

j=1 Yj for all i 6= 0. For ε > 0, we define a row-wise uncertainty set as follows.

For each i, let

Uρiε =

{
ρmodal
i +γi

∣∣∣ ∑
j

γij = 0, and ∀j,max{(1− ε)ρmodal
ij ,0} ≤ ρmodal

ij + γij ≤ min{(1 + ε)ρmodal
ij ,1}

}
.

(17)

In other words, the uncertainty set we consider is centered around ρmodal and the magnitude of

variations around ρmodal are controlled by ε. For this known uncertainty set, we compute two

assortments. The first one, Smodal, is the optimal assortment when the Markov chain parameters

are given by ρmodal. In a way, this is the assortment that one would compute if not accounting for

robustness and taking the average parameters as the real parameters. The second one, Srobust
ε , is

the optimal robust assortment computed using Algorithm 1, i.e. the assortment which maximizes

the worst-case expected revenue over the uncertainty set Uε = Uρ1ε ×· · ·×Uρnε . For each assortment



: Robust Assortment Optimization under the Markov Chain Model
Article submitted to Operations Research; manuscript no. OPRE-2019-03-133 27

Table 1 Trade-off between modal and worst-case expected revenues when n= 20 and n= 50. The average and

minimum are taken over 100 instances.

n= 20 n= 50

∆modal ∆worst ∆modal ∆worst

ε Average Minimum Average Minimum Average Minimum Average Minimum

0.05 0.9999 0.9969 1.0001 1.0022 0.9999 0.9984 1.0001 1.0010

0.10 0.9993 0.9947 1.0004 1.0082 0.9996 0.9974 1.0004 1.0025

0.25 0.9959 0.9744 1.0051 1.0299 0.9971 0.9889 1.0037 1.0154

0.50 0.9825 0.9377 1.0334 1.1354 0.9861 0.9604 1.0240 1.0693

and level of uncertainty ε, we compare the expected revenue under the modal parameters, Rmodal(·),

and the worst-case expected revenue, Rworst
ε (·). For the latter, we use (Worst-case Rev) to compute

the worst-case expected revenue generated by a given assortment over Uε.

6.1.2. Results and discussion. We highlight the trade-off between expected revenue and

worst-case expected revenue when accounting for parameters uncertainty. In particular, for ε ∈

{0.05,0.10,0.25,0.5}, we compute

∆modal =
Rmodal(Srobust

ε )

Rmodal(Smodal)
, and ∆worst =

Rworst
ε (Srobust

ε )

Rworst
ε (Smodal)

.

∆modal is the ratio of expected revenue under the modal parameters and is a proxy for the average

performance of the assortment. On the other hand, ∆worst is the ratio of worst-case expected revenue

and captures how well the assortment protects against the uncertainty in parameters. In Table 1,

we report the average and minimum value of these ratios over 100 randomly generated instances.

First, note that all the values are less than one for ∆modal and more than one for ∆worst. This is

not surprising as Smodal maximizes Rmodal(·) and Srobust
ε maximizes Rworst

ε (·) respectively. Moreover,

as ε increases, the uncertainty set we protect against increases. Therefore, ∆modal decreases while

∆worst increases. In terms of magnitude of the improvement, we observe that there is almost a linear

trade-off between expected and worst-case expected revenue on the average performance of all

instances. For example, when ε= 0.50 and n= 50, the robust approach captures on average 98.61%

of the modal assortment expected revenue under the modal parameters while the expected revenue

is 2.40% more under the worst-case parameters. In terms of extreme performance, the robust

approach seems to limit the losses while providing consequent gains under worst-case parameters.

For instance, when ε= 0.50 and n= 20, the minimum value of ∆modal over all the instances is 0.9377

while the maximum value of ∆worst is 1.1354.

In terms of running time, solving the robust assortment problem is more expensive. However,

our iterative approach nicely scales in the number of products n as illustrated in Table 2. The

number of iterations grows linearly with the number of products and (Robust Assort MC) can be
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Table 2 Running time of Algorithm 1 for ε= 0.25. The average and maximum are taken over 100 instances.

Running time (s) Number of iterations

n Average Maximum Average Maximum

10 0.32 0.67 20.01 44

20 2.13 3.92 32.72 61

30 5.95 9.19 40.12 61

40 12.94 18.39 48.98 69

50 21.82 32.29 52.81 78

solved in around 20s on average when n = 50. In practice, the parameters of the Markov chain

model are not known and need to be learned from data. We present in the next section a more

realistic set of numerical experiments where we learn the parameters of the Markov chain model

from data and compare a robust approach to a deterministic one that does not account for any

parameters uncertainty.

6.2. Unknown ground truth

In this section, we present a more realistic numerical study to show the benefits of using a robust

approach. We begin by describing the setting and then the corresponding results.

6.2.1. Experimental Setup. In our numerical experiments, we assume that we only have

access to purchase data to learn the parameters of a Markov chain model.

The ground truth choice model. We adopt a ranking-based choice model as the ground

truth choice model that governs the customer choice process (Mahajan and Van Ryzin 2001,

Honhon et al. 2012, van Ryzin and Vulcano 2017, Jagabathula and Rusmevichientong 2016, Farias

et al. 2013). In this model, the preferences are described by a probability distribution over rankings

or preference lists of products. Each preference list specifies a rank ordering of the products such

that lower ranked products are more preferred. In the experiments, we randomly generate m ranked

lists σg for g = 1, . . . ,m. Each list σg = (σg1 , · · · , σ
g
n+1) is an ordering of the products in N+ where

σgi < σgj indicates that product σgi is preferred to product σgj under preference list σg. We denote

by βg the probability that an arriving customer chooses the ranked list σg for g = 1, . . . ,m. The

setup is inspired by Şimşek and Topaloglu (2018) and we use a similar process to generate βg

which we describe next. For each g= 1, . . . ,m, we first generate γg uniformly over the interval [0,1]

and then set βg = γg/
∑m

h=1 γ
h. In each choice instance, a customer samples a preference list from

the underlying distribution and then chooses the most preferred available product (possibly, the

no-purchase option) from her list. Then, given an assortment S, the probability that product i is

chosen under the ranking-based choice model is
∑m

g=1 β
g · 1{i= arg minj∈S σ

g
j }. We set m= 2n in

our experiments. Finally, we assume that for each product, there is one ranked list where the most

preferred product is product i.
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Generating purchase data. Once we have generated a ground truth choice model, we use

it to generate some purchase data {(St,Zt) : t= 1, . . . , T}. More precisely, for each customer t, St

denotes the offered assortment and Zt = (Zt1, . . . ,Z
t
n) denotes the purchase decisions, i.e. Zti = 1

if and only if the customer purchases product i. Following Şimşek and Topaloglu (2018), for each

assortment St, the no-purchase option is always available and each of the other products is offered

with probability 1/2.

Benchmark. Similar to the previous section, we compare the robust Markov chain approach

with a deterministic Markov chain approach which does not account for parameter uncertainty. In

this approach, we apply the expectation-maximization (EM) algorithm from Şimşek and Topaloglu

(2018) to the historical purchase data (St,Zt)t to compute ρmodal and λmodal, which are the estimated

arrival probability vector and transition probability matrix of the Markov chain choice model. We

then assume that these parameters are the correct ones, and compute the offer set Smodal by solving

the corresponding assortment optimization problem.

A data-driven design of the uncertainty set. For the robust approach, we account for

some uncertainty in the estimated parameters. In particular, we propose a data-driven approach to

construct the uncertainty sets inspired by the boostrap method (Efron and Tibshirani 1986). This

method, popular in statistics, is a practical technique that provides approximations to coverage

probabilities of confidence intervals by resampling from the data or using a model estimated from

the data. Our detailed procedure to construct a row-wise uncertainty set for the Markov chain

model is given in Algorithm 3. More specifically, we use the estimated arrival probability vector

λmodal and transition probability matrix ρmodal from the deterministic approach as a ground truth

model to generate K new sets of purchase data. With each newly generated purchase data, we

use the EM algorithm again to get a new set of estimated parameter ρ(k). The variations in the

estimated coefficient ρ(k) from the boostrap procedure drive the construction of our uncertainty set.

Indeed, for parameters that are close to each other over the different estimations, we construct a

smaller uncertainty set. On the other hand, we build a bigger uncertainty set around the parameters

that exhibit more variance. In particular, we use the magnitude of the ratio ρ
(k)
ij /ρ

modal
ij to inform

the uncertainty we allow around ρmodal
ij . As a result, the uncertainty set returned by Algorithm 3

is centered around ρmodal and thus is similar to the previous section. We also scale the uncertainty

set uniformly by a parameter α ∈ [0,1] to control the robustness level and observe the effects

of introducing more or less uncertainty. Note that we do not construct uncertainty set on the

arrival probability λ, as the optimal assortment is independent of the uncertainty of λ. For each

robustness level α, let Srobust
α be the optimal robust assortment computed using Algorithm 1, i.e.

the assortment which maximizes the worst-case expected revenue over the uncertainty set Uρα
constructed in Algorithm 3.
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Algorithm 3 Construct Uncertainty Set of Markov Chain Model Based on Bootstrap

Input: The purchase data {(St,Zt(St)) : t= 1, . . . , T}.

Output: The uncertainty set Uρα.

1: Apply EM algorithm to {(St,Zt(St))} and compute the estimated arrival probability λmodal

and transition probability matrix ρmodal.

2: for k= 1,2, . . . ,K do

3: (Resampling) Independently draw new purchase data {(St, Ẑt(St))} with the ground truth

being a Markov chain model with parameters λmodal, ρmodal.

4: Apply EM algorithm to {(St, Ẑk,t(St))} and get another estimator ρ(k).

5: (Constructing uncertainty set)For i= 1, . . . , n, compute

Uρiα =

{
ρmodal
i +γi

∣∣∣ ∑
j

γij = 0, and ∀j,max{(1− εij)ρmodal
ij ,0} ≤ ρmodal

ij + γij ≤ min{(1 + εij)ρ
modal
ij ,1}

}

where εij = α
∑K
k=1 |ρ

(k)
ij /ρ

modal
ij −1|

K
and 0<α≤ 1 controls the robust level of the uncertainty set.

6: Return Uρα = Uρ1α × · · ·×Uρnα

6.2.2. Results and discussion. In this setting, the ground truth model is not known and

does not come with any uncertainty in the parameters. However, we show that our robust approach

can help address two sources of potential errors. First, there are estimation errors coming from the

potentially insufficient amount of data. Second, there may be mis-specification errors since we are

fitting a Markov chain model whereas the ground truth is not.

Let Rtrue(·) be the expected revenue under the ground truth model. We denote by Strue the

assortment that maximizes the expected revenue under the ground truth model. Despite the assort-

ment optimization problem under the ranking-based choice model being NP-hard (Aouad et al.

2018), we can use a mixed-integer program (Bertsimas and Mǐsić 2019) to compute Strue. For

m∈ {modal, robust} and α∈ {0.05,0.10,0.25,0.50}, we compute

∆m
expected =

Rtrue(Sm)

Rtrue(Strue)
,

which quantifies how far the assortment is from the ground truth optimal assortment in terms of

expected revenue.

To measure the robustness of the different approaches, we look at several other quantities. The

first one is the probability of no-purchase under the ground truth model. More precisely, denote

πtrue(i,S) as the choice probability of product i when the offer set is S under the ground truth

model. For m ∈ {modal, robust}, let ppurch = 1− πtrue(0, Sm). We use this probability as a proxy for

the robustness of the solution. Indeed, if a customer does not purchase any product, this yields



: Robust Assortment Optimization under the Markov Chain Model
Article submitted to Operations Research; manuscript no. OPRE-2019-03-133 31

Table 3 Performance of the robust Markov chain approach when n= 10 and n= 20. The reported metrics are

averaged over 100 instances.

n= 10 n= 20

T m α ∆m
expected ∆m

5th
∆m

10th
ppurch ∆m

expected ∆m
5th

∆m
10th

ppurch

1,000

modal - 0.9692 0.0862 0.1523 0.8279 0.9646 0.0741 0.2350 0.8714

robust

0.05 0.9698 0.0869 0.1563 0.8290 0.9645 0.0595 0.2406 0.8741

0.10 0.9715 0.0872 0.1532 0.8324 0.9638 0.0792 0.2790 0.8796

0.25 0.9707 0.0872 0.1530 0.8409 0.9610 0.0830 0.2950 0.8845

0.50 0.9674 0.0909 0.1776 0.8510 0.9563 0.1123 0.3384 0.8996

2,500

modal - 0.9729 0.1060 0.2350 0.8512 0.9642 0.0560 0.2811 0.8776

robust

0.05 0.9729 0.1208 0.2427 0.8512 0.9643 0.0555 0.2650 0.8780

0.10 0.9708 0.1124 0.2419 0.8532 0.9635 0.0555 0.2744 0.8780

0.25 0.9717 0.1189 0.2503 0.8588 0.9659 0.0743 0.3086 0.8842

0.50 0.9730 0.1108 0.2716 0.8672 0.9641 0.0883 0.3300 0.8901

5,000

modal - 0.9681 0.0505 0.0968 0.8090 0.9661 0.0357 0.1678 0.8555

robust

0.05 0.9678 0.0505 0.0968 0.8090 0.9660 0.0442 0.1971 0.8567

0.10 0.9678 0.0502 0.0965 0.8110 0.9653 0.0357 0.1959 0.8569

0.25 0.9691 0.0580 0.1118 0.8159 0.9672 0.0522 0.2091 0.8617

0.50 0.9722 0.0580 0.1178 0.8259 0.9637 0.0521 0.2138 0.8640

zero revenue. A higher probability of purchase therefore implies a better protection against those

bad events. In the same spirit, we also report the qth percentile of the ground truth revenue when

considered as a random variable. More precisely, let X true(Sm) be a random variable such that

X true(Sm) = ri with probability πtrue(i,Sm). Then, for m ∈ {modal, robust}, we report Rtrue
qth

(Sm)

defined such that P (X true(Sm)≤Rtrue
qth

(Sm)) = q. For a given q ∈ {5,10}, a higher value of Rtrue
qth

(Sm)

means that the assortment is more robust since it guarantees that with probability 1 − q, the

realized revenue is above Rtrue
qth

(Sm).

Table 3 reports the different metrics which are averaged over 100 instances for each set of

parameters. Note that we present the results for different values of T ∈ {1,000, 2,500, 5,000}.

We observe that even in this more realistic setting, the robust approach offers a nice trade-off

between expected revenue and worst-case expected revenue. First, in terms of expected revenue,

as α increases and we are assuming a larger uncertainty set when computing Srobust
α , the variations

in ∆robust
expected are very mild. Even when ∆robust

expected decreases, the loss compared to the deterministic

assortment Smodal is quite limited. For instance, for T = 5,000 and n= 20, the deterministic Smodal

captures 96.61% of the expected revenue of the optimal ground truth assortment Strue while the

robust assortment Srobust
α with α= 0.10 captures 96.53 % of the expected revenue. Moreover, it turns

out that in many cases, the robust approach actually outperforms the deterministic approach. For

instance, for T = 1,000 and n= 10, the deterministic Smodal captures 96.92% of the expected revenue

of the optimal ground truth assortment Strue while the robust assortment Srobust
α with α = 0.10
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captures 97.15 % of the expected revenue. It appears that given the the lack of data and the model

mis-specification, adding some robustness can help hedge against the case where the estimated

parameters is far from the ground truth.

We next compare how the two approaches perform in terms of robustness. Both the 5th and

10th percentiles as well as purchase probability increase with α suggesting a more robust solu-

tion. Moreover, the magnitude of the gains in terms of robustness seems to be significant. For

instance, for T = 2,500, α= 0.50 and n= 20, the robust approach expected revenue is very close

to the deterministic one. More precisely, ∆robust
expected/∆

modal
expected = 0.999. On the other hand, the average

5th percentile in revenue of the robust approach increases by more than 57 % compared to the

deterministic one while the probability of purchase increases from 87.76% to 89.01% suggesting an

increased robustness.

Interestingly, in many instances, taking a robust approach dominates the deterministic approach

both on the expected revenue and robustness. This suggests that in more realistic settings, account-

ing for some uncertainty in the parameters can lead to higher average and worst-case performance!

We also test the performance of an MNL model. Note that Algorithm 2 allows computing a robust

assortment in this case as well. The results, presented in Appendix E, show that the Markov chain

approach significantly outperforms the MNL approach.

7. Conclusion

In this paper, we study the robust assortment optimization problem under the Markov chain

model. Under reasonable assumptions, mainly that the uncertainty across the different rows of the

transition matrix are unrelated, we show that this problem admits a max-min duality relationship,

i.e. the two operators in the robust optimization problem can be swapped. This is surprising as

none of the properties for known saddle point results are satisfied. Inspired by the duality results,

we also develop efficient iterative algorithms to find the optimal robust assortment.

To prove our main result, we introduced a general framework for choice models assumes that the

choice probabilities, capturing the substitution behavior of customers, are solutions to a system

of linear equations. It would be interesting to see if that approach can unify an even broader

class of choice models. For instance, Désir et al. (2021) recently showed that under the Mallows

model (a choice model based on a particular probability distribution over preference lists), the

choice probabilities can be obtained by solving a system of linear equations. If we can develop

general estimation and/or optimization techniques for this class of models, this might give a more

parsimonious approach to modeling choice.

Finally, another interesting research direction is to push the results for broader type of uncer-

tainty sets for the Markov chain model, in particular allowing the uncertainty across different
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rows of the Makov chain model to be related. Having a budget constraint across rows to limit the

adversary power would be one way to correlates the uncertainty sets.
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Bertsimas, Dimitris, Velibor V Mǐsić. 2019. Exact first-choice product line optimization. Operations Research

67(3) 651–670.

Bertsimas, Dimitris, Melvyn Sim. 2003. Robust discrete optimization and network flows. Mathematical

programming 98(1) 49–71.
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Online Appendix

Robust Assortment Optimization under the Markov Chain
Model

Appendix A: Proof of Claim 1

We fix some S ⊆N and construct a new mapping h(·) defined for all v by,

hi(v) = ri, i∈ S;hi(v) = min
u∈U

[∑
j 6=i

−A(u)ij
A(u)ii

vj +
1

A(u)ii
b(u)i

]
, i /∈ S.

To prove the claim, it suffices to show this mapping has a unique fixed point. Suppose on the

contrary that h has two different fixed points v1 and v2. For i /∈ S, hi(v) is the minimum of many

affine functions and is therefore concave. Consequently, by letting

Ã(u)ij =

{
−A(u)ij
A(u)ii

, j 6= i,

0 , j = i,

we can find y1 ∈ ∂hi(v1) ⊆ Conv{Ã(u)i: | u ∈ U} and y2 ∈ ∂hi(v2) ⊆ Conv{Ã(u)i: | u ∈ U} such

that

(y1)>(v1−v2)≤ hi(v1)−hi(v2)≤ (y2)>(v1−v2).

For i∈N , let

ũi := arg max
u∈U

∑
j 6=i

−A(u)ij
A(u)ii

|v1j − v2j |.

Consider the matrix Ã(Ũ) with Ũ = [ũ1, · · · , ũn] and its row i equals to Ã(ũi)i:. Assumption 4

implies that all components of Ã(Ũ) are nonnegative. Then, for all i /∈ S,

|hi(v1)−hi(v2)| ≤max

{∑
j∈N

y1j |v1j − v2j |,
∑
j∈N

y2j |v1j − v2j |

}
≤
∑
j∈N

Ã(ũi)ij|v1j − v2j |.

When i∈ S, |hi(v1)−hi(v2)|= 0≤
∑
j∈N

Ã(ũi)ij|v1j − v2j |.

Assumption 4 also implies that of Ã(Ũ) is irreducible as the off-diagonal elements of Ã(Ũ) and

A(Ũ) considered in Assumption 4 are simultaneously to be zeros or nonzeros, and thus its spectral

radius is less than 1. Let z be the left eigenvector of Ã(Ũ) associated with the largest absolute

eigenvalue τ . It follows from Perron-Frobenius Theorem that z > 0 and 0< τ < 1. As a result,∑
i∈N

zi|v1i − v2i | =
∑
i∈N

zi|hi(v1)−hi(v2)|

≤
∑
i∈N

zi
∑
j∈N

Ã(ũi)ij|v1j − v2j |
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=
∑
j∈N

|v1j − v2j |

(∑
i∈N

ziÃ(ũi)ij

)
=
∑
j∈N

|v1j − v2j |τzj

= τ ·
∑
j∈N

zj|v1j − v2j |,

which contradicts the fact that v1 6= v2 and completes the proof. �

Appendix B: Proof of Claim 2

Define the mapping h̃ such that for all v,

h̃i(v) = min
u∈U

[∑
j 6=i

−A(u)ij
A(u)ii

vi +
1

A(u)ii
b(u)i

]
,∀ i∈N .

With this notation, we have fi(v) = max{ri, h̃i(v)} for all v and i ∈N . Suppose by contradiction

that f has two different fixed points v1 and v2. In the proof of Claim 1, we have shown that

|h̃i(v1)− h̃i(v2)| ≤ τ |v1i − v2i | with 0< τ < 1. Using this together with the following inequality,

|max{a, b}−max{a, c}| ≤ |b− c|,

we have that

|fi(v1)− fi(v2)| ≤ |h̃i(v1)− h̃i(v2)| ≤ τ |v1i − v2i |.

This is a contradiction and concludes the proof. �

Appendix C: Proof of Proposition 6

Given (Uλ,Uρ) and (Ûλ, Ûρ), denote v∗ and v̂ the corresponding fixed point defined in Theorem 1,

i.e.

v∗i = max

{
ri, min

ρi∈Uρi

∑
j∈N

ρijv
∗
j

}
and v̂i = max

{
ri, min

ρi∈Ûρi

∑
j∈N

ρij v̂j

}
for any i∈N .

Let f(·) be the mapping associated with Uρ,

f(v)i = max

{
ri, min

ρi∈Uρi

∑
j∈N

ρijvj

}
, i∈N .

Since Uρ ⊆ Ûρ and using the monotonicity of f(·), we have

v̂≤ f(v̂)≤ f2(v̂)≤ . . .≤ fd(v̂)→ v∗.

Therefore, v̂≤ v∗. Moreover, since Uλ ⊆ Ûλ, we obtain

Z∗(Ûλ, Ûρ) = min
λ∈Ûλ

∑
i∈N

λiv̂i ≤ min
λ∈Uλ

∑
i∈N

λiv
∗
i =Z∗(Uλ,Uρ).
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Additionally,

min
ρi∈Uρi

∑
j∈N

ρijv
∗
j ≥ min

ρi∈Uρi

∑
j∈N

ρij v̂j ≥ min
ρi∈Ûρi

∑
j∈N

ρij v̂j.

Consequently, it follows from Theorem 1 that

S∗(Uλ,Uρ) =

{
i∈N : v∗i = ri ≥ min

ρi∈Uρi

∑
j∈N

ρijv
∗
j

}

⊆

{
i∈N : v̂i = ri ≥ min

ρi∈Ûρi

∑
j∈N

ρij v̂j

}
= S∗(Ûλ, Ûρ).

This concludes the proof. �

Appendix D: Proof of Proposition 8

Let vη be the fixed point associated with S∗η(Uλ,Uρ). We define ṽ by letting ṽi = vηi − η for all

i∈N . For all i∈ S∗η(Uλ,Uρ), we have ṽi = ri. For i /∈ S∗η(Uλ,Uρ), we have

min
ρi∈Uρi

∑
j∈N

ρij ṽj = min
ρi∈Uρi

∑
j∈N

ρij(v
η
j − η)> min

ρi∈Uρi

∑
j∈N

ρijv
η
j − η= vηi − η= ṽi > ri,

where the first inequality holds since 0 <
∑

j ρij < 1 for all ρi ∈ Uρi . Consider the mapping f(·)

such that for all v,

fi(v) = max

{
ri, min

ρi∈Uρi

∑
i∈N

ρijvj

}
, i∈N .

Let v∗ be the unique fixed point of f(·). Using the monotonicity of f(·),

ṽ≤ f(ṽ)≤ f2(ṽ)≤ . . .≤ fd(ṽ)→ v∗.

Therefore, for any i /∈ S∗η(Uλ,Uρ), v∗i ≥ ṽi > ri. Consequently, i /∈ S∗(Uλ,Uρ) by Theorem 1. This

implies that {i /∈ (S∗η(Uλ,Uρ))} ⊆ {i /∈ (S∗(Uλ,Uρ))} and in turn S∗(Uλ,Uρ)⊆ S∗η(Uλ,Uρ). �

Appendix E: MNL benchmark

For the experiments described in Section 6.2, we also test an approach that would use an MNL

model. Similar to the Markov chain approach, we compute a deterministic MNL and a robust MNL

solution. For the deterministic approach, we use a standard EM algorithm (see for instance Talluri

and Van Ryzin (2004)) to estimate the parameter of the MNL model pmodal. We then compute the

optimal assortment Smodal under the estimated parameters.

For the robust approach, we account for some uncertainty in the estimated parameters and

construct the uncertainty sets by the boostrap method described in Algorithm 4. More specifically,

we use the estimated parameter pmodal of the MNL model from the deterministic approach as a

ground truth model to generate K new sets of purchase data. With each newly generated purchase

data, we use the EM algorithm again to get a new set of estimated parameter p(k). Then, we use
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Table EC.1 Performance of the robust MNL approach when n= 10 and n= 20. The metrics are computed over

100 instances.

n= 10 n= 20

T m α ∆m
expected ∆m

5th
∆m

10th
ppurch ∆m

expected ∆m
5th

∆m
10th

ppurch

1,000

modal - 0.9546 0.0641 0.1384 0.8183 0.9536 0.0079 0.1542 0.8423

robust

0.05 0.9539 0.0641 0.1384 0.8186 0.9536 0.0166 0.1542 0.8423

0.10 0.9539 0.0574 0.1384 0.8186 0.9536 0.0079 0.1622 0.8426

0.25 0.9543 0.0641 0.1384 0.8205 0.9537 0.0166 0.1525 0.8438

0.50 0.9532 0.0574 0.1384 0.8205 0.9553 0.0161 0.1828 0.8482

2,500

modal - 0.9500 0.0469 0.1425 0.8180 0.9555 0.0400 0.1828 0.8560

robust

0.05 0.9500 0.0469 0.1427 0.8180 0.9555 0.0400 0.1828 0.8560

0.10 0.9497 0.0469 0.1431 0.8180 0.9555 0.0400 0.1908 0.8560

0.25 0.9508 0.0469 0.1428 0.8202 0.9553 0.0400 0.1908 0.8570

0.50 0.9504 0.0469 0.1489 0.8211 0.9565 0.0396 0.1980 0.8601

5,000

modal - 0.9550 0.0399 0.0939 0.7943 0.9562 0.0227 0.1155 0.8410

robust

0.05 0.9550 0.0312 0.0937 0.7943 0.9561 0.0227 0.1239 0.8410

0.10 0.9555 0.0399 0.1012 0.7953 0.9559 0.0227 0.1073 0.8412

0.25 0.9540 0.0399 0.0937 0.7961 0.9558 0.0227 0.1239 0.8415

0.50 0.9566 0.0510 0.1044 0.8023 0.9562 0.0154 0.1230 0.8423

the magnitude of the ratio p
(k)
j /pmodal

j to inform the uncertainty we allow around pmodal
j . We also

scale the uncertainty set uniformly by a parameter α ∈ [0,1] to control the robustness level and

observe the effects of introducing more or less uncertainty. For each α∈ {0.05,0.10,0.25,0.50}, let

Srobust
α be the optimal robust assortment computed using Algorithm 2, i.e. the assortment which

maximizes the worst-case expected revenue over the uncertainty set Upα. Table EC.1 reports the

same metrics when using an MNL model instead of a Markov chain model.

We find that the Markov chain approach outperforms the MNL approach. Consistent with exist-

ing literature (Blanchet et al. 2016), the deterministic Markov chain outperforms the deterministic

MNL on the expected performance metric ∆modal
expected. We find that the robust assortment using the

Markov chain also outperforms the robust assortment using the MNL model for almost all the

parameters. In particular, not only does the Markov chain approach dominates the MNL approach

on the expected revenue metric, it also dominates the MNL approach on the robustness metrics.

More precisely, for all uncertainty levels α, the 5th percentile metric and the purchase probabil-

ity are higher with the Markov chain approach. Moreover, it seems that the variations are much

smaller in the case of the MNL model, suggesting that adding robustness does not provide a lot

of benefits in our experiments. On the other hand, adopting a robust Markov chain approach can

simultaneously improve the expected revenue as well the robustness of the solution.
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Algorithm 4 Construct Uncertainty Set of MNL Model Based on Bootstrap

Input: The purchase data {(St,Zt(St)) : t= 1, . . . , T}

Output: Uncertainty set Uvε
1: Apply EM algorithm to {(St,Zt(St))} and get an estimated probability pmodal of the MNL

model.

2: for k= 1,2, . . . ,K do

3: (Resampling) Independently draw new purchase data {(St, Ẑt(St))} with the ground truth

being a MNL model with parameters pmodal.

4: Apply EM algorithm to {(St, Ẑt(St))} and get another estimator p(k).

5: (Constructing the uncertainty set) Compute

Upα =

{
pmodal +γ

∣∣∣ ∑
j

γj = 0 and ∀j, max{(1− εj)pmodal
j ,0} ≤ pmodal

j + γj ≤ min{(1 + εj)p
modal
j ,1}

}

where εj = α
∑K
k=1 |p

(k)
j /pmodal

j −1|
K

and 0<α≤ 1 controls the robust level of the uncertainty set.


