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Assortment planning is an important problem that arises in many industries such as retailing and airlines
where one of the key challenges is to identify the right model for the consumer preferences and substitution
behavior. Distribution over preference lists or permutations is the most general framework for modeling
preferences but is intractable in general [Aouad et al. 2015]. In this paper, we present a parsimonious distri-
bution over permutations model that is specified by an initial preference list (that can be intuitively thought
of as the mode) and any random preference list is generated by random swaps starting from the initial
list. This model is motivated by practical applications where consumer preference are more or less similar
over most items and differ in the relative order of only a few items. We present near-optimal algorithms
for the assortment optimization problem under the random swap based distribution over permutations. Our
algorithm is based on a surprising sparsity property about near-optimal assortments, namely, that there
exist small-sized assortments that can be efficiently completed into near-optimal ones, crucially utilizing
certain symmetries in the distribution over permutations. We also show that our results can be extended to
more general settings where we have capacity constraints on the assortment and when the distribution over
permutations is generated from a mixture of several initial lists. Therefore, our model provides a tractable
framework for capturing consumer preferences under fairly general settings.
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1. INTRODUCTION

Assortment optimization problems arise widely in many practical applications such
as retailing and online advertising. One of the key operational decisions faced by a
retailer is to select a subset of items to offer from a universe of n substitutable items,
trying to maximize the expected revenue. The demand of any item depends on the set
of offered items due to the substitution behavior of consumers. This feature is captured
by a choice model that specifies the probability that a random consumer selects any
item of a given offer set. The goal in the assortment optimization problem is to identify
a subset of items that maximizes the total expected revenue from a single random
consumer.

Several parametric choice models have extensively been studied in diverse areas in-
cluding marketing, transportation, economics, and operations management (see [Ben-
Akiva and Lerman 1985; McFadden 1980; Wierenga 2008], for example). The multi-
nomial logit (MNL) model is by far the most popular model in practice. It was intro-
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duced independently by [Luce 1959] and [Plackett 1975], where it was referred to as
the Plackett-Luce model, later to be known as the multinomial logit model following
the work of [McFadden 1978]. The popularity of this model arises from the tractabil-
ity of estimation and the corresponding assortment optimization problem [Talluri and
Van Ryzin 2004], The assortment optimization problem under the MNL choice model
has also been shown to be tractable under additional constraints [Davis et al. 2013;
Rusmevichientong et al. 2010]. However, some of the justifications for the MNL model
are not reasonable for many applications, such as the Independence of Irrelevant Al-
ternatives (IIA) property [Ben-Akiva and Lerman 1985]. To address the limitations
of the MNL model, more general models including the nested logit model [Williams
1977] and the mixture of multinomial logit models have been considered in the litera-
ture. However, these models become more complex to estimate and optimize over. We
refer the reader to excellent surveys [Kök et al. 2015; Lancaster 1990; Ramdas 2003]
and to the references therein for an exhaustive review of different choice models in the
literature.

One of the fundamental challenges in this area is to select the right model to capture
consumer preferences. This is particularly difficult as the preferences are latent and
we only observe the eventual choices made by the consumers. A general framework to
model preferences is to consider a distribution over preference lists or permutations.
Here, a preference list specifies an ordering of the items and a consumer with a partic-
ular preference list selects the first available item (possibly be no-purchase) on the list.
This is the most general model and generalizes all parametric choice models includ-
ing multinomial logit, nested logit and mixture of multinomial logit models. However,
assortment optimization with respect to a general distribution over permutations is
strongly inapproximable. In particular, [Aouad et al. 2015] show that it is NP-hard
to compute a subset of items (assortment) whose expected revenue is within factor
better than O(n1−ε) of optimal, for any fixed accuracy level ε > 0. Furthermore, even
specifying a general distribution over permutations may require us to explicitly spec-
ify probabilities for exponentially-many preference lists. Therefore, while there have
been some positive results under specific structural assumptions [Aouad et al. 2015;
Goyal et al. 2016; Honhon et al. 2012], in general, distribution over permutations is
a highly intractable framework for choice modeling and assortment optimization. We
would like to note that the hard instance in the reduction in [Aouad et al. 2015] is a
distribution over permutations model with a sparse support on only n different pref-
erence lists. Such a model does not arise naturally in practice. In particular, if there
is a non-zero probability for a certain preference list, σ, then typically close preference
lists that differ in only a few items from σ also have non-zero probability in practice.

The above observation motivates us to consider a special class of distribution over
permutations to model consumer preferences. In this paper we consider a distribution
over permutations that is induced by random swaps from a central preference list
(which we also refer to as the prototype list). In particular, a random list from this
distribution can be sampled by performing random swaps starting from the initial
prototype list. The number of swaps is also random according to a given distribution.
A random swap operation consists of selecting a random pair of items in the current
list and swapping their positions. We consider two types of random swaps: i) swapping
an arbitrary pair of items where a pair is picked uniformly at random out of all
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n+1
2

)
possible pairs, and ii) swapping an adjacent pair of items where a pair is picked out of n
pairs of adjacent items. We also allow the initial preference list to contain only a subset
of the items prior to the no-purchase option. In this case, we assume a random order
on the items not included in the list to complete it into a permutation for the random



swap process. The precise mathematical definition of this model and its dynamics are
given in Section 1.2.

This model is motivated by practical applications where consumers preferences gen-
erally have many common items appear according to the same relative order and differ
only in a small number of items. The prototype list used to generate a random pref-
erence list can intuitively be thought of as the mode of the distribution implied by
the random swap model. If the support of the distribution over the number of swaps
is sufficiently large, the distribution over permutations has non-zero probability on
all preference lists. Therefore, this random swap based distribution gives a “smooth”
distribution over all permutations. As a consequence, our model avoids a sparse dis-
tribution with non-zero probability on isolated permutations which is the structure of
the hard instance instance in [Aouad et al. 2015]. Our distribution over permutations
model is described by at most n parameters specifying the prototype list and a distri-
bution over the number of random swaps. This is quite analogous to the multinomial
logit model which is also specified by n utility parameters and the distribution over
the random component of the utility (which for the case of MNL is standard Gum-
bel [Luce 1959]). Therefore, the random swap based distribution over permutations
provides a parsimonious framework for modeling preferences directly as distribution
over rankings and in some sense, it is quite analogous to the MNL model which is a
parsimonious random utility based model.

We would also like to note that our random swap based model is quite analogous
to the Mallow’s distribution that was introduced in [Mallows 1957]. This is another
parsimonious model widely used for modeling distributions over preferences [Doignon
et al. 2004; Lu and Boutilier 2011]. As in our model, the Mallows model is specified
by an initial preference list, L, with probability p0, and the probability of any other
preference list L′ decreases exponentially with the Kendall-tau distance between L
and L′ (which is the number of disagreements on pairwise comparisons between L and
L′).

1.1. Our results and techniques
In this paper, we consider the assortment optimization problem over the distribution
over permutations model described above, where the goal is to compute a subset of
items to offer that maximizes the expected revenue from a single random conusmer,
i.e.,

max
S⊆[n]

∑
j∈S

Pr [j � S] · rj ,

where Pr [j � S] denotes the probability that item j is the most preferred among all
items in S, also referred to as the choice probability of j ∈ S. Note that the choice prob-
ability includes a sum over possibly exponentially many permutations and can not be
computed in closed form. In this paper, we present a polynomial time approximation
scheme (PTAS) for the above assortment optimization problem over this random swap
based distribution over permutations model. We also show that our results can be
extended to more general settings where we have capacity constraints on the assort-
ment and when the distribution over permutations is a mixture of random swap based
distributions. Therefore, we show that the random swap based distribution over per-
mutations provides a tractable framework for modeling consumer preferences under
fairly general settings. Our main contributions are summarized below.

Constant factor approximation We first present a simple algorithm that gives a
1/3-approximation for random swap based distribution over permutations model for
both adjacent and arbitrary swaps. In other words, our algorithm computes an assort-



ment with expected revenue at least 1/3 times the optimal. The algorithm is based on
the structural properties about the relative orderings of items in the random swap
based distribution over permutation models. In particular, we show that the best
among O(n) assortments gives a 1/3-approximation for the problem.

Computing near-optimal assortments. We devise a polynomial-time approxima-
tion scheme (PTAS) for the assortment optimization problem under the random swap
model for both types of random swaps. In other words, for any accuracy level ε > 0,
we compute an assortment with expected revenue at least (1 − ε) times the optimal.
The running time of the algorithm is O(nO(1/ε)) that depends exponentially on 1/ε. Our
algorithm is based on establishing a surprising sparsity property about near-optimal
assortments, namely, that there exist small-sized assortments that can be efficiently
completed into near-optimal ones, crucially utilizing certain symmetries in the distri-
bution over permutations. In particular, we show that among the set of items that do
not exist in the prototype list, it is optimal to select a revenue ordered set of items, i.e.,
the top-k highest revenue ones (for some k).

For the case of arbitrary swaps, we present an improved PTAS, based on a approx-
imate dynamic program. In particular, we give an algorithm whose running time de-
pends polynomially on n and O((1/ε)O((1/ε)·log(1/ε))). A result of this nature is also re-
ferred to as an EPTAS (see [Baker 1994; Epstein and Levin 2014; Fomin et al. 2011;
Jansen 2010]). In particular, we present a dynamic programming algorithm, where in
each step the probabilities of certain events (describing relative orders in random per-
mutations) have to be computed. While computing these probabilities exactly leads to
difficult counting problems, we give an efficient sampling algorithm to estimate these
probabilities and show that using these estimates from simulation for the dynamic
program (instead of the real probabilities) still leads to an efficient PTAS, with high
probability.

Extensions to more general distributions and constrained assortment opti-
mization. We show that our PTAS for the assortment optimization problem can be
extended to significantly more general settings. In particular, we consider the follow-
ing two generalizations.

Mixture of prototype lists. We consider a more general distribution over permu-
tations model which is given by a mixture of random swap based distributions. This
essentially reduces to considering a mixture of initial prototype lists. This is a sig-
nificantly more general model that allows us to capture heterogeneity in consumer
preferences where each prototype list corresponds to a particular consumer type. We
would like to note that we require all prototype lists to contain the same set of items,
even though their internal order within each list could be arbitrary (If we relax this as-
sumption, the model can be used to capture an arbitrary distribution over preference
lists and therefore becomes at least as hard to approximate as the independent set
problem [Aouad et al. 2015]). We show that our algorithms (both PTAS and EPTAS)
can be leveraged to obtain near-optimal solutions for this general mixture model. The
running time of our PTAS does not depend on the number of initial prototype lists in
the mixture model. However, the running time of our EPTAS for the arbitrary swap
model depends exponentially on the number of lists, and we would require the number
of lists to be constant for the EPTAS.

Capacity constraints on assortments. In a capacity constrained assortment opti-
mization problem, each item has an associated weight and there is an upper bound
on the total weight of the final assortment. Such capacity constraints arise naturally
in many applications to model a budget restriction or a display space limitation and



have been studied for many choice models (for example, [Gallego and Topaloglu 2014;
Rusmevichientong et al. 2010]). Interestingly, we show that we can adapt our algo-
rithms using several new ideas to obtain near-optimal approximations for capacity-
constrained assortment optimization over random swap models.

Outline. The rest of the paper is organized as follows. In Section 3, we present the
constant factor approximation for the assortment optimization problem. We present
the PTAS and EPTAS in Sections 4 and 5. In Section 6, we present the extensions to
the case of mixture of constant number of random swap based distribution over per-
mutations, and we present the constrained assortment optimization over these models
in Section 7.

1.2. Model
In what follows, we make use of 1, . . . , n to denote the underlying set of items, with
the convention that X stands for the no-purchase option. For i ∈ [n], item i is associ-
ated with a revenue ri. In this paper, we consider a special class of distributions over
permutations generated by random swaps.

The prototype list. We model the preference list of a random consumer from the un-
derlying population by picking an initial list L0 (which we will refer to as prototype list)
on which a random number of random swaps are performed. This prototype list can
be intuitively thought of as the mode of the distribution implied by the random swap
model. Moreover, we allow the prototype list to contain only a subset of the items. In
this case, we assume a random order on the items not included in the list to complete
it into a permutation for the random swap process. More precisely, the items are di-
vided into a set of desirable items D and a set of undesirable items U . Without loss of
generality, let D = {1, . . . , d}. With this notation, the prototype list L0 is given by

L0 = [1 � 2 � · · · � d � X � U0],
where U0 is a random permutation of U , drawn uniformly among the (n − d)! possible
permutations. Note that due to the randomness of U0, the prototype list L0 is a random
preference list by itself.

Random swaps. We then generate a random preference list by sequentially apply-
ing a random number of random swaps. The number of swaps is given by a random
variable X, whose distribution is assumed to be known in advance. A random swap op-
eration selects a random pair of items in the current list and swaps their positions. In
particular, the value of X first realizes, and then, we sequentially perform X random
swaps.

We consider two types of random swaps: (1) swapping an arbitrary pair of items, and
(2) swapping an adjacent pair of items. In the arbitrary swap model, each of the
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n+1
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)
pairs (i, j) with i 6= j is picked with equal probability. In the adjacent swap model, each
of the n pairs (i, i + 1) is picked with equal probability. We do not put any restriction
on the number of swaps, and therefore, we can achieve any permutation starting from
L0 even in the adjacent swap model. Note that the ordering of the desired items D as
well as the distribution of X completely defines the distribution over permutations.

Objective. We consider the assortment optimization problem under this new choice
model. As previously mentioned, each item i ∈ [n] is given a revenue ri. The goal
is to select the subset of items that maximizes the expected revenue. When a subset
S ⊆ [n] is offered, a consumer first picks a random permutation according to the process
defined earlier, and then picks the highest-ranked offered item on his list which is
also preferred to the no-purchase option. For a fixed list L, let R(L, S) be the revenue
generated by the subset of items S. In addition, let R(S) be the expected revenue



generated by the subset S, where the expectation is taken over the distribution over
permutation described earlier. The assortment optimization problem can be written as

max
S⊆[n]

R(S) = max
S⊆[n]

E[R(L, S)].

Computing the expected revenue. It is worth mentioning that, for a given subset S,
we do not have any closed form expression to compute R(S). However, we show in
Appendix A.1 how to efficiently estimate this quantity by sampling. Consequently, we
assume in the remainder of the paper, that we have access to an oracle to computes
R(S) for any given subset S.

2. RELATIVE ORDERS IN RANDOM PERMUTATIONS
This section introduces a number of structural properties regarding relative orders
in random permutations, before we move to the more algorithmic part. In particular,
we show that if an item i is preferred to an item j in the prototype list, then item i
is preferred to item j in a random list that results from our swapping process with
probability at least 1/2, irrespective of the type of swap.

Notation. We denote by rk(·) the random rank of any item after k random swaps.
Also, �k denotes the random ordering after k swaps.

2.1. Probabilistic claims
We first show that for any pair of items (i, j) such that i is preferred to j in the proto-
type list L0, item i is preferred to item j with probability at least 1/2 after any number
of random swaps for both arbitrary and adjacent swaps. Note that Pr[i �0 j] = 1 and
limk→∞ Pr[i �k j] = 1/2 (since in the limit of infinite swaps the distribution tends to a
uniform distribution over permutations).

CLAIM 2.1. Let i and j be a pair of items such that i �0 j. Then, for any integer k,

Pr [i �k j] ≥
1

2
.

We also extend this result to a tuple of items (i1, . . . , im). More precisely, we show that
if item i1 is the most preferred item of (i1, . . . , im) in the prototype list, then item i1
is the most preferred after any number of random adjacent swaps with probability at
least 1/m. Again, note that Pr[i1 �0 ij ,∀j = 2, . . . ,m] = 1 and limk→∞ Pr[i1 �0 ij ,∀j =
2, . . . ,m] = 1/m when k →∞.

CLAIM 2.2. Let i1, . . . , im be a sequence of items such that i1 �0 i2 �0 · · · �0 im.
Then, for any integer k,

Pr [i1 �k ij ,∀j ≥ 2] ≥ 1

m
.

2.2. Proofs
We are going to prove Claim 2.1 separately for the two types of swaps. However, we
first need an intermediate result.

CLAIM 2.3. Consider the arbitrary swap model. For any integer k, there exists a
function fk such that for every pair of items i and j

Pr
[
i �k j|r0(i) = `, r0(j) = m

]
= fk(`−m).

PROOF. Consider `′ and m′ such that `−m = `′ −m′. We want to show that

Pr
[
i �k j|r0(i) = `, r0(j) = m

]
= Pr

[
i �k j|r0(i) = `′, r0(j) = m′

]
.



Table I. Coupling between swaps in L1 and L2.

Swap in L1 Swap in L2

(a) i is swapped to position k with 1 ≤ k ≤ n−m′, k 6= i and k 6= j i is swapped to position k + (`′ − `)
(b) i is swapped to position k with n−m′ < k ≤ n j is swapped to position (k −m′)− `′

(c) j is swapped to position k with 1 ≤ k ≤ n−m′, k 6= i and k 6= j i is swapped to position k + (`′ − `)
(d) j is swapped to position k with n−m′ < k ≤ n i is swapped to position (k −m′)− `′

We do a single step analysis and show that after a single swap the distribution over the
distance between i and j is the same when starting with L1 where (r0(i), r0(j)) = (`,m)
and starting with L2 where (r0(i), r0(j)) = (`′,m′). The result then follows by induction.

Note that when a swap does not involve i and j or involves both, the distance be-
tween i and j remains the same in L1 and L2. We now couple the remaining possi-
ble swaps such that for every coupled swaps, the distance between i and j remains
unchanged. Without loss of generality, assume that ` < `′ and ` < m. Consider the
coupling described in Table 1 (see also Figures 1 and 2). For case (a),
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Case (a) Case (b)

Fig. 1. Coupling when i is swapped in L1

r11(i)− r11(j) = k −m,
r12(i)− r21(j) = k + `′ − `−m′ = k − `+ (`′ −m′) = k − `+ (`−m) = k −m

Similarly, for case (b),

r11(i)− r11(j) = k −m,
r12(i)− r21(j) = `+ `′ − (k −m′) = k + `− (`′ −m′) = k + `− (`−m) = k −m

Cases (c) and (d) are similar.

We now present a separate proof of Claim 2.1 for each type of swap.

PROOF OF CLAIM 2.1 (ARBITRARY SWAPS). Without loss of generality, we assume
that r0(i) = i and r0(j) = m. We condition on the first swap. Consider a swap such that
j �1 i.
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Case (c) Case (d)

Fig. 2. Coupling when j is swapped in L1

Case a. If j is swapped but not i, it implies that j is swapped to a position ` < i. By
Claim 2.3, we have

Pr
[
i �k−1 j|r0(j) = `, r0(i) = i

]
= Pr

[
j �k−1 i|r0(j) = m, r0(i) = m+ `− i

]
= 1− Pr

[
i �k−1 j|r0(j) = m, r0(i) = m+ `− i

]
.

Let s1 be the first swap. We have for ` < i,

Pr [i �k j|s1 ∈ {(`,m), (i,m+ `− i)}] =1

2
· Pr

[
i �k−1 j|r0(j) = `, r0(i) = i

]
+

1

2
· Pr

[
i �k−1 j|r0(j) = m, r0(i) = m+ `− i

]
=
1

2
.

Case b. The second possibility for j �1 i is that i is swapped but not j. This implies
that i is swapped to a position ` > m. In that case, we have

Pr [i �k j|s1 ∈ {(i, `), (m, i+ `−m)}] =1

2
.

Case c. Finally, i and j can be swapped together. In that case, if there exists two
other items ` and m, then by coupling the swap involving both i and j with the swap
(`,m), we have

Pr [i �k j|the first swap is (i, j) or (`,m)] =
1

2
.

Putting together the three cases, let E be the set of swaps described in case (a), (b) and
(c). We have

Pr [i �k j] =
1

2
· Pr [E] + Pr [i �k−1 j|i �0 j] · (1− Pr [E]).

The proof is then completed by induction.

We present the proof of Claim 2.1 for adjacent swaps in Appendix A.2.



PROOF OF CLAIM 2.2 (ARBITRARY SWAPS). Note that the couplings introduced in
the above proof of Claim 2.1 only involve a pair of items which are different than the
items we are trying to compare. Consequently, for every j′ ≥ 2, the same proof implies
that

Pr [i1 �k ij ,∀j ≥ 2] ≥ Pr [ij′ �k ij ,∀j 6= j′]

which in turn implies the desired result.

The proof for adjacent swaps is similar and therefore omitted.

3. WARM-UP: A CONSTANT FACTOR APPROXIMATION ALGORITHM
In order to introduce our main technical ideas incrementally, we first present a simple
algorithm that guarantees a constant factor approximation. The algorithm returns
the highest revenue item in D or the best nested assortment of U . The correctness of
our algorithm relies on the probabilistic claims of Section 2 as well as on additional
observations that are presented in the sequel. Note that, since the algorithm returns
the highest revenue item in D, it is natural to conjecture that a nested assortment
with sufficiently many items could result in a PTAS. However, we demonstrate that
for both type of swaps, this conjecture is not true. In particular, we present families
of instances for which any nested assortment attains only a constant fraction of the
optimal revenue.

3.1. A 1/3-approximation algorithm
Before presenting the algorithm, we establish an additional structural result about the
items of U that are picked by an optimal solution. More precisely, we show that there
always exists an optimal solution that picks the k highest revenue items of U for some
k. As mentioned in Section 1.2, the items in U are randomly ordered in the prototype
list. We exploit this symmetry to prove the result, which does not depend on the type
of swaps.

CLAIM 3.1. For any subset of desired items D ⊆ D, there exists a revenue ordered
subset of U such that R(D ∪ S) is maximized over all S ⊆ U .

PROOF. For a fixed D ⊆ D, let S∗ ⊆ U be an optimal subset that maximizesR(D∪S)
over all S ⊆ U . Suppose there exists a pair of items i, j ∈ U such that ri < rj and i ∈ S∗
but j /∈ S∗. Consider the bijection σ ∈ Sn+1, where Sn+1 is the set of permutation of
{X , 1, . . . , n}, such that

σ(k) =

{
i if k = j
j if k = i
k otherwise

.

For any prototype list L, we construct another coupled prototype list Lσ. If i1 � · · · �
i|U| is the random order of U in L, then σ(i1) � · · · � σ(i|U|) is the random order of U in
Lσ. This coupling exchanges the position of i and j in the prototype list. Therefore, for
every L,

R(L, S∗) ≤ R(Lσ, S∗ ∪ {j}\{i}).

Since σ is a bijection, E [R(Lσ, S)] = E [R(L, S)] for any subset S. Taking expectation in
the previous inequality yields the desired result.

The above result tells us how to complete any subset of D in an optimal way. We are
now ready to describe our constant factor approximation algorithm.



Description of the algorithm. The algorithm considers two assortments S1 and S2,
and returns the one with the highest expected revenue. We now describe the two can-
didate assortments. First, S1 is the assortment consisting of the highest revenue item
in D. Second, S2 is the best revenue-ordered subset of U . More precisely, let Uk ⊆ U be
the set of k highest revenue items in U . We have S2 = argmax{R(Uk) : 0 ≤ k ≤ |U|}.
Note that S1 consists of a single item from D, whereas S2 consists only of items from
U . Algorithm 1 details the algorithm.

ALGORITHM 1: Constant Factor Algorithm
Let S1 = argmax{ri : i ∈ D}.
Let S2 = argmax{R(Uk) : 0 ≤ k ≤ |U|}, where Uk consists of the highest k revenue items in U .
return argmax{R(S1),R(S2)}.

This construction provides a constant factor approximation for both types of swaps.
More precisely, we have the following result.

THEOREM 3.1. Algorithm 1 guarantees a 1/3-approximation for the assortment op-
timization problem over the random swap based distribution over permutations model.

PROOF. Let S∗ be the optimal assortment. Let S∗U = S∗ ∩ U , and S∗D = S∗ ∩ D. The
revenue function is sublinear and we have

R(S∗) ≤ R(S∗D) +R(S∗U ).

We show that S1 is a good solution compared to S∗D and S2 is a good solution com-
pared to S∗U .

Let i∗ be the highest revenue item in D, i.e., i∗ = argmax{ri : i ∈ D}. By definition,
S1 = {i∗} and ri∗ ≥ R(S∗D). Indeed, for any set of items S, the expected revenueR(S) is
a convex combination of the revenues of the items in S (including X ). From Claim 2.1,
there is a probability of at least 1/2 that item i∗ is preferred to the no-purchase option
after any number of swaps. Therefore, we have

R(S1) = R({i∗}) = Pr [i � X ] · ri∗ ≥
1

2
· R(S∗D).

In addition, S2 is the best nested solution in U . Therefore, from Claim 3.1, S2 also
maximizes the expected revenue among all assortment S ⊆ U . Consequently,

R(S2) ≥ R(S∗U ).

Putting the two parts together, it follows that we obtain an expected revenue of

max{R(S1),R(S2)} ≥
2

3
· R(S1) +

1

3
· R(S2) ≥

1

3
· R(S∗D) +

1

3
· R(S∗U ) ≥

1

3
· R(S∗).

Note that since Claims 2.1 and 3.1 are true for both type of swaps, this proof applies
to both types as well.

Note Algorithm 1 requires computing the expected revenue of different candidate
assortments. These quantities can be approximated efficiently using sampling (see Ap-
pendix A.1). Our algorithm either picks the highest revenue items inD or the k highest
revenue item in U for some k. Therefore, one could conjecture that nested assortments
in D∪U could be good candidates for an optimal solution. In Section 3.2, we show that
this intuition is not true for both type of swaps.



3.2. Bad Example
In this section, we exhibit an example for the case of arbitrary swaps where a nested
solution is not optimal. More precisely, no optimal solution picks the k highest rev-
enue items for any k. Moreover, we prove that there is a constant gap in optimality.
Therefore, this approach cannot provide a PTAS.

The construction. Consider the following example with 2n + 2 items and d = n + 2.
The revenues are as followed

ri =


1 + ε if i = 1
0 if 2 ≤ i ≤ n+ 1
1 if i = n+ 2

2/(1− α) if i > n+ 2

,

where ε > 0 and 0 < α < 1. The prototype list is ordered as follows (here the revenues
are used instead of the item numbering):

L0 =

[
1 + ε � 0 � · · · � 0︸ ︷︷ ︸

n items

� 1 � X � 2

1− α
� · · · � 2

1− α︸ ︷︷ ︸
n items

]
.

Note that since all the items in U have the same revenue, the prototype list is deter-
ministic. Additionally, we consider the following distribution on the number of swaps:

X =

{
0 with probability α
1 otherwise .

For this example, we show in Appendix A.3 that any nested assortment attains only
a constant fraction of the optimal revenue. We also provide an example for the case of
adjacent swaps in Appendix A.4.

4. A PTAS FOR THE ASSORTMENT OPTIMIZATION PROBLEM
In this section, we present a polynomial time approximation scheme (PTAS) for the
assortment optimization problem under the swap model, which works for both types of
swaps. Our algorithm is based on establishing a surprising sparsity property, proving
the existence of small-sized assortments that can be efficiently completed into near-
optimal ones, crucially utilizing certain symmetries in the distribution over permuta-
tions. In fact, our constant factor algorithm (see Section 3.1) also uses a small-sized
assortment of the items in D, by only considering the highest revenue one. Here the
set of items that we consider are not necessarily the highest revenue items in general,
but rather those picked by the optimal assortment.

Description of the algorithm. Let S∗ be the optimal assortment and S∗U = S∗ ∪ U .
From Claim 3.1, we know that S∗U is nested by revenue. Therefore, by guessing its
cardinality, we can assume that S∗U is known.

Let K = 1/ε, where without loss of generality, assume that K takes an integer value.
We enumerate all possible subsets of D of size k = 0, . . . ,K, and construct a candidate
assortment for each subset as follows. For each subset SD, the candidate assortment
is just S∗U ∪ SD, i.e., we take the union of S∗U and SD. The algorithm returns the best
candidate assortment. Algorithm 2 describes the procedure.

THEOREM 4.1. Algorithm 2 is a PTAS for the assortment optimization problem
under the swap model (with both arbitrary and adjacent swaps).

PROOF. We first argue the correctness of the algorithm, i.e., that the assortment
returned is a (1 − ε)-optimal solution. Again, let S∗ be the optimal assortment, S∗U =



ALGORITHM 2: PTAS
Let A = ∅.
for all SD ⊆ D such that |SD| ≤ K do

for all ` = 0, . . . , |U| do
Let A = {A, SD ∪ U`}, where U` consists of the ` highest revenue items in U .

end
end
return argmax{R(S), S ∈ A}.

S∗ ∩ U , and S∗D = S∗ ∩ D. Note that if |S∗D| < K, then S∗ is one of the candidate
assortments we examine, and therefore the algorithm returns the optimal solution. We
therefore assume that S∗D ≥ K. In this case, let SD consist of the K highest revenue
items of S∗D. Consider the assortment Sε = SD ∪ A, where A consists of all the items
of S∗U such that ri ≥ min{rj : j ∈ SD}. Since |SD| = K and S∗U is nested, note that Sε
is among the candidate assortment constructed by the algorithm. We show that Sε is
(1− ε)-optimal using a sample-path analysis. In particular, let L be a fixed preference
list. We consider two cases.

Case 1. We first assume that X � i in the preference list L for all i ∈ Sε. In this case,
R(L, Sε) = 0. On the other hand, offering a single item i is always a feasible solution.
Therefore, by Claim 2.1, for all i ∈ D,

R(S∗) ≥ R({i}) = Pr [i � X ] · ri ≥
ri
2
.

Moreover, note that all items in S∗U\A have revenue smaller or equal to some item in
D. Therefore, any item in S∗\Sε has revenue less or equal than 2R(S∗). This implies
that R(L, S∗) ≤ 2R(S∗).

Case 2. In this case, we assume that in the permutation L, there exists an item i ∈ Sε
such that i � X . We show that R(L, Sε) ≥ R(L, S∗). Indeed, suppose the chosen item
i∗ is in S∗D\SD. Since SD contains the K highest revenue items of S∗D, it must be that
ri∗ ≤ ri for all i ∈ Sε. Therefore, R(L, Sε) ≥ R(L, S∗). On the other hand, if the chosen
item i∗ is in S∗U\A, it must be that ri∗ ≤ ri for all i ∈ Sε. Consequently, we also have
R(L, Sε) ≥ R(L, S∗) in that case.

We now combine the two cases. For case 1 to happen, note that X has to be pre-
ferred to all items from SD. From Claim 2.2, this event occurs with probability at most
1/|SD| = 1/K = ε. Consequently,

R(S∗)−R(Sε) =Pr [Case 1] · E [R(S∗)−R(Sε)|Case 1]︸ ︷︷ ︸
≤0

+ Pr [Case 2] · E [R(S∗)−R(Sε)|Case 2]︸ ︷︷ ︸
=E[R(S∗)|Case 2]

≤ε · E [R(S∗)|Case 2]
≤2ε · R(S∗).

From a running time perspective, for each subset SU ⊆ U , the number of candidate
assortment is at most |D|K ≤ n1/ε. Since we only consider nested assortment of U , we
have to consider at most n subsets of U , and therefore the overall running time of the
algorithm is O(nO(1/ε)).



5. EPTAS FOR ARBITRARY SWAPS
For the case of arbitrary swaps, we present an improved PTAS, based on approximate
dynamic programming. In particular, we devise an algorithm whose running time for
any accuracy level ε > 0 depends polynomially on n and O((1/ε)O((1/ε)·log(1/ε))). This is
referred to as an efficient polynomial time approximation scheme (EPTAS).

Preprocessing. We first construct a modified instance of the problem whose optimal
expected revenue is at least (1 − 2ε) · R(S∗), where S∗ is the optimal solution to our
original instance. The modified instance sets the revenue of inexpensive items in D to
0. More precisely, for every item i ∈ D such that ri ≤ εr∗, where r∗ = max{rj : j ∈ D},
its revenue in the modified instance is 0. Let S̃∗ be the optimal solution of the modified
instance.

CLAIM 5.1. R(S̃∗) ≥ (1− 2ε) · R(S∗).

PROOF. For all i ∈ S∗, let Ei be the event that item i is the first out of S∗ and
X . Also, let B be the set of items whose revenue was decreased to 0 in the modified
instance. We have

R(S∗)−R(S̃∗) ≤
∑
i∈B

Pr [Ei] ri

≤

(∑
i∈B

Pr [Ei]

)
· εr∗

≤ εr∗

≤ 2ε · R(S∗),

where the last inequality uses an argument similar to the proof of Theorem 4.1.

Description of the algorithm. Using the preprocessing step described above, we as-
sume that all non-zero revenues of items in D are within the interval I = [εr∗, r∗].
Moreover, as in the PTAS (see Section 4), we assume that some nested SU ⊆ U is
known in advance. The algorithm starts by geometrically partitioning the interval
I in powers of 1 + ε. In particular, the first subinterval is [εr∗, ε(1 + ε)r∗], the sec-
ond is [ε(1 + ε)r∗, ε(1 + ε)2r∗], and so on. The number of subintervals is therefore
M = O((1/ε)·log(1/ε)). This partition of the interval I induces a partition of the items of
D according to their revenue. We denote by C1, . . . , CM these induced classes of items.

For each class, let Ki be the number of items in S∗ ∩ Ci, where S∗ is the optimal so-
lution. For each class, we guess this number of item Ki, i.e., we enumerate all possible
combinations of (K1, . . . ,KM ) and run the algorithm for each M -tuple. Moreover, by
the analysis of the PTAS in Section 4, we know that in order to obtain a (1− ε)-optimal
solution, it suffices to consider subsets of D of size at most K = 1/ε. Consequently, the
number of guesses for (K1, . . . ,KM ) is O((1/ε)M ). For the remainder of this section, we
assume that (K1, . . . ,KM ) is already known.

We now solve a dynamic program. Recall that items from some nested SU ⊆ U are
assumed to be picked. In order to write down the dynamic program, we need more
notation. For km ∈ Km for m = 1, . . . ,M , let κ = (k1, . . . , kM ) and K = (K1, . . . ,KM ).
For all i, j, κ and K, let Ei(j, κ,K) be the event that item j appear in positions i (in
a random list), none of the other offered items appears in position 1, . . . , i − 1, and X
appears after position i, given that we offer Km items from class Cm and that km of
them are among items 1, . . . , i, for all m ≤M . With our notation,

Ei(j, κ,K) = {σ−1(j) ≤ i, j �σ X , j �σ k,∀k ∈ S\{j}},



where S is a subset of items containing Km items from Cm among which km are in
position 1, . . . , i in L0 for m = 1, . . . ,M . It turns out that Pr

[
Ei(j, κ,K

]
does not depend

on the choice of S but only on κ and K. The proof is similar in spirit to that of Claim
3.1 and is therefore omitted. We can now properly define the states of our dynamic
program.

Recall that we assume that K is known. For all i ∈ [n + 1] and km ∈ [Km] for all
m = 1, . . . ,M , let F (i, k1, . . . , kM ) be the maximum expected revenue we get from items
that end up in positions 1, . . . , i in a random list given that we pick km items from
Cm ∪ {1, . . . , i} for all m ≤ M . Note that by the way the classes are defined, F (n +
1,K1, . . . ,KM ) gives a (1−ε)-optimal solution. Moreover, we have the following dynamic
programming recursion:

F (i, k1, . . . , kM )

= max


n∑
j=1

rj · Pr
[
Ei(j, κ,K)|we offer item i

]
+ F (i− 1, k1, . . . , km(i) − 1, . . . , kM ),

n∑
j=1

rj · Pr
[
Ei(j, κ,K)|we do not offer item i

]
+ F (i− 1, k1, . . . , kM )

 ,

(1)
where m(i) is the class to which item i belongs, i.e. ri ∈ Cm(i). When i > d, we have

F (i, k1, . . . , kM ) =

n∑
j=1

rj · Pr
[
Ei(j, κ,K)

]
+ F (i− 1, k1, . . . , km(i), . . . , kM ). (2)

The boundary condition F (0, κ) = 0 for all κ completes the description of the dynamic
program and of the algorithm. Algorithm 3 describes the algorithm.

ALGORITHM 3: EPTAS
Let A = ∅.
for all K1, . . . ,KM such that Km ≤ 1/ε for all m ≤M do

Compute F (i, k1, . . . , kM ) for all i ∈ [n+ 1], km ∈ [Km] for all m ≤M using (1) and (2).
Let A = {A, S}, where S is the subset corresponding to F (n+ 1,K1, . . . ,KM ).

end
return argmax{R(S), S ∈ A}.

THEOREM 5.1. Algorithm 3 is an EPTAS for the assortment optimization problem
under the arbitrary swap model.

The size of the dynamic program is O((1/ε)M · n) = O((1/ε)O((1/ε)·log(1/ε)) · n). More-
over, we need to enumerate over all possible nested assortments of U and guesses K.
Since there are at most n options for nested assortments of U and O(1/ε)M for K, the
running time of the algorithm is O((1/ε)O((1/ε)·log(1/ε)) · n2) which makes our algorithm
an EPTAS.

Computing the probabilities. In order to solve the dynamic program, we need to eval-
uate the probabilities Pr[Ei(j, κ,K)]. However, these are complicated events for which
we do not know how to compute the probabilities exactly. Therefore, our approach is to
plug in estimators for these probabilities in the dynamic program, which are computed
through sampling.



We next show that if the probability Pr[Ei(j, κ,K)] is too small, rounding it to zero
does not affect the outcome of the dynamic program in a meaningful way. More pre-
cisely, let F̃ be the state of the dynamic program computed when rounding every prob-
ability with Pr[Ei(j, κ,K)] ≤ ε/n4 to zero. Note that an adaption of the proof of Lemma
A.1 (see Appendix A.1) allows us to compute these probabilities efficiently using sam-
pling. We prove the following result which proves that we can approximately solve the
dynamic program.

LEMMA 5.2. F̃ (n,K1, . . . ,KM ) ≥ (1− ε) · R(S∗).

PROOF. Note that there exists a sequence of optimal κi,j such that

F (n,K1, . . . ,KM ) =

n+1∑
i=1

n∑
j=1

Pr
[
Ei(j, κi,j ,K)

]
· rj .

Also, let P̃r[·] be the rounded down probabilities. We bound two parts of this double
sum separately.

Part 1. For every item j in D, we have rj ≤ r∗ ≤ 2R(S∗) where r∗ = max{ri : i ∈ D}.
Therefore,

n+1∑
i=1

∑
j∈D

Pr
[
Ei(j, κi,j ,K)

]
rj −

n+1∑
i=1

∑
j∈D

P̃r
[
Ei(j, κi,j ,K)

]
rj ≤

n+1∑
i=1

∑
j∈D

ε

n4
2R(S∗) ≤ 2ε

n2
R(S∗).

Part 2. We now look at items j in U . In order to obtain a similar bound, consider what
happens if we only offer the highest revenue item j∗ in U . In particular, rj∗ = max{ri :
i ∈ U}. In this case, given that there is at least one swap, Pr[j∗ �1 X|X > 0] ≥ 1/n2.
When this happens, if there are additional swaps, Pr[j∗ �k X|X > 0, j∗ �1 X ] ≥ 1/2 by
Claim 2.1 for any k ≥ 1. Consequently,

R(S∗) ≥ R({j∗}) ≥ Pr [X > 0] · rj
∗

2n2
,

and therefore, Pr[X > 0]rj ≤ 2n2 · R(S∗) for all j ∈ U . To finish the calculation, note
that for j ∈ U , Pr[Ei(j, κ,K)] = Pr[X > 0] · Pr[Ei(j, κ,K)|X > 0], since if there is no
swap, this event happens with probability 0. We therefore get

n+1∑
i=1

∑
j∈U

Pr
[
Ei(j, κi,j ,K)

]
· rj −

n+1∑
i=1

∑
j∈U

P̃r
[
Ei(j, κi,j ,K)

]
· rj

≤
n+1∑
i=1

∑
j∈U

Pr
[
Ei(j, κ,K)

]
· rj

=

n+1∑
i=1

∑
j∈U

Pr
[
Ei(j, κ,K)|X > 0

]
Pr [X > 0] · rj

≤ n2 · ε
n4
· 2n2 · R(S∗)

= 2ε · R(S∗).



Combining the two cases, we get

F (n,K1, . . . ,KM )− F̃ (n,K1, . . . ,KM ) ≤ F (n,K1, . . . ,KM )−
n+1∑
i=1

∑
j∈D

P̃r
[
Ei(j, κi,j ,K)

]
· rj

≤ 4ε · R(S∗).

6. GENERALIZATION TO MIXTURE OF RANDOM SWAP BASED DISTRIBUTIONS
In this section, we consider an extension of our model to a mixture over random swap
based distributions where there is a collection of prototype lists and a corresponding
probability distribution of starting from any of them to generate a random permuta-
tion. More precisely, let L0 be a set of prototype lists, where we assume that for all
L0 ∈ L0, the set of desirable items and undesirable items are identical. This mixture
over our basic model allows to capture heterogenous consumers that may differ sig-
nificantly in their ranking over the same set of desirable items. This is a significant
generalization over the basic model with only one prototype list. For any pair of items
i and j,

Pr [i � j] =
∑
L0∈L0

Pr [L0] · Pr [i � j|L0] .

The above expression suggests that the probabilistic claims of Section 2 continue to
hold in the mixture model. Note however that these claims assume a certain ordering
in the prototype list that now has to hold for all L0 ∈ L0. We show that the analysis
of our PTAS (Section 4) can be adapted to the case of mixture model and we have the
following result.

THEOREM 6.1. There exists a PTAS for the assortment optimization problem un-
der a mixture of random swap based distribution over permutations model (for both
arbitrary and adjacent swaps).

We can also obtain the EPTAS for the case of arbitrary swap model. However, the
running time exponential in |L0|. In order to extend the dynamic program to obtain an
EPTAS for the mixture model, we need to introduce a variable κ for each L0 ∈ L0. This
implies that that the size of the dynamic program, and therefore the running time of
the resulting algorithm, are exponential in the number of prototype lists. We therefore
obtain the following result.

THEOREM 6.2. There exists an EPTAS for the assortment optimization problem un-
der a mixture of a fixed number of random arbitrary swap based distribution over
permutations model.

We defer the detailed proofs to the full version of the paper.

7. CARDINALITY CONSTRAINED ASSORTMENT OPTIMIZATION
In the cardinality constrained assortment optimization problem, we assume that there
is an upper bound of C on the number of items to be picked. The problem can therefore
be formulated as follows

max
S⊆[n],|S|≤C

E [R(L, S)] .

Note that the PTAS presented in Section 4 allows to handle a constraint of this nature.
The modification needed is to set K = min{C, 1/ε} and for each candidate assortment
of D, only enumerate over feasible nested assortment in U . Since our algorithm is



enumerating over small size solutions, it also returns the optimal constrained solution
provided that we upper boundK by C. Furthermore, the results hold if the distribution
over permutations is given by a mixture of random swap based distributions.

THEOREM 7.1. There exists a PTAS for the cardinality constrained assortment op-
timization problem under a mixture of random swap based distribution over permuta-
tions model (for both arbitrary and adjacent swaps).

Note that similar remarks also apply to the EPTAS for the arbitrary swap model,
and therefore our EPTAS can also be adapted to handle a cardinality constraint for
the mixture of a constant number of random arbitrary swap based distribution over
permutations.

7.1. General capacity constrained assortment optimization
We now consider a general capacity constrained assortment problem. Here, each item
i has a weight wi, and there is a total capacity of W . The problem can be formulated as

max
S⊆[n],

∑
i∈S wi≤W

E [R(L, S)] .

We show that there exists a (1 − ε)-optimal solution to the capacity constrained as-
sortment optimization problem with at most 1/ε items from D. However, unlike in the
unconstrained or cardinality constrained case, Claim 3.1 does not hold anymore, and
the optimal solution is not guaranteed to pick a nested solution from the items in U .
Note that after having picked a candidate assortment from U , the problem reduces to
finding the best possible assortment from items in D subject to an adjusted capacity
constraint (the total capacity is reduced by the weights of items selected from U).

Suppose that we fix some assortment from U and in addition, the number of items,
say C, to be picked from D. The goal is to pick exactly C items from U to complete
the assortment and maximize the expected revenue subject to the capacity constraint.
Given that we pick exactly C items from U , any item from U that we pick has the
same probability of being chosen by a random consumer. Consequently, the problem
reduces to a knapsack problem with an additional exact cardinality constraint. For this
problem, [Caprara et al. 2000] give a PTAS. Since the size of the optimal assortment
in D has cardinality at most |D|, we only have to run this PTAS at most |D| times to
complete any assortment from U into a near-optimal assortment with items from D
subject to a capacity constraint. Consequently, we have the following result.

THEOREM 7.2. There exists a PTAS for the capacity constrained assortment opti-
mization problem under a mixture of random swap based distribution over permutation
model (for both arbitrary and adjacent swaps).

We defer a detailed discussion to the full version of the paper.
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A. APPENDIX
A.1. Computing the expected revenue
In this appendix, we show that for a given subset of items S, we can efficiently compute
R(S) by sampling. More precisely, we have the following result.



LEMMA A.1. For a given subset S ⊆ [n], let R̂(S) be the sample revenue computed
using O(log δ · n3/ε2) samples. With probability at least 1− 2δ,

|R̂(S)−R(S)| ≤ 4ε · R(S).

PROOF. For any item i ∈ S, let Ei be the event that item i is the first to appear in a
random list out of S and X . With this definition,

R(S) =
∑
i∈S

Pr [Ei] · ri.

Let i∗ be the highest revenue item in S. For all item i ∈ S, let µ̂i be the average number
of times Ei is observed in m = log δ ·n3/2ε2 samples. By the Chernoff-Hoeffding bound,
we have

Pr
[
|µ̂i − Pr [Ei]| ≥

ε

n3

]
≤ 2e−2mε

2

= 2δ.

Consequently, with probability at least 1− 2δ,

|µ̂i − Pr [Ei]| ≤
ε

n3
.

We now bound the revenue of any item as a function of R(S∗). We consider two cases.

Case 1. For every item j ∈ D, we have rj ≤ r∗ ≤ 2R(S∗) where r∗ = max{ri : i ∈ D}
(see proof of Theorem 4.1).

Case 2. We now look at items j in U . Consider what happens if we only offer the
highest revenue item j∗ in U . In particular, rj∗ = max{ri : i ∈ U}. In this case, given
that there is at least one swap, Pr[j∗ �1 X|X > 0] ≥ 1/n2. When this happens, if there
are additional swaps, Pr[j∗ �k X|X > 0, j∗ �1 X ] ≥ 1/2 by Claim 2.1 for any k ≥ 1.
Consequently,

R(S∗) ≥ R({j∗}) ≥ Pr [X > 0] · rj
∗

2n2
,

and therefore, Pr[X > 0]rj ≤ 2n2 · R(S∗) for all j ∈ U . Therefore, for all j ∈ U ,

Pr [Ej ] rj ≤ Pr [Ej |X > 0] Pr [X > 0] rj ≤ 2n2 · R(S∗).

We can now put everything together to prove the desired inequality. Let S̃ be the set of
items from S such that Pr [Ei] ≤ ε/n3. We have with probability at least 1− 2δ,

∣∣∣R̂(S)−R(S)∣∣∣ ≤
∣∣∣∣∣∣
∑
i/∈S̃

(µ̂i − Pr [Ei])ri

∣∣∣∣∣∣+
∑
i∈S̃

(µ̂i + Pr [Ei]) · ri

≤
∑
i/∈S̃

ε

n3
· 2n2 · R(S∗) +

∑
i∈S̃

2ε

n3
· 2n2 · R(S∗)

≤ 4εR(S∗).

A.2. Proof of Claim 2.1 for adjacent swaps
Without loss of generality, we assume that r0(i) = i and r0(j) = i+ 1. We condition on
the first swap. Suppose, i and j are swapped together. In that case, if there exists two



other items ` and m, then by coupling the swap involving both i and j with the swap
(`,m), we have

Pr [i �k j|the first swap is (i, j) or (`,m)] =
1

2

Therefore, let E = {(i, i+ 1), (`,m)}. We have

Pr [i �k j] =
1

2
· Pr [E] + Pr [i �k−1 j|i �0 j] · (1− Pr [E])

The proof is then completed by induction.

A.3. Analysis of the bad example for arbitrary swaps
We first take a look at the possible nested assortments. These are S1 = U , S2 = {1}∪U ,
and S3 = {1, d} ∪ U . We then consider S4 = {d} ∪ U which is not a nested assortment,
and show that it performs better than the nested assortments.

Assortment S1. In this assortment, all the items of U are offered and no item from D.
Therefore, if X = 0, the revenue obtained is 0. Otherwise, we get a revenue of 2/(1−α)
if one item of U gets swapped before X , i.e. if one item of U together with one item of
D ∪ X are swapped. This happens with probability

n(n+ 3)(
2n+3

2

) =
n(n+ 3)

(2n+ 3)(n+ 1)
=

1

2
+O

(
1

n

)
.

Consequently,

R(S1) = (1− α) ·
(
1

2
+O

(
1

n

))
· 2

1− α
= 1 +O

(
1

n

)
.

Assortment S2. In this assortment, we offer item 1 together with all items in U . If
X = 0, the revenue obtained is 1 + ε. If X = 1, the revenue is not 1 + ε if and only if
item 1 is swapped with an item from U or with X . Therefore,

R(S2) = (1 + ε) · α+ (1− α) ·

(
n(

2n+3
2

) · 2

1− α
+

(
1− n+ 1(

2n+3
2

)) · (1 + ε)

)

=

(
1− 1− α

(2n+ 3)

)
· (1 + ε) +

2n

(n+ 1)(2n+ 3)

≤ 1 + ε+
2n

(n+ 1)(2n+ 3)

= 1 + ε+O

(
1

n

)
.

Assortment S3. In this last nested assortment, we offer items 1 and d together with
U . Note that this assortment gives a lower revenue than S2. Indeed, the only difference
is when X = 1 and the swap involves item 1 and item d. In that case, the revenue is 1
instead of 1 + ε. Therefore, R(S3) ≤ R(S2).

Assortment S4. We perform a similar analysis for S4 = {d}∪U . If X = 0, the revenue
is 1. When X = 1, consider the event E where item d is not swapped. This happens
with probability

1− 2n+ 2(
2n+3

2

) = 1− 2

2n+ 3
.



Conditional on that event E, the revenue is 2/(1− α) if any item in U is swapped with
an item in {1, . . . , n+ 1}. This happen with probability

n(n+ 1)(
2n+2

2

) =
2n(n+ 1)

(2n+ 2)(2n+ 1)
=

n

2n+ 1
.

As a result, we have the following lower bound on the revenue of S4:

R(S4) ≥ α+ (1− α) ·
(
1− 2

2n+ 3

)
·
(

n

2n+ 1
· 2

1− α
+

(
1− n

2n+ 1

))
= α+

(
1− 2

2n+ 3

)
·
(

2n

2n+ 1
+

(
1− n

2n+ 1

)
· (1− α)

)
= α+

(
1 +O

(
1

n

))
·
(
1− 1

2n+ 1
+

n+ 1

2n+ 1
· (1− α)

)
=

3 + α

2
+O

(
1

n

)
.

Combining all cases together, we have
R(S4)

max{R(S1),R(S2),R(S3)}
=

5

2
− ε−O

(
1

n

)
,

since we can pick α arbitrary close to 1.

A.4. Bad example for adjacent swaps
In this section, we exhibit an example for the case of adjacent swaps for which a nested
solution is not optimal. Unlike the case of arbitrary swaps, we were not able to con-
struct counter-example that can be rigorously analyzed without a lengthy proof. In-
stead, while our construction is pretty simple, we estimated the revenue of each solu-
tion via numerical simulations (10,000 samples were used).

The construction. Consider the following example with 2n + 2 items and d = n + 2.
The revenues are as followed

ri =


1.1 if i = 1
0 if 2 ≤ i ≤ n+ 1
1 if i = n+ 2
2 if i > n+ 2

.

The initial preference list is ordered as follows (here the revenues are used instead of
the item numbering) :

L0 =

[
1.1 � 0 � · · · � 0︸ ︷︷ ︸

n items

� 1 � X � 2 � · · · � 2︸ ︷︷ ︸
n items

]
.

Note that since all the items in U have the same revenue, the initial list is determinis-
tic. Additionally, we consider the following distribution on the number of swaps:

X =

{
0 with probability 1/2

3, 000 otherwise .

For n = 30, we get the following numerical results. Let S1 = {1}, S2 = U , S3 = {1} ∪ U
and S4 = {n + 2} ∪ U . Note that S1, S2, and S3 are all nested solutions with respect to
the set of desired items D. We have
R(S1) = 1.0879, R(S2) = 0.8360, R(S3) = 1.1153, R(S4) = 1.2920.



Therefore, the optimal solution is S4.


