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Abstract In this paper, we study the robust and stochastic versions of the two-stage min-
cut and shortest path problems introduced in Dhamdhere et al. [6], and give approximation
algorithms with improved approximation factors. Specifically, we give a 2-approximation
for the robust min-cut problem and a 4-approximation for the stochastic version. For the
two-stage shortest path problem, we give a 3.39-approximation for the robust version and
6.78-approximation for the stochastic version. Our results significantly improve the previous
best approximation factors for the problems. In particular, we provide the first constant-
factor approximation for the stochastic min-cut problem.

Our algorithms are based on guess and prune strategy that crucially exploits the nature
of the robust and stochastic objective. In particular, we guess the worst-case second stage
cost and based on the guess, select a subset of costly scenarios for the first-stage solution
to address. The second-stage solution for any scenario is simply the min-cut (or shortest
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path) problem in the residual graph. The key contribution is to show that there is a near-
optimal first stage solution that completely satisfies the subset of costly scenarios that are
selected by our procedure. While the guess and prune strategy is not directly applicable for
the stochastic versions, we show that using a novel LP formulation, we can adapt a guess and
prune algorithm for the stochastic versions. Our algorithms based on the guess and prune
strategy provide insights about the applicability of this approach for more general robust and
stochastic versions of combinatorial problems.

1 Introduction

In this paper, we study the two-stage robust and stochastic versions of two classical combi-
natorial optimization problems, namely, minimum-cut and shortest path under demand un-
certainty, where cut or connectivity requirements are uncertain in addition to the objective
coefficient uncertainty. The goal is to build a two-stage solution to minimize the worst-case
or the expected cost, where in the first-stage the cost is lower but the constraints are uncer-
tain, and in the second-stage the constraints are known but the cost is higher. This tradeoff
between cost and uncertainty is common in most decision problems in the real world where
parameters are often uncertain in the optimization phase. Both stochastic and robust opti-
mization have been extensively studied in the literature to model decision problems under
uncertainty. We refer the reader to several textbooks including Infanger [15], Kall and Wal-
lace [16], Prekopa [18], Shapiro [20], Shapiro et al. [21] and the references therein for a
comprehensive review of stochastic optimization, and to the survey by Bertsimas et al. [3]
and the book by Ben-Tal et al. [2] and the references therein for an extensive review of the
literature in robust optimization.

Stochastic optimization models for general covering problems were introduced and stud-
ied in several recent papers (see Gupta et al. [13], Immorlica et al. [14], Ravi and Sinha [19],
Shmoys and Swamy [22]). Dhamdhere et al. [6] introduce the demand-robust version of two-
stage covering problems where the objective is to minimize the worst-case cost instead of
the expected cost as in the stochastic version. They prove a structural result about the first-
stage solution in this model and use it to give approximation algorithms for several two-stage
covering problems including set cover, multi-cut, Steiner tree and facility location. In this
paper, we consider the robust and stochastic versions of min-cut and shortest path, and give
improved approximation algorithms. These special cases of the multi-cut and Steiner tree
problems allow us to focus on the complexity of robust and stochastic modeling. Both min-
cut and shortest path problems are polynomial time solvable in the deterministic case but
are APX-hard in the two-stage model (see Khandekar et al. [17] and Gupta et al. [13]). We
propose algorithms with significantly better approximation ratios as compared to the algo-
rithms in Dhamdhere et al. [6] and Gupta et al. [13]. More importantly, our algorithms are
based on a guess and prune strategy that exploit crucial properties of the robust and stochas-
tic objective, thus providing interesting insights for developing algorithms for more general
problems in these models.

1.1 Model and Notations

Let us formally introduce the two-stage min-cut and shortest path problems.

Two-stage Minimum cut problems. We consider both robust and stochastic versions of
the two-stage min-cut problem under demand uncertainty. We are given an undirected graph
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G = (V,E) with edge costs cf : E → R+ and a root vertex r. Unlike the deterministic
min-cut problem, the terminal that needs to be separated from r is uncertain and is given
by a list of k scenarios, only one of which is realized in the second stage. Each scenario
i = 1, . . . , k is specified by the terminal ti and an inflation factor σi which is the factor by
which each edge becomes costlier in the second stage in scenario i. The goal is to build a
two-stage solution, i.e., select a set of edges Ef in the first-stage and, for each scenario i,
a set of recourse edges Eis in the second-stage such that Ef ∪ Eis separate r from ti for all
scenarios i = 1, . . . , k. Note the tradeoff between cost and uncertainty: in the first-stage,
the edge costs are small but the terminal that needs to be separated from r is uncertain. In
the second-stage, we know the terminal but the edge costs are higher by the corresponding
inflation factor. Let [k] denote {1, . . . , k}.

Robust Min-Cut Problem, (ΠRMC). In the robust min-cut problem, the goal is to find
a two-stage min-cut solution such that the worst-case cost over all scenarios is minimized,
i.e.,

min
Ef ,Ei

s⊆E,i∈[k]
cf (Ef ) +

k
max
i=1

σi · cf (Eis)

s.t. Ef ∪ Eis separate r from ti.

(1.1)

Stochastic Min-Cut Problem, (ΠSMC). In the stochastic min-cut problem, for each
scenario i ∈ [k], we are also given its probability of occurrence, pi such that p1 + . . . +

pk = 1. The goal is to find a two-stage min-cut solution such that the total expected cost is
minimized, i.e.,

min
Ef ,Ei

s⊆E,i∈[k]
cf (Ef ) +

k∑
i=1

piσi · cf (Eis)

s.t. Ef ∪ Eis separate r from ti.

(1.2)

Two-stage shortest path problems. Similar to the robust and stochastic min-cut problems,
we are given an undirected graph G = (V,E) with edge costs cf : E → R+, a root vertex
r, and a list of k scenarios, only one of which realizes in the second-stage. Each scenario
i = 1, . . . , k specifies the terminal ti that must be connected to r if that scenario realizes,
and an inflation factor σi for edge costs. The goal is to build a two-stage solution, i.e., select
a set of edges Ef in the first-stage and for each scenario i, a set of recourse edges Eis in the
second-stage such that Ef ∪ Eis connect r and ti for all scenarios i = 1, . . . , k.

Robust shortest path problem, (ΠRSP). In the robust shortest path problem, the goal
is to find a two-stage shortest path solution such that the worst-case cost over all scenarios
is minimized, i.e.,

min
Ef ,Ei

s⊆E,i∈[k]
cf (Ef ) +

k
max
i=1

σi · cf (Eis)

s.t. Ef ∪ Eis connect r and ti.
(1.3)

Stochastic shortest path problem, (ΠSSP). In the stochastic shortest path problem,
we are also given probabilities of occurrence, p1, . . . , pk for all scenarios, such that p1 +

. . . + pk = 1. The goal is to find a two-stage solution such that the total expected cost is
minimized, i.e.,

min
Ef ,Ei

s⊆E,i∈[k]
cf (Ef ) +

k∑
i=1

piσi · cf (Eis)

s.t. Ef ∪ Eis connect r and ti.

(1.4)
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1.2 Our Contributions

In this paper, we present improved approximation algorithms for the robust and stochastic
versions of the min-cut and shortest path problems introduced above. Our main contributions
are the following.

1. We present a 2-approximation for the robust min-cut problem which improves on the
O(logn)-approximation for the problem in [6], and also on the (1+

√
2)-approximation

that appears in a conference version of this paper [10]. Khandekar et al. [17] show that
the robust min-cut problem is APX-hard even for the case of three scenarios and uniform
inflation factor.

Our algorithm is based on a guess and prune strategy, where we guess the worst-case
second-stage cost of an optimal solution. Based on the guess, we identify a set of costly
scenarios (corresponding to terminals whose min-cut from r has a high cost), and we
compute the first-stage solution that separates r from these terminals of costly scenar-
ios. The second-stage solution for any scenario i is simply an r-ti min-cut in the residual
graph. The analysis is based on the structural properties of the minimum cuts. In particu-
lar, we use a novel charging argument using Gomory–Hu tree representation of pairwise
min-cuts [11].

2. For the stochastic min-cut, we present a 4-approximation. Our algorithm is the first
constant-factor approximation for the stochastic min-cut problem. Since the expected
objective for the stochastic problem depends on the second-stage costs for all the scenar-
ios and not just the worst-case cost, a guess and prune strategy is not directly applicable.
However, we propose a novel approximate 0-1 formulation for the stochastic min-cut
which can be rounded to give a 4-approximation for the problem.

3. We also give a (γ + 2)-approximation for the robust shortest path problem, where γ is
the best approximation factor for the Steiner tree problem on undirected graphs. The
best γ = 1.39 is due to Byrka et al. [4] which implies a 3.39-approximation for the
problem. This significantly improves on the 30-approximation for the problem in [6]
and 7.1-approximation in the preliminary version of this paper [10]. The robust (and
stochastic) shortest path problem is NP-hard as it contains the Steiner tree problem (if
inflation factors = ∞, then the optimal solution is an optimal Steiner tree over all sce-
nario terminals).

Similarly to the min-cut problem, the algorithm is based on a guess and prune strat-
egy where we guess the worst-case second-stage cost of an optimal solution. However,
the selection of costly scenarios to build the first-stage solution is quite different. The
cost of building a feasible solution for all the costly scenarios in the first-stage can be
potentially high. Therefore, we need to carefully select only a subset of costly scenarios
for the first stage solution to achieve the desired approximation factor.

4. For the stochastic shortest path problem, we give a 2(γ+2)-approximation which implies
a 6.78-approximation (since γ = 1.39 due to Byrka et al. [4]). This improves on the 30-
approximation for the problem in [13]. Similarly to the case of stochastic min-cut, we
use an LP formulation for the problem to adapt to a guess and prune strategy. However,
we lose an approximation factor of 2 as compared to the robust version (similar to the
case of min-cut problem).
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As mentioned above, in all the algorithms, we use a guess and prune strategy in some form:
we either directly guess the worst-case cost (for the robust versions) or use an LP formulation
(for the stochastic versions) to find a set of costly scenarios, and then build a feasible solution
for these scenarios in the first stage. We exploit the form of robust and stochastic objectives
crucially and our analysis can provide insights for using this technique for more general
robust and stochastic combinatorial problems.

1.3 Related Work

Stochastic and robust versions of combinatorial problems have been studied extensively in
the literature. Two-stage stochastic versions of the combinatorial problems were introduced
in Ravi and Sinha [19] and Immorlica et al. [14] who gave approximation algorithms for
several covering and packing problems. This led to a series of papers in this area including
Gupta et al. [13] who give sampling based algorithms for polynomial number of scenarios,
Shmoys and Swamy [22] who consider the case of exponential number of scenarios, and
Charikar et al. [5] who propose a sample average approximation for two-stage stochastic
combinatorial problems.

Dhamdhere et al. [6] introduced the robust version of two-stage combinatorial covering
problems under uncertainty and gave approximation algorithms for several covering prob-
lems including set cover, min-cut, multi-cut, Steiner tree, and facility location. In particular,
they give a 30-approximation for the robust Steiner tree problem, O(logn)-approximation
for the robust min-cut problem, and O(logn log logn)-approximation for the robust multi-
cut problem. The techniques in that paper also give first approximation algorithms for the
stochastic min-cut and stochastic multi-cut problems with the same approximation factors as
the robust versions. In a conference version of this paper [10], we present improved approx-
imations for the robust min-cut and robust shortest path problems: (1 +

√
2)-approximation

for the robust min-cut problem and 7.1-approximation for the robust shortest path problem.
Feige et al. [7] and later Khandekar et al. [17] consider the case of exponential scenarios that
are specified implicitly (all subsets of at most p terminals is a possible scenario) and give
approximations for set cover, Steiner tree and facility location problems. Gupta et al. [12]
generalize the result for exponential scenarios and give approximation algorithms for cov-
ering problems based on the guess and prune idea.

Outline. The rest of the paper is organized as follows. In Section 2, we present the 2-
approximation for the robust min-cut problem and in Section 3, we describe our 4-approximation
for the stochastic min-cut problem. In Sections 4 and 5, we describe our approximations for
the robust and stochastic shortest path problems respectively.

2 Two-stage Robust Min-Cut

In this section, we present our algorithm for the two-stage robust min-cut problem, ΠRMC

defined in (1.1). We present a 2-approximation for this problem improving the previous best
approximation factor of (1 +

√
2) in [10]. To motivate our approach, let us consider the

special case of the robust min-cut problem when the graph is a tree. Suppose we know the
maximum second-stage cost for an optimal solution is C. Any terminal ti, i = 1, . . . , k

whose min-cut from r costs more than C
σi

(with respect to the first stage costs) should be
separated from r in the first stage by this optimal solution. Otherwise, the second-stage cost



6

for scenario i will be more than C. Furthermore, if the min-cut between r and ti, i ∈ [k]

is less than or equal to C
σi

, this scenario can be handled independently in the second-stage
within a cost at most C. Therefore, we can ignore scenario i in constructing the first-stage
solution. This implies that if we know the value of C, we can identify exactly the set of
terminals U that should be disconnected from r in the first stage. While we do not know the
value of C, there are only a small number of values that are critical. Let cut-cost(ti) denote
the cost of the minimum cut between r and ti in G with respect to first-stage cost function
cf . Notice that for a particular value of C,

U = {ti | σi · cut-cost(ti) > C, i = 1, . . . , k } .

Assume wlog. that the scenarios are ordered such that

σ1 · cut-cost(t1) ≥ σ2 · cut-cost(t2) ≥ . . . ≥ σk · cut-cost(tk).

Therefore, for any value of C, U = ∅ or U = {t1, . . . , tj} for some j = 1, . . . , k which
implies that we need to try only k + 1 values of C to find the best solution. This motivates
the following algorithm described in Figure 1.

Algorithm ARMC for the Robust Min-Cut Problem

Input: Undirected graph G = (V,E), root r, terminals T = {t1, t2, . . . , tk}, inflation factors
σ1, . . . , σk .

1. Reorder terminals such that

σ1 · cut-cost(t1) ≥ σ2 · cut-cost(t2) ≥ . . . ≥ σk · cut-cost(tk).

2. Initialize z ←∞.
3. For j = 0, . . . , k

(a) Let U = {t1, . . . , tj}. (Note U = ∅ when j = 0.)
(b) Compute the first stage solution:

Êf ← minimum r-U cut in G.

(c) Compute the second stage solution for scenario i:

Êis ← minimum r-ti cut in G \ Êf .

(d) If z > cf (Êf ) + maxki=1 σt · cf (Êis)

z ← cf (Êf ) +
k

max
i=1

σt · cf (Êis)

Ef ← Êf

Eis ← Êis for i = 1, . . . , k.

4. Return: Ef , Eis for i = 1, . . . , k.

Fig. 1 Algorithm for the Robust Min-Cut Problem. It runs in Õ(k2mn) time on undirected graphs using the
max flow algorithm of Goldberg and Tarjan [9] to find minimum cuts.



7

2.1 Special Case: G is a Tree

As a warmup, let us first prove that Algorithm ARMC solves the robust min-cut problem
optimally when the underlying graph is a tree.

Theorem 2.1 Algorithm ARMC computes an optimal solution for the robust min-cut prob-
lem when G is a tree.

Proof Consider an optimal solution E∗f , E
i∗
s , i = 1, . . . , k for the given problem instance.

The optimal objective value is

z∗ = cf (E
∗
f ) +

k
max
i=1

σi · cf (Ei∗s ). (2.1)

Note that for terminal ti, i = 1, . . . , k that is not separated from r in G \ E∗f , Ei∗s is the
minimum-cost edge on the unique path between r and ti in G\E∗f (which is also the unique
path between r and ti in G). Therefore,

cf (E
i∗
s ) =

{
cut-cost(ti), if ti is connected to r in G \ E∗f
0, otherwise.

(2.2)

Let j1 be the smallest index j such that tj is not separated from r in G \ E∗f . Let

U = {t1, . . . , tj1−1},

and let
Êf ← minimum r-U cut in G

Êis ←
{

minimum r-ti cut in G, i = j1, . . . , k

∅, otherwise.

Note that E∗f separates all terminals in U from r. Therefore,

cf (E
∗
f ) ≥ cf (Êf ), (2.3)

since Êf is a minimum cut separating U from r. Also,

k
max
i=1

σi · cf (Ei∗s ) ≥ σj1 · cf (E
j1
s ) = σj1 · cut-cost(tj1), (2.4)

where the second equality follows from (2.2). Furthermore,

k
max
i=1

σi · cf (Êis) =
k

max
i=j1

σi · cf (Êis)

=
k

max
i=j1

σi · cut-cost(ti)

= σj1 · cut-cost(tj1),

where the first equality follows as Êis = ∅ for all i < j1 and the last equality follows as the
terminals are ordered in decreasing σi · cut-cost(ti). Therefore, we can compare the cost of
the solution Êf , Êis, i = 1, . . . , k as follows.

cf (Êf ) +
k

max
i=1

σi · cf (Eis) = cf (Êf ) + σj1 · cut-cost(tj1)

≤ cf (E
∗
f ) +

k
max
i=1

σi · cf (Ei∗s )

= z∗,
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where the second inequality follows from (2.3) and (2.4) and the last equation follows
from (2.1). Note that Algorithm ARMC will examine the choice of U = {t1, . . . , tj1−1}
and therefore, computes an optimal solution of the robust min-cut problem on trees. �

2.2 General Graphs

We show that, surprisingly, Algorithm ARMC in Figure 1 performs well even for the case
of general graphs. Algorithm ARMC uses the following paradigm: any scenario is satisfied
completely in the first stage or is budgeted to be satisfied completely in the second stage
(without any help from the first-stage solution). While this leads to an optimal algorithm
for trees (Theorem 2.1), it is not the case for general graphs. If for some terminal ti the
minimum r-ti cut has a cost more than C

σi
(where C is the maximum second-stage cost

for an optimal solution), then we can only infer that the optimal solution should “help” this
terminal in the first stage to keep the second-stage cost at most C, unlike in trees where the
first-stage solution must have separated ti from r. However, we show that Algorithm ARMC

is a good approximation even for the case of general graphs. The analysis is based on a
novel charging scheme that exploits the structure of minimum cuts. Let us introduce a few
definitions and notations.

Let E∗f , E
i∗
s , i = 1, . . . , k be an optimal two-stage solution (denoted by OPT). The

optimal objective value is

z∗ = cf (E
∗
f ) +

k
max
i=1

σi · cf (Ei∗s ) = cf (E
∗
f ) + C,

where C is the worst-case second-stage cost of OPT.

Definition 1 A scenario i is referred to as costly if the r-ti min-cut cost is more than 2C
σi

.

Let S denote the set of terminals corresponding to costly scenarios, i.e.,

S = {ti | σi · cut-cost(ti) > 2C}. (2.5)

Note that S = {t1, . . . , tj} for some j = 0, . . . , k since the terminals are sorted in decreasing
order of σi · cut-cost(ti). In any optimal solution, a costly scenario that is not satisfied
completely in the first stage needs some help from the first-stage solution to keep the worst-
case second-stage cost to at most C.

For any two vertices u, v ∈ V , let

cut-costG(u, v) := cost of u-v min-cut in graph G.

For any T ⊂ V , let

δG(T ) = {e = (u, v) ∈ E(G) | u ∈ T, v /∈ T}

denote the edges that cut out T . Finally, let G′ = (V,E \ E∗f ) be the graph obtained by
removing E∗f from G.
Gomory–Hu Tree. We use the Gomory–Hu tree representation of pairwise min-cuts in an
undirected graph to exploit the laminar structure of minimum cuts. For graph G = (V,E),
a Gomory–Hu tree is a tree H = (V, F ) on vertices V with edges F and a cost function
ch : F → R+ that satisfies the following properties.
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1. For any two vertices u, v ∈ V , let P(u, v) denote the unique path from u to v in T .
Then, the cost of the minimum u-v cut in graph G is the cost (with respect to ch) of the
minimum cost edge on P(u, v), i.e.,

cut-costG(u, v) = min
e∈P(u,v)

ch(e).

2. If
euv = argmine∈P(u,v) ch(e),

then the two connected components obtained by removing euv from T form a u-v min-
cut in G.

Approximate Solution. We construct the approximate first-stage and second-stage solution,
Ef , E

i
s, i = 1, . . . , k for the robust min-cut problem on G as follows.

Ef ← minimum r-S cut in G

Eis ← minimum r-ti cut in G \ Ef .
(2.6)

Note that since S = {t1, . . . , tj} for some j = 0, . . . , k, Algorithm ARMC considers this
solution in one of the iterations. We show that the total worst-case cost of the above solution
is at most 2z∗. First, we show that the worst-case second-stage cost is at most 2C.

Lemma 2.2 Let Ef , Eis, for all i = 1, . . . , k be as defined in (2.6). Then for all i = 1, . . . , k,
the second-stage cost for scenario i at most 2C, i.e.,

σi · cf (Eis) ≤ 2C, i = 1, . . . , k.

Proof If ti ∈ S, then Eis = ∅ since Ef separates r from ti, and cf (Eis) = 0 ≤ 2C. If ti /∈ S,
then

σi · cf (Eis) = σi · cf ( minimum r-ti cut in G \ Ef ) ≤ σi · cut-cost(ti),

which is at most 2C from the definition of S (2.5). �

We next show that the cost of the first-stage solution Ef defined in (2.6) is at most twice the
cost of E∗f . We prove this by constructing a r-S cut whose cost is at most 2cf (E∗f ). The cost
analysis relies on the laminar structure of minimum cuts and we use a Gomory–Hu tree to
represent the pairwise min-cuts in G′ = G \ E∗f . Let H = (V, F ) be the Gomory–Hu tree
for G′ with respect to edge costs cf , and let ch : F → R+ be the cost function on edges F .
For any terminal t ∈ S, let

et ∈ argmine∈P(t,r) ch(e)

Ut ← Component containing t in H \ {et}
(2.7)

where for any vertex v ∈ V , P(r, v) denotes the unique path from r to v in H . Recall that
ch(et) is the cost of the minimum r-t cut in G′ = G \ E∗f , and that the two components
obtained by removing et from H define an r-t min-cut.

We first prove the following lemma.

Lemma 2.3 For any t ∈ S,

cf (δG(Ut) \ E∗f ) = ch(et) ≤ cf (δG(Ut) ∩ E∗f ),

where et and Ut are as defined in (2.7).
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Proof Let σt denote the inflation factor of the scenario corresponding to terminal t ∈ S.
Note that ch(et) is the cost (with respect to cf ) of the second-stage solution in OPT for
scenario corresponding to terminal t. Therefore,

cf (δG(Ut) \ E∗f ) = ch(et) ≤
C

σt
, (2.8)

as the second stage cost of OPT is at most C.
Since δG(Ut) is an r-t cut, and t ∈ S,

cf (δG(Ut)) ≥ cut-cost(t) >
2C

σt
. (2.9)

Now,
δG(Ut) =

(
δG(Ut) ∩ E∗f

)
] (δG(Ut) \ E∗f ),

which implies

cf (δG(Ut) ∩ E∗f ) = cf (δG(Ut))− cf (δG(Ut) \ E∗f ) >
2C

σt
− C

σt
=
C

σt
,

where the inequality follows from (2.8), (2.9). Therefore,

cf (δG(Ut) \ E∗f ) ≤
C

σt
< cf (E

∗
f ∩ δG(Ut)).

�

Now, we are ready to prove the main theorem.

Theorem 2.4 Algorithm ARMC gives a 2-approximation for the two-stage robust min-cut
problem, ΠRMC.

Proof We will construct a low-cost r-S cut in G. In particular, consider the following cut,

Êf = δG

(⋃
t∈S

Ut

)
.

Clearly, Êf separates r from S since t ∈ Ut for every t ∈ S. Note that Ut, t ∈ S form a
laminar family of sets, i.e., for any two sets Ut1 , Ut2 where t1, t2 ∈ S, either one is contained
in the other (i.e. Ut1 ⊆ Ut2 or Ut2 ⊆ Ut1 ) or they are disjoint (i.e. Ut1∩Ut2 = ∅). Therefore,
we can find a minimal subset of terminals T ⊆ S such that⋃

t∈T
Ut =

⋃
t∈S

Ut, and Ut ∩ Ut′ = ∅, ∀t, t′ ∈ T .

We have

Êf = δG

(⋃
t∈T

Ut

)
=

(⋃
t∈T

δG(Ut)

)
\ EG

[⋃
t∈T

Ut

]
, (2.10)

where for any V ′ ⊂ V , EG[V ′] denotes the set of edges in G induced between vertices
in V ′. We now show that cf (Êf ) ≤ 2cf (E

∗
f ), where E∗f is an optimal first-stage solution.

Consider any e ∈ E∗f . Since Ut, t ∈ T are disjoint, e ∈ δG(Ut) for at most two terminals in
T . Let

E∗f,1 = {e ∈ E∗f | e ∈ δG(Ut) for exactly one terminal t ∈ T },

E∗f,2 = {e ∈ E∗f | e ∈ δG(Ut) for exactly two terminals t, t′ ∈ T }.
(2.11)
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Note that E∗f,2 ⊆ EG[∪t∈T Ut] since any e ∈ E∗f,2 is contained in δG(Ut) and δG(Ut′) for
distinct t, t′ ∈ T . Combining with (2.10), we have

Êf ⊆

(⋃
t∈T

δG(Ut)

)
\ E∗f,2 =

(⋃
t∈T

δG(Ut) \ E∗f

)
∪ E∗f,1. (2.12)

Therefore,

cf (Êf ) ≤

(∑
t∈T

cf (δG(Ut) \ E∗f )

)
+ cf (E

∗
f,1)

≤

(∑
t∈T

cf (δG(Ut) ∩ E∗f )

)
+ cf (E

∗
f,1) (2.13)

=
∑
t∈T

(
cf (δG(Ut) ∩ E∗f,1) + cf (δG(Ut) ∩ E∗f,2)

)
+ cf (E

∗
f,1) (2.14)

≤ 2cf (E
∗
f,1) + 2cf (E

∗
f,2) (2.15)

≤ 2cf (E
∗
f ),

where the first inequality follows from (2.12). Inequality (2.13) follows from Lemma 2.3.
Equality (2.14) follows since E∗f,1 and E∗f,2 are disjoint and any e ∈ δG(Ut ∩ E∗f ) belongs
to either E∗f,1 or E∗f,2. Inequality (2.15) follows since∑

t∈T
cf (δG(Ut) ∩ E∗f,1) = cf (E

∗
f,1),

∑
t∈T

cf (δG(Ut) ∩ E∗f,2) = 2cf (E
∗
f,2).

This completes the proof. �

AlgorithmARMC computesO(k2) minimum cuts and therefore, the running time is Õ(k2mn)

time on undirected graphs using the max flow algorithm of Goldberg and Tarjan [9] to find
minimum cuts.

3 Two-stage Stochastic Min-Cut Problem

In this section, we present a constant-factor approximation for the two-stage stochastic min-
cut problem, ΠSMC defined in (1.2). Here, the goal is to minimize the total expected cost
of the two-stage solution instead of the worst-case cost over all scenarios as in the robust
version. We present a 4-approximation for this problem. This is the first constant-factor ap-
proximation for the problem improving upon an O(logn)-approximation given in [6]. The
stochastic min-cut problem differs significantly from the robust version. In an optimal solu-
tion Ef , Eis, i = 1, . . . , k, for the robust version of the problem, the second-stage solution
Eis need not be an optimal r-ti cut in G \Ef , especially if scenario i is not one of the worst-
case scenarios. Therefore, we can assume the second-stage cost for all scenarios is identical
and we just need to ensure that there is a feasible second-stage solution for all scenarios with
cost at most the worst-case cost. This property allows to identify the set of terminals that
should be separated from the root in an approximate first stage solution by guessing just the
worst-case second-stage cost in an optimal solution. However, this property is not true for
the stochastic version. In an optimal solution E∗f , E

i∗
s , i = 1, . . . , k for the stochastic ver-

sion, the second-stage solution, Ei∗s is a r-ti min-cut inG\E∗f for all scenarios i. Therefore,
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we can not use a guess and prune algorithm (with small number of guesses) to identify a set
of terminals to disconnect in an approximate first-stage solution. However, we give a novel
LP formulation to prune the scenarios and construct an approximate solution.

Let us first introduce an approximate 0-1 formulation for the problem. For any i =

1, . . . , k, let yi ∈ {0, 1} denote whether terminal ti is separated from r in the first stage or
not. For each edge e ∈ E, let xe ∈ {0, 1} denote whether edge e is selected in the first stage
solution or not. Let PG(u, v) denote the set of paths from u to v in graph G. Also, as earlier,
let cut-costG(r, ti) denote the cost of the minimum r, ti-cut in G with respect to the cost
function cf . Consider the following integer program.

zIP = min
∑
e∈E

cf (e) · xe +
k∑
i=1

σipi · cut-costG(r, ti) · (1− yi)

s.t.
∑
e∈P

xe ≥ yi, ∀P ∈ PG(r, ti),∀i = 1, . . . , k

xe ∈ {0, 1}, ∀e ∈ E
yi ∈ {0, 1}, ∀i = 1, . . . , k.

(3.1)

Note that the above integer program is not an exact formulation for the stochastic min-cut
problem. If a terminal ti, i = 1, . . . , k is not separated from r by the first-stage solution xe,
i.e., yi = 0, then we incur the cost of r-ti min-cut in G in the second-stage instead of the
min-cut in the modified graph after removing the first-stage edges. However, we show that
this formulation is a good approximation of the stochastic min-cut problem. In particular,
we show that zIP is at most twice the optimal objective of the stochastic min-cut problem
in the following lemma.

Lemma 3.1 Let E∗f , E
i∗
s , i = 1, . . . , k be an optimal solution for the stochastic min-cut

problem and zIP be as defined in (3.1). Then

zIP ≤ 2 ·

(
cf (E

∗
f ) +

k∑
i=1

σipi · cf (Eis)

)
= 2z∗

Proof We will construct a feasible solution for (3.1) from the optimal stochastic solution
with cost at most 2z∗. As before, we use a Gomory–Hu tree representation of the pairwise
min-cuts. In particular, let H = (V, F ) be the Gomory–Hu tree on Graph G′ = (V,E \ E∗f )
with edge costs ch : F → R+. For u, v ∈ V , recall that P(u, v) denotes the unique path
between u and v in H , and

cut-costG′(u, v) = min
e∈P(u,v)

ch(e).

As defined in (2.7), for any t ∈ {t1, . . . , tk}, let

et ∈ argmine∈P(t,r) ch(e), Ut ← Component containing t in H \ {et}.

For any i = 1, . . . , k, let
Eif ← δG(Uti) ∩ E

∗
f ,

Eis ← δG(Uti) \ E
∗
f .

(3.2)

Note that cf (Eis) = cf (E
i∗
s ) for all i = 1, . . . , k. Let

S = {ti | cf (Eif ) > cf (E
i
s), i = 1, . . . , k}, (3.3)
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and,

Êf = δG

(⋃
t∈S

Ut

)
.

Note that since Ut, t ∈ S are laminar, as in the proof of Theorem 2.4, we can construct a
minimal subset of terminals T ⊆ S such that

⋃
t∈T

Ut =
⋃
t∈S

Ut, and Ut ∩ Ut′ = ∅, ∀t, t′ ∈ T .

Therefore,

Êf = δG

(⋃
t∈T

Ut

)
=

(⋃
t∈T

δG(Ut)

)
\ E

[⋃
t∈T

Ut

]
.

Let E∗f,1, E
∗
f,2 be as defined in (2.11). Then similar to the proof of Theorem 2.4, we have

Êf ⊆

(⋃
t∈T

δG(Ut) \ E∗f

)
∪ E∗f,1 =

 ⋃
i:ti∈T

Eis

 ∪ E∗f,1, (3.4)

where the last equality follows from the definition of Eis in (3.2). Now, consider the follow-
ing solution for (3.1),

∀i ∈ [k], yi =

{
1 if ti ∈ S
0 otherwise

,

∀e ∈ E, xe =

{
1 if e ∈ Êf
0 otherwise

(3.5)

It is easy to observe that the above solution is feasible for (3.1) since the solution xe, e ∈ E,
separates terminal ti, i = 1, . . . , k from r if yi = 1. Note that

∑
e∈E cf (e) · xe = cf (Êf ),

and

cf (Êf ) ≤
∑
i:ti∈T

cf (E
i
s) + cf (E

∗
f,1)

≤
∑
i:ti∈T

cf (E
i
f ) + cf (E

∗
f,1)

=
∑
i:ti∈T

cf (δG(Uti) ∩ E
∗
f ) + cf (E

∗
f,1)

=
∑
i:ti∈T

(
cf (δG(Uti) ∩ E

∗
f,1) + cf (δG(Uti) ∩ E

∗
f,2)
)
+ cf (E

∗
f,1)

≤ 2 ·
(
cf (E

∗
f,1) + cf (E

∗
f,2)
)

≤ 2 · cf (E∗f ) (3.6)
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where the first inequality follows from (3.4) and the second inequality follows as cf (Eis) ≤
cf (E

i
f ) for all ti ∈ T ⊆ S by the definition of S. Also,

k∑
i=1

σipi · (1− yi) · cut-costG(r, ti) =
∑
i:ti /∈S

σipi · cut-costG(r, ti)

≤
∑
i:ti /∈S

σipi ·
(
cf (E

i
f ) + cf (E

i
s)
)

≤ 2 ·

 ∑
i:ti /∈S

σipi · cf (Eis)


= 2 ·

 ∑
i:ti /∈S

σipi · cf (Ei∗s ))

 ,

where the first equation follows from the solution (3.5). The second inequality follows since
Eif ∪E

i
s is an r-ti cut inG, the third inequality follows from the definition of S (3.3) and the

last equality follows as cf (Eis) = cf (E
i∗
s ) for all i = 1, . . . , k by construction. Combing this

with (3.6), we have that the cost of solution (3.5) is at most 2z∗ which implies zIP ≤ 2z∗.�

Now, we are ready to describe our algorithm for the stochastic min-cut problem (Fig-
ure 2).

Algorithm AStoch for Stochastic Min-Cut Problem
Input: Graph G = (V,E), root r, terminals {t1, t2, . . . , tk}, inflation factors σ1, . . . , σk , and scenario
probabilities p1, . . . , pk .

1. Solve the LP relaxation of the integer program (3.1).
2. Let x̃e, e ∈ E, ỹi, i = 1, . . . , k be an optimal fractional solution for the LP relaxation.
3. Let

U =

{
ti

∣∣∣∣ ỹi ≥ 1

2
, i = 1, . . . , k

}
.

4. Return

First stage solution: Ef ← minimum r-U cut in G,

Second stage solution for scenario i : Eis ← minimum r-ti cut in G \ Ef .

Fig. 2 Algorithm for Stochastic Min-Cut Problem

Theorem 3.2 Algorithm AStoch gives a 4-approximation for the stochastic min-cut prob-
lem.

Proof Let

z̃ =
∑
e∈E

cf (e) · x̃e +
k∑
i=1

σipi · (1− ỹi) · cut-costG(r, ti)

where x̃e, e ∈ E, ỹi, i = 1, . . . , k are an optimal solution to the LP relaxation of (3.1) as
defined in AStoch. Consider the following fractional solution: x̂e = 2x̃e for all e ∈ E. For
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all t ∈ U , ∑
e∈P

x̂e ≥ 1, ∀P ∈ P(r, t).

Therefore, the solution, x̂ denotes a fractional r-U cut in G which implies that

cf (Ef ) ≤
∑
e∈E

cf (e)x̂e = 2 ·
∑
e∈E

cf (e)x̃e, (3.7)

since Ef is a minimum r-U cut in G. Also,

2da

k∑
i=1

σipi · cf (Eis) =
∑
i:ti /∈U

σipi · cf (Eis)

≤
∑
i:ti /∈U

σipi · cut-costG(r, ti)

≤ 2 ·

 ∑
i:ti /∈U

σipi · (1− ỹi) · cut-costG(r, ti)

 (3.8)

≤ 2 ·

(
k∑
i=1

σipi · (1− ỹi) · cut-costG(r, ti)

)
(3.9)

where the first equation follows as Eis = ∅ for all i : ti ∈ U . The second inequality follows
as Eis is a r-ti min-cut in G \ Ef and therefore, has cost at most cut-costG(r, ti), and (3.8)
follows since ỹi < 1/2 for all i : ti /∈ U . Therefore,

cf (Ef ) +

k∑
i=1

σipi · cf (Eis) ≤ 2 ·

(∑
e∈E

cf (e)x̃e +

k∑
i=1

σipi · (1− ỹi) · cut-costG(r, ti)

)
≤ 2 · zIP
≤ 4z∗,

where the first inequality follows from (3.7) and (3.9). The second inequality follows since
z̃ ≤ zIP and the last inequality follows from Lemma 3.1. �

4 Two-stage Robust Shortest Path Problem

In this section, we present an approximation algorithm for the two-stage robust shortest path
problem, ΠRSP defined in (1.3) where the goal is to select a set of edges Ef (first-stage
solution) and for each second-stage scenario i = 1, . . . , k, edges Eis (second-stage solution)
such that Ef ∪ Eis contain a path from r to ti, and the objective

cf (Ef ) +
k

max
i=1

σi · cf (Eis),

is minimized. Note that in the robust min-cut problem, we require that Ef ∪ Eis disconnect
r from ti.

Our algorithm is based on an approach similar to the robust min-cut problem where
we guess the worst-case second-stage cost and select a subset of terminals to connect to
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the root in an approximate first-stage solution. The second-stage solution for any scenario
i is simply a shortest path from terminal ti to the first-stage tree. However, there are two
significant differences from the robust min-cut problem. In the robust min-cut problem,
terminals corresponding to all costly scenarios are separated from r in the first-stage, and
for every other scenario i, the second-stage solution can independently pay for the r-ti min-
cut inGwithout using the first-stage solution. For the robust shortest path problem, however,
we need to be more careful in selecting the subset of terminals to be connected to root in
the first-stage solution. Moreover, for the remaining scenarios, the second-stage solution can
not pay for the complete path from terminal to the root independently. Therefore, we need
to analyze the cost of connecting the terminal to the approximate first-stage solution which
depends on our particular choice of the first-stage tree. Due to these structural differences,
the algorithm and analysis for the robust shortest path problem are significantly different
from the robust min-cut problem, even though they are similar in spirit.

Let us introduce some notation before describing the algorithm. Let SP(u, v) denote the
shortest path distance between u and v in G with respect to edge costs cf . Let E∗f , E

i∗
s , i =

1, . . . , k be an optimal solution for the robust shortest path problem, and let C be the worst-
case second-stage cost, i.e.,

C =
k

max
i=1

σi · cf (Ei∗s ).

We can assume that we know C; there are at most k · n possible choices we need to explore
for C since the worst-case cost is σi · SP(ti, v) for some i = 1, . . . , k and v ∈ V . For any
v ∈ V , d ∈ R+, let B(v, d) denote the open ball of radius d around v, i.e., B(v, d) =

{u | SP(u, v) < d}. Hence, for any u, v ∈ V we have

B(u, du) ∩B(v, dv) = ∅ ⇐⇒ SP(u, v) ≥ du + dv.

We assume that the terminals are ordered in decreasing order of inflation factors, i.e.,

σ1 ≥ σ2 ≥ . . . ≥ σk.

Fix α = 1.695 and for all i = 1, . . . , k, let di = α·C
σi

. We define the set of costly scenarios
as

S′ = {ti ∈ T | SP(r, ti) > 2 · di } . (4.1)

Note that for any scenario such that ti /∈ S, we can construct a solution in the second stage
independently with cost at most 2αC. However, unlike with the minimum-cut problem, we
do not compute a low-cost first-stage solution that would be feasible for all costly scenarios
S′ (if we did that, we would not be able to bound the first stage cost). Instead we select a
subset of terminals, S ⊆ S′ for constructing the first-stage solution as follows: consider ter-
minals ti in S′ in non-increasing order of inflation factors, σi and include it in S if B(ti, di)

does not intersect with any B(tj , dj) for any tj already included in S. We describe our
algorithm formally in Figure 3.

We first analyze the cost of the first-stage solution Ef computed by ARSP as compared
to optimal first-stage solution E∗f . In particular, we prove the following lemma.

Lemma 4.1 For the first-stage solution Ef computed by ARSP, we have

cf (Ef ) ≤
γα

α− 1
· cf (E∗f ),

where γ is the best approximation factor for the Steiner tree problem.
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AlgorithmARSP for Robust Shortest Path problem

Input: Graph G = (V,E), root r, terminals T = {t1, t2, . . . , tk}, inflation factors σ1 ≥ . . . ≥ σk .
Let α← 1.695 and C ← worst-case second-stage cost of an optimal solution.

1. Let di = α·C
σi

for all i ∈ [k], and S′ as defined in (4.1).
2. Initialize S ← ∅
3. For all ti ∈ S′ (considered in non-increasing order of σi)

If B(ti, di) ∩B(tj , dj) = ∅ for all tj ∈ S
S ← S ∪ {ti}.

4. S ← S ∪ {r}.
5. First stage solution: Ef ← Approximate Steiner tree on S.
6. Second-stage solution: Eis ← Shortest path from ti to Ef

Fig. 3 Algorithm for Robust Shortest Path Problem

Proof For any ti, tj ∈ S, B(ti, di) ∩B(tj , dj) = ∅ which implies

SP(ti, tj) ≥ di + dj .

Consider any Eulerian tour TS that contains all the terminals in S. From the above inequality,

cf (TS) ≥ 2 ·
∑
i:ti∈S

di.

If we double the edges of an optimal Steiner tree with cost St(S), we get an Eulerian tour
on S of cost 2 · St(S) which implies

St(S) ≥
∑
i:ti∈S

di. (4.2)

Consider the subgraph defined by edges, Ê where

Ê = E∗f ∪

 ⋃
i:ti∈S

Ei∗s

 .

Edges Ê connect all terminals in S to r and therefore, contains a Steiner tree on S. Therefore,

St(S) ≤ cf (Ê) ≤ cf (E∗f ) +
∑
i:ti∈S

cf (E
i∗
s ). (4.3)

Also, the worst-case second-stage cost of the optimal solution is C which implies that for
all i = 1, . . . , k,

cf (E
i∗
s ) ≤ C

σi
=

1

α
· αC
σi

=
1

α
· di. (4.4)

Now,

cf (E
∗
f ) ≥ St(S)−

∑
i:ti∈S

cf (E
i∗
s )

≥ St(S)−
∑
i:ti∈S

1

α
· di (4.5)

≥ St(S)− 1

α
· St(S) (4.6)

=
(
α− 1

α

)
· St(S), (4.7)
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where the first inequality follows from (4.3). Inequality (4.5) follows from (4.4) and inequal-
ity (4.6) follows from (4.2). Algorithm ARSP returns a γ-approximate Steiner tree on S as
the first-stage solution, Ef . Therefore,

cf (Ef ) ≤ γ · St(S) ≤
γα

α− 1
· cf (E∗f ),

where the last inequality follows from (4.7). �

In the next lemma, we analyze the worst-case cost of the second-stage solution.

Lemma 4.2 For the second-stage solution Eis, i = 1, . . . , k computed by ARSP we have

k
max
i=1

σi · cf (Eis) ≤ 2α · C.

Proof For any i = 1, . . . , k, if terminal ti does not belong to S′ (defined in (4.1)),

SP(r, ti) ≤ 2 · di =
2αC

σi
⇒ σi · cf (Eis) ≤ 2α · C.

For any terminal ti ∈ S′, it either belongs to S ⊆ S′ or S′ \ S. If ti ∈ S, the first-stage
solution Ef connects ti to r and Eis = ∅. If ti ∈ S′ \ S, then there exists tj ∈ S such that
σj ≥ σi and

B(ti, di) ∩B(tj , dj) 6= ∅.

Therefore,

SP(ti, tj) ≤ di + dj =
αC

σi
+
αC

σj
≤ 2αC

σi
,

where the last inequality follows as σj ≥ σi. Therefore,

σi · cf (Eis) ≤ σi · SP(ti, tj) ≤ 2αC,

where the first inequality follows from the fact the Eis is the shortest path from ti to the
first-stage Steiner tree Ef . Since Ef contains tj ∈ S, the shortest path distance from ti to
Ef is at most the shortest path distance between ti and tj . �

Theorem 4.3 AlgorithmARSP is a (γ+2)-approximation for the robust shortest path prob-
lem where γ is the best approximation factor for the Steiner tree problem.

Proof Let Ef , Eis, i = 1, . . . , k denote the solution computed by ARSP and E∗f , E
i∗
s , i =

1, . . . , k be an optimal solution where the worst-case second-stage cost is C. Consider α =
γ
2 + 1. From Lemma 4.1, we have that

cf (Ef ) ≤
γα

α− 1
· cf (E∗f ) = (γ + 2) · cf (E∗f ).

From Lemma 4.2,
k

max
i=1

σi · cf (Eis) ≤ 2α · C = (γ + 2) · C.

Therefore, the objective value of the approximate solution is

cf (Ef ) +
k

max
i=1

σi · cf (Eis) ≤ (γ + 2) ·
(
cf (E

∗
f ) + C

)
= (γ + 2) ·

(
cf (E

∗
f ) +

k
max
i=1

σi · cf (Ei∗s )
)
.

�
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For general graphs, the best γ = 1.39 is due to Byrka et al. [4]. Thus, we have the
following corollary.

Corollary 4.4 Algorithm ARSP gives a 3.39-approximation for the robust shortest path
problem.

5 Two-stage Stochastic Shortest Path Problem

In this section, we consider the stochastic version of the shortest path problem,ΠSSP defined
in (1.4), where the goal is to find a two-stage solution, Ef , Eis for all i = 1, . . . , k such that
Ef ∪ Eis connects ti to the root vertex r and the total expected cost,

cf (Ef ) +

k∑
i=1

piσi · cf (Eis),

is minimized.
In the robust version of the problem, the objective value depends only on the worst-

case cost over all scenarios in the second-stage. Therefore, the algorithm is able to select a
subset of terminals to connect to the root in the first-stage based on a guess for the worst-case
second-stage cost. Since it can take only k ·n possible values, the algorithm needs to try only
a small number of values. However, in the stochastic version, the objective value depends
on the total expected second-stage costs over all the scenarios. Therefore, the knowledge of
the worst-case second-stage cost or even the total expected cost does not allow us to select
a subset of scenarios to connect in the first-stage. However, we show that we can exploit an
optimal fractional solution of the natural LP formulation for the problem to select a subset
of scenarios whose terminals can be connected to the root in the first-stage and the expected
cost in the second-stage is small.

Let us first formulate the stochastic shortest problem as a 0-1 program. For each edge
e ∈ E, let xe ∈ {0, 1} denote whether e is selected in the first-stage or not. Also, for all
i = 1, . . . , k, let yie ∈ {0, 1} denote whether e is selected in the second-stage or not for the
scenario i. For any U ( V , let δ(U) denote the set of edges leaving U , i.e., exactly one end
point of the edge belongs to U . Now, we can formulate the stochastic shortest path problem
as follows.

OPT = min
∑
e∈E

cf (e) · xe +
k∑
i=1

piσi ·
∑
e∈E

cf (e) · yie∑
e∈δ(U)

(xe + yie) ≥ 1, ∀i ∈ [k], ∀U ⊆ V : ti ∈ U, r /∈ U

xe ∈ {0, 1}, ∀e ∈ E

yie ∈ {0, 1}, ∀e ∈ E,∀i = 1 ∈ [k].

(5.1)
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We consider the LP relaxation of (5.1) where we relax the integrality constraints on xe, yie
for all e ∈ E, i ∈ [k].

zLPSSP = min
∑
e∈E

cf (e) · xe +
k∑
i=1

piσi ·
∑
e∈E

cf (e) · yie∑
e∈δ(U)

(xe + yie) ≥ 1, ∀i ∈ [k], ∀U ⊆ V : ti ∈ U, r /∈ U

xe ≥ 0 ∀e ∈ E

yie ≥ 0, ∀e ∈ E,∀i = 1 ∈ [k].

(5.2)

Note that the above LP has exponentially many constraints but the separation problem and
therefore, the optimization problem can be solved in polynomial time. The separation prob-
lem is the following: given a solution xe, y

i
e for all e ∈ E, i ∈ [k], we need to decide

whether the cut-constraints are satisfied for all i = 1, . . . , k. For each i = 1, . . . , k, consider
edge costs ci : E → R+ where ci(e) = xe + yie for all e ∈ E. Compute

θi := r-ti min-cut in graph G with respect to edge costs ci.

Then the solution is feasible if and only if θi ≥ 1 for all i ∈ [k]. If for some scenario i,
θi < 1, the corresponding cut gives a violated inequality.

Let x∗e , yi∗e for e ∈ E, i ∈ [k] be an optimal LP solution for (5.2). Let α = 3.39, and

di = α ·
∑
e∈E

cf (e) · yi∗e , ∀i = 1, . . . , k. (5.3)

We assume that the terminals are ordered in non–decreasing order of di, i.e.,

d1 ≤ d2 ≤ . . . ≤ dk.

As earlier, for any u, v ∈ V , SP(u, v) denotes the shortest path distance between u and v in
G, B(v, d) denotes a ball of radius d ∈ R+ around v, and

B(u, du) ∩B(v, dv) = ∅ ⇐⇒ SP(u, v) ≥ du + dv.

We incrementally construct a subset S ⊆ T of terminals that are connected to r in a first-
stage solution. We consider each terminal ti in non–decreasing order of di, and include it
in S if B(ti, di) does not intersect with B(tj , dj) for any tj that already belongs to S. We
describe our algorithm formally in Figure 4.

We first analyze the cost of the first-stage solution Ef computed by ASSP. In particular,
we prove the following lemma.

Lemma 5.1 Let x∗e , yi∗e for all e ∈ E, i ∈ [k] be an optimal LP solution for (5.2), and Ef
be the first-stage solution computed by ASSP. Then

cf (Ef ) ≤
(

2γα

α− 2

)
·
∑
e∈E

cf (e) · x∗e ,

where γ is the best approximation factor for the Steiner tree problem.
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Algorithm,ASSP for Stochastic Shortest Path problem

Input: G = (V,E), root r, T = {t1, t2, . . . , tk}, σ1, . . . , σk , p1, . . . , pk .
Let α← 3.39.

1. Solve LP (5.2) and let x∗e , y
i∗
e , e ∈ E, i ∈ [k] be an optimal solution.

2. For all i = 1, . . . , k, let di = α ·
∑
e∈E cf (e) · yi∗e .

3. Reorder the terminals in non–decreasing order of di.
4. Initialize S ← ∅
5. For all i = 1 to k

If B(ti, di) ∩B(tj , dj) = ∅ for all tj ∈ S
S ← S ∪ {ti}.

6. S ← S ∪ {r}.
7. First stage solution: Ef ← Approximate Steiner tree on S.
8. Second-stage solution: Eis ← Shortest path from ti to Ef

Fig. 4 Algorithm for Stochastic Shortest Path Problem

Proof Using an argument similar to the proof of Lemma 4.1, we can show that

St(S) ≥
∑
i:ti∈S

di =
∑
i:ti∈S

α ·
∑
e∈E

cf (e) · yi∗e , (5.4)

where St(S) denotes the cost of optimal Steiner tree on S. By construction B(ti, di) ∩
B(tj , dj) = ∅ for any ti, tj ∈ S which implies

SP(ti, tj) ≥ di + dj .

If we double the edges of an optimal Steiner tree with cost St(S), we get an Eulerian tour
on S of cost 2 · St(S) which implies (5.4).

Consider the following fractional solution,

ze = x∗e +
∑
i:ti∈S

yi∗e , ∀e ∈ E.

We claim that ze, e ∈ E is a feasible solution for the Steiner tree LP on terminals S. Consider
any U ⊆ V that separates terminals in S, i.e., S ∩U 6= ∅ and S \U 6= ∅. It is easy to observe
that ze, e ∈ E satisfies the cut inequality corresponding to U . Since U separates terminals in
S, U must separate some terminal, say tj ∈ S from r. Therefore,

∑
e∈δ(U)

ze =
∑

e∈δ(U)

x∗e + ∑
i:ti∈S

yi∗e


≥

∑
e∈δ(U)

x∗e + yj∗e

≥ 1,

where the last inequality follows since x∗e , yi∗e , e ∈ E, i ∈ [k] is feasible for (5.2). From
Agarwal et al. [1] and Goemans and Williamson [8], we know that

St(S) ≤ 2 ·
∑
e∈E

cf (e) · ze = 2 ·

∑
e∈E

cf (e) · x∗e +
∑
i:ti∈S

∑
e∈E

cf (e) · yi∗e

 . (5.5)
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Therefore, ∑
e∈E

cf (e) · x∗e ≥
1

2
· St(S)−

∑
i:ti∈S

∑
e∈E

cf (e) · yi∗e

≥ 1

2
· St(S)− 1

α
· St(S) (5.6)

=
(
α− 2

2α

)
· St(S),

where (5.6) follows from (5.4). Algorithm ASSP returns a γ-approximate Steiner tree on S
as the first-stage solution, Ef . Therefore,

cf (Ef ) ≤ γ · St(S) ≤
(

2γα

α− 2

)
·
∑
e∈E

cf (e) · x∗e ,

where the last inequality follows from (5.6). �

In the next lemma, we analyze the expected second-stage cost. In particular, we prove
the following.

Lemma 5.2 Let Eis denote the second-stage solution for scenario i = 1, . . . , k computed by
ASSP. Then

k∑
i=1

piσi · cf (Eis) ≤ 2α ·

(
k∑
i=1

piσi ·
∑
e∈E

cf (e)y
i∗
e

)
.

Proof For any i = 1, . . . , k, if terminal ti ∈ S, ti is connected to r in the first-stage andEis =
∅. If ti /∈ S, then there exist some tj ∈ S with dj ≤ di such that B(ti, di) ∩ B(tj , dj) 6= ∅
which implies

SP(ti, tj) ≤ di + dj ≤ 2di.

The second stage solution, Eis for scenario i is a shortest path from ti to the first-stage
Steiner tree Ef that contains tj . Therefore,

cf (E
i
s) ≤ SP(ti, tj) ≤ 2di, (5.7)

Now,

k∑
i=1

piσi · cf (Eis) =
∑
i:ti /∈S

piσi · cf (Eis)

≤
∑
i:ti /∈S

piσi · (2di) (5.8)

= 2α ·

 ∑
i:ti /∈S

piσi ·
∑
e∈E

cf (e)y
i∗
e


≤ 2α ·

(
k∑
i=1

piσi ·
∑
e∈E

cf (e)y
i∗
e

)
,

where (5.8) follows from (5.7). �
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Theorem 5.3 Algorithm ASSP is a 2(γ + 2)-approximation for the stochastic shortest path
problem where γ is the best approximation factor for the Steiner tree problem.

Proof Let Ef , Eis, i = 1, . . . , k be the solution computed by ASSP and x∗e , yi∗e for all e ∈
E, i ∈ [k] be an optimal solution LP solution for (5.2). Consider α = γ+2. From Lemma 5.1,
we have

cf (Ef ) ≤
(

2γα

α− 1

)
·
∑
e∈E

cf (e) · x∗e ,

and from Lemma 5.2,

k∑
i=1

piσi · cf (Eis) ≤ 2α ·

(
k∑
i=1

piσi ·
∑
e∈E

cf (e)y
i∗
e

)
.

Therefore, the objective value of the approximate solution is

cf (Ef ) +

k∑
i=1

piσi · cf (Eis) ≤
2γα

α− 1
·

(∑
e∈E

cf (e)x
∗
e

)
+ 2α ·

(
k∑
i=1

piσi ·
∑
e∈E

cf (e)y
i∗
e

)

≤ 2(γ + 2) ·

(∑
e∈E

cf (e) · x∗e +
k∑
i=1

piσi ·
∑
e∈E

cf (e)y
i∗
e

)
= 2(γ + 2) · zLPSSP
≤ 2(γ + 2) · OPT.

where the last inequality follows as zLPSSP ≤ OPT. �

For general graphs, the best γ = 1.39 is due to Byrka et al. [4]. Thus, we have the
following corollary.

Corollary 5.4 Algorithm ASSP gives a 6.78-approximation for the stochastic shortest path
problem.

6 Conclusions

In this paper, we present improved approximations for the robust and stochastic min-cut
and shortest path problems. In particular, we give a 2-approximation and 4-approximation
for the robust and stochastic min-cut problems respectively, and 3.39-approximation and
6.78-approximation for the robust and stochastic shortest path problems respectively. Our
algorithms for the robust versions of the problem are based on a guess and prune strategy,
namely, we guess the worst-case second-stage cost of an optimal solution and use it to select
(or prune) a subset of costly scenarios that are completely satisfied in the first-stage. The
algorithms for both the robust min-cut and robust shortest path problem utilize a crucial
property of the robust objective: the objective value depends only on the worst-case cost
in the second-stage, and therefore, each scenario can pay up to the worst-case cost in the
second-stage. This property allow us to use the guess and prune strategy for the robust
problems.

For the stochastic versions, the objective is to minimize the total expected cost and
not the worst-case cost. Therefore, the guess and prune algorithms do not directly apply
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to the stochastic versions directly. Interestingly, we use LP formulations to adapt the guess
and prune algorithm of the robust versions for both stochastic min-cut and shortest path
problems. However, the approximation factors get worse by a factor of two as compared
to the robust versions. It would be interesting to explore if the techniques in this paper can
be extended to robust and stochastic versions of Steiner tree and multi-cut problems where
each scenario contains a set of terminals instead of just a single terminal in shortest path and
min-cut problems.
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