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Abstract—Demand side participation is essential for a real-
time energy balance in today’s electricity grid, especially in the
presence of highly uncertain renewable sources of energy such
as wind and solar. In this paper, we consider a price rebate
approach for demand response where an electric utility company
can offer real-time price rebates to the consumers to reduce the
load consumption. We study the problem of computing near-
optimal prices (or rebates) to offer to the customers to reduce
the consumption in the presence of power flow constraints and
transmission losses on the distribution grid. To the best of our
knowledge, this is the first work that optimizes demand response
under an AC power flow model.

The main challenge in this problem arises from the non-
convexity of AC power flow constraints and also the uncertainty in
price elasticity of the demand. We formulate an SDP based convex
relaxation of the power flow constraints and give an iterative
procedure to compute the offer prices to minimize the total
expected cost. We conduct numerical experiments to compare the
performance of our heuristic with other optimization approaches
including using DC power flow model or no power flow model
at all. Our computational study shows that the performance of
our AC power flow based heuristic is significantly better than
the other approaches. Unlike the DC power flow constraints, the
AC power flow constraints model transmission losses. Therefore,
we can optimize the offer prices based on the topology of the
grid and leverage both the actual load reduction as well as the
reduction in the transmission losses.

I. INTRODUCTION

Due to an increasing integration of renewable sources such
as wind and solar power on the grid, the supply uncertainty
in the electricity market has increased significantly. Demand-
side participation has, therefore, become essential to maintain
a real-time energy balance in the grid. There are several ways
to increase the demand-side participation for the real-time
energy balance including time of use pricing, real-time pricing
for smart appliances, interruptible demand-response contracts
and real-time price rebates and incentives. In this paper, we
consider a price rebate approach to demand-response where
the electric utility company offers real-time price rebates or
incentives to consumers to reduce their power consumption.
Typically, an electric utility buys the forecast day-ahead load
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in the day-ahead market and pays the shortfall (if the actual
demand turns out to be higher) on the real-time market.
However, if the supply in the real-time market is scarce, the
real-time prices can be very high and the utility is exposed to
the high prices. Such a scenario can arise often if a significant
fraction of power is generated by highly uncertain sources
such as wind and solar plants. Since end customers, including
residential and most commercial customers, do not pay the
real-time prices, the demand does not adjust to the real-time
prices and the utility is exposed to the price shocks. With price
rebates or interruptible load contracts, the utility has the option
of offering financial incentives to the customers to reduce their
demand in such scenarios.

Interruptible load contracts have been studied extensively
in the literature as an approach to demand response, both from
the perspective of optimal execution of contracts (see Oren
and Smith [1]. Caves et al. [2]) and also design and pricing
(see Fahrioglu and Alvarado [3], Kamat and Oren [4], Tan
and Varaiya [5], Oren [6], Bhattacharta et al. [7]) and more
recently, Bitar and Low [8], Roozbehani et al. [9]. We refer
readers to the survey by Baldick et al. [10] that provides a
good overview of the literature. In this approach, the utility
buys an option from consumers to reduce their load by a pre-
specified amount at most a pre-specified number of times until
the option expiration and the main operational problem is to
decide on the optimal execution policy of the fixed number of
contracts.

In this paper, we consider an alternative approach where
the utility can offer real-time price incentives or rebates to
consumers to reduce the power consumption. The goal is to
compute the prices (or rebates) to offer to different consumers
to reduce the power consumption such that the required
reduction can be achieved in minimum possible cost. When
the power consumption changes on the grid, the power flows
and transmission losses also change and we need to consider
them to accurately model the change in power consumption.
Therefore, we study the price rebate optimization problem for
demand response under an AC power flow model. The AC
power flow model allows us to model the transmission losses
in the distribution network.Therefore, we can optimize over
both the reduction in demand and transmission losses in the
network. To the best of our knowledge, this is the first work
that models AC power flows in the context of demand response
optimization. We show that the AC formulation leads to a



significant reduction in the rebates that one needs to offer in
order to shed a certain demand. Alternate formulations that do
not model transmission losses, are not able to leverage losses
to reduce rebate payments.

II. PROBLEM DEFINITION AND CONTRIBUTIONS

Let K := {1, 2, ...,K} denote the set of buses, G ⊆ K
denote the set of generator buses, C ⊆ K denote the set of
demand buses, and N ⊆ K×K denote the set of transmission
lines. Let P gk + jQgk denote the generation at bus k ∈ G, and
let P̄ ci + jQ̄ci denote the nominal load at demand bus i ∈ C,
i.e. the demand in the absence of any rebates, and. For each
demand bus, we are given the response (or supply) function,
Ri(γi) that specifies the mean reduction in load at bus i at
any given offer price (or rebate) γi. We assume that the actual
demand reduction is random, and is given by

R̃i(γi) = Ri(γi) + εi,

where εi is a mean zero random variable with a known distri-
bution. We assume that the distribution of ε does not depend on
the rebate γi. We allow for the error distributions at different
demand buses to be possibly different. The total expected
payments at offer price Γ is given by E[

∑
i γi(Ri(γi)+εi)] =∑

i γiR(γi).

We are also given a power reduction target D and we pay
a shortfall penalty λ per unit whenever we are not able to
meet target reduction. Thus, the total expected cost of the DR
program for an offer price Γ is given by∑

i

γiRi(γi) + λEε
[(
D − (P 0

inj − Pinj(Γ, ε))
)
+

]
, (1)

where (y)+ = max{y, 0}, P 0
inj =

∑
k∈G P

g
k denotes the

total generation (or injection) without any price rebates, and
Pinj(Γ, ε) =

∑
k∈G P

g
k (Γ, ε) is the total generation when the

price rebate is Γ = (γ1, . . . , γ|C|) and the load at each demand
bus i is (P ci − Ri(γi) − εi + jQci ). From (1) it follows that
the offer price optimization problem can be formulated as the
following stochastic optimization problem

minΓ

∑
i γiRi(γi) + λEε

[(
D − (P 0

inj − Pinj(Γ, ε))
)
+

]
s.t. P 0

inj, Pinj(Γ, ε) satisfy power flow constraints.
(2)

Note that the power flow constraints for an AC power grid
are non-convex and optimizing over these constraints is NP-
hard in general [11]. Therefore, solving (2) to compute offer
prices is computationally hard even for very simple supply
functions Ri.

Our Contributions. In this paper, we propose an efficient
iterative-heuristic to solve the offer price optimization problem
under AC power flow constraints. Our heuristic is constructed
using a sample average approximation (SAA) to the stochastic
optimization problem (2), a semidefinite programming (SDP)
based relaxation for the non-convex AC power flow con-
straints, and a linear approximation for Pinj(Γ, ε).

In the SAA approach one approximates the expectation by
an average over set a set of samples; thus, the SAA approach

applied to (2) results in the optimization problem

minΓ

∑
i γiRi(γi) + λ

M

∑M
k=1

(
D − (P 0

inj − Pinj(Γ, ε
k))
)
+

s.t. P 0
inj, Pinj(Γ, ε

k) satisfy power flow constraints,
(3)

where ε1, . . . , εM , are M IID samples of stochastic error
vector ε.

It is well known that the non-convex power flow constraints
can be approximated by an SDP relaxation where the decision
variable is one 2K-dimensional symmetric semidefinite ma-
trix [11] (see, also Section II). Thus, (3) can be approximated
by an SDP with M 2K-dimensional semidefinite matrices as
variables – one for each of M samples of ε. Since M ≈ 100
to 1000, this direct SDP formulation is intractable even for
very small networks with K = 30 buses.

We construct a linear approximation P̂ (Γ, ε) for the power
generation Pinj(Γ, ε) function in a small neighborhood of a
given rebate vector Γ. In particular, we define

Pinj(Γ, ε) ≈ P̂ (Γ, ε) = Pinj(Γ,0) +
∑
i

πΓ
i εi, (4)

where the sensitivity parameters πΓ = (πΓ
i ){i∈C} is the

vector of dual variables corresponding to the power balance
constraint in the power flow SDP. We show that the optimal
offer price Γ in the SAA approximation (3) with the linear
approximation (4) for Pinj(Γ, ε) can be computed by solving
an SDP with only one 2K-dimensional positive semidefinite
decision variable. The dual variables for the power balance
equations in this SDP are used to construct a new linear
approximation for Pinj(Γ, ε).

Computational Study. We conduct detailed computational
experiments to compare the performance of our AC power flow
based heuristic. We compare our heuristic with the following
alternative approaches for demand response:

i) offer price optimization under DC power flow constraints
ii) offer price optimization without any power flow con-

straints

Our computational experiments show that our proposed AC
power flow based heuristic is efficient and performs signifi-
cantly better than the other two approaches. While we consider
an extensive set of instances for our experiments, due to space
limitations, we only present our results for IEEE 57-bus test
case in Section IV.

Outline. The rest of this paper is organized as follows. In
Section II, we introduce the model notations and the SDP
relaxation for the power flow constraints. We present the iter-
ative heuristic for the offer price optimization problem (2) in
Section III and present the computational study in Section IV.

III. SDP FORMULATION FOR POWER FLOW
CONSTRAINTS

In this section, we introduce the model notations and the
SDP relaxation for the power flow constraints based on Lavaei
and Low [11].

Let Y ∈ CK×K denote the admittance matrix of the
distribution network where for each (k, l) ∈ N , Ykl = −ykl



if k 6= l and ykk +
∑
m∈Nk

ykm otherwise (Nk denotes the
set of all buses that are directly connected to bus k), and ykm
denotes the effective admittance between bus k and bus l. Let
V denote the complex voltage at bus k ∈ K and I denote
the complex current injected at bus k. Then it follows that the
power injected at bus k is given by

Sk = Re(VkI
∗
k) + jIm(VkI

∗
k)

= Re(V ekekY V
∗) + jIm(V ekekY V

∗)

= X>Y kX + jX>Ȳ kX = Tr(Y kW ) + jTr(Ȳ kW )

where

Yk := eke
T
k Y

Y k :=
1

2

[
Re
{
Yk + Y Tk

}
Im
{
Y Tk − Yk

}
Im
{
Yk − Y Tk

}
Re
{
Yk + Y Tk

}]
Ȳ k := −1

2

[
Im
{
Yk + Y Tk

}
Re
{
Yk − Y Tk

}
Re
{
Y Tk − Yk

}
Im
{
Yk + Y Tk

}]
X :=

[
Re {V}T Im {V}T

]T
W := XXT ,

and e1, e2, ..., eK standard unit vectors in RK . Thus, the power
injection constraints are given by

Tr(Y kW ) =

{
P gk k ∈ G,
−P ck k ∈ C,

Tr(Ȳ kW ) =

{
Qgk k ∈ G,
−Qck k ∈ C,

(5)

And,

Pmink ≤ P gk ≤ P
max
k , Qmink ≤ Qgk ≤ Q

max
k , k ∈ G (6)

In addition to the power injection constraints, there are upper
and lower bounds on the magnitude |Vk|2 = Re(Vk)2 +
Im(Vk)2 at bus k, on the magnitude |Vl−Vk|2 of the difference
in voltage between bus l and m. reformulated as

(V min
k )2 ≤ Tr(MkW ) ≤ (V max

k )2,
Tr(M lmW ) ≤ (∆V max

lm )2
(7)

where

Mk :=

[
eke
>
k 0

0 eke
>
k

]
,

M lm :=

[
(el − em)(el − em)T 0

0 (el − em)(el − em)T

]
There are line constraints on the voltage, there are also
constraints on the real and apparent power being carried on
a line (l,m). The constraint that the real power Plm ≤ Pmax

lm
and the magnitude of the apparent power |Slm| ≤ Smax

lm , can
be re-formulated as

Tr{YlmW } ≤ Pmax
lm ,

Tr{YlmW }2 + Tr{YlmW }2 ≤ (Smax
lm )2,

(8)

where

Ylm := (ȳlm + ylm)ele
>
l − ylmele>m

Ylm :=
1

2

[
Re
{
Ylm + Y Tlm

}
Im
{
Y Tlm − Ylm

}
Im
{
Ylm − Y Tlm

}
Re
{
Ylm + Y Tlm

}]
Ylm := −1

2

[
Im
{
Ylm + Y Tlm

}
Re
{
Ylm − Y Tlm

}
Re
{
Y Tlm − Ylm

}
Im
{
Ylm + Y Tlm

}]

The definition W = XX> is equivalent W � 0, i.e. W
is symmetric positive semidefinite, and Rank{W } = 1. Any
rank-1 positive semidefinite matrix W that satisfied (5)-(8)
represents a feasible power flow.

Relaxing the rank constraint on W , we obtain an SDP
relaxation of the power flow constraints. Lavaei and Low [11]
show that the above relaxation is exact if the distribution
network is a tree. Sojoudi and Lavaei [12] extend the results
to several other classes of networks where the above SDP
formulation is exact. However, in general, it is NP-hard to
optimize over the power flow constraints.

IV. OFFER PRICE OPTIMIZATION PROBLEM UNDER AC
POWER FLOW CONSTRAINTS

In this section, we present our heuristic for the offer price
optimization problem under AC power flow constraints. Recall
that we are given a load reduction target D and the random
load reduction at demand bus i as a function of the price rebate
γi is Ri(γi) + εi. We assume that we can generate samples of
the random vector ε. We also assume that for each i, Ri(·) is
linear, i.e., Ri(γi) = aiγi for some ai > 0; as we will see this
assumption can be relaxed.

Suppose W (ε) denote any positive semidefinite solution
for the constraints (5)-(8) when demand at bus i ∈ C, P ci +
jQci = (P̄ ci −Ri(γi)− εi) + jQ̄ci . Then the generation

P gi (Γ, ε) = Tr(YiW (ε)).

We would like to emphasize that the total reduction in gener-
ation∑

i∈G
(P gi (0)− P gi (Γ, ε)) =

∑
i∈G

(P gi (0)− Tr(YiW (ε))

is greater than the sum of load reductions at demand buses
due to savings in transmission losses. Now, the offer price
optimization problem with AC power flow constraints (AC-
PF-DR) is given by the following stochastic optimization
problem.

min
Γ,W (ε)

∑
i∈C γiRi(γi)+

λ · Eε
[(
D −

∑
i∈G(P gi (0)− Tr{YiW (ε)})

)
+

]
s.t. W (ε) � 0 satisfies (5)-(8) with P ci + jQci =

(P̄ ci −Ri(γi)− εi) + jQ̄ci for i ∈ C
(9)

As mentioned earlier, a direct SAA approach applied to (9)
is computationally intractable, since we need W (ε) to satisfy
the constraints for each sample ε and the number of samples
is large even for small networks.

A. Linear Approximation for Injected Power

We approximate for the total random injected power
Pinj(Γ, ε) by an affine function P̂inf(Γ, ε) of the random
vector ε. In particular, we set

P̂ (Γ, ε) = Pinj(Γ,0) +
∑
i∈C

πΓ
i εi, (10)

where Pinj(Γ,0) denotes the total generation when the offer
price is Γ and the stochastic error ε = 0. and the sensitivity
coefficients πΓ

i depend on the offer price Γ and denote the



change in total injected power per unit change in the demand
at bus i. Thus, πΓ can be interpreted as the dual variables cor-
responding to the real power balance constraint in the optimal
power flow formulation at offer price Γ. Algorithm 1 describes
the computation of the linear approximation of the injected
power at any offer price Γ. We conduct numerical experiments
to compare the error of the linear approximation for a set of
test networks and observe that the difference between the true
injected power and the linear approximation is at most, 2%
across all test networks. Therefore, the linear approximation
provides a good approximation under reasonable bounds on
standard deviation of the stochastic errors.

Algorithm 1: Linear approximation of Injected Power
1: Input: Offer price Γ
2: Compute a solution W � 0 to (5)-(8) that minimizes

total injected power with demand at each node k ∈ C,
P ck −Rk(γk).

3: πΓ
k : optimal dual variable for real power balance

constraint at bus k ∈ C.
4: Return:

P̂ (Γ, ε) = Pinj(Γ,0) +
∑
k∈C

πΓ
k εk.

B. Offer Price Optimization Heuristic

Now we are ready to describe our iterative heuristic to
compute the offer prices Γ using a linear approximation of
the injected power (10). We start with an initial offer price,
Γ0 and use Algorithm 1 to compute the linear approximation
for the injected power,

P̂ (Γ, ε) = Pinj(Γ,0) +
∑
i∈C

π0
i εi.

We can then formulate the optimization problem to compute
the next iterate for offer prices as follows.

min
Γ,W

∑
i∈C γiRi(γi)

+ λEε
[(
D − (P 0

inj − (Pinj(Γ,0) +
∑
i∈C π

0
i εi))

)
+

]
s.t. W � 0 satisfies (5)-(8) with P ci + jQci =

P̄ ci −Ri(γi) + jQ̄ci for i ∈ C
(11)

Note that the constraints in (11) no longer depend on ε;
consequently, there is a single positive semidefinite variable
W . We approximate the expectation in the objective using M
samples, i.e. we solve the following optimization problem

min
Γ,W

∑
i∈C γiRi(γi)

+ λ
M

∑M
n=1

(
D − P 0

inj + Pinj(Γ,0) +
∑
i∈C π

0
i ε
n
i

)
+

s.t. W � 0 satisfies (5)-(8) with P ci + jQci =
P̄ ci −Ri(γi) + jQ̄ci for i ∈ C

where {εn : n = 1, . . . ,M} denotes M samples of the random
vector ε. Since we have a single SDP constraint in the above
formulation as opposed to one SDP constraint for every sample
of ε in the original formulation (9), we can solve the above
SAA problem efficiently. Note also that the coefficients πi are
constants in (11). We solve (11) to compute the offer prices

in the next iterate. We then compute the linear approximation
for the injected power at the new offer prices and continue
this iterative procedure until it converges to a fixed point. We
describe the details in Algorithm 2.

Algorithm 2: Offer Price optimization Heuristic, AC-
PF-DR

1: Initialize: t := 0, δ := 1, offer prices Γ0.
2: while (δ > 0.001) do

Call Algorithm 1 to compute coefficients πΓt

i

Solve (11) to compute Γt+1

t := t+ 1

δ = max
i

|Γti − Γt−1i |
Γt−1i

end
3: Return: Γt

V. COMPUTATIONAL STUDY

In this section, we describe the results from our compu-
tational study that compares the performance of our iterative
heuristic with two other approaches for offer price optimization
i) offer price optimization with DC power flow constraints, and
ii) offer price optimization without any power flow constraints.
We begin by describing these two approaches.

A. Offer Price optimization with DC Power Flows

The DC power flow model is constructed by linearizing the
AC power flow equations. Let θ denote the vector of phase
angles of voltage at all the buses. Under typical operating
conditions, the angle difference |θl − θm| for any transmis-
sion line (l,m) ∈ N is small (� 10 degrees). Therefore,
sin(θl − θm) ≈ (θl − θm) and cos(θl − θm) ≈ 1. For all
transmission lines (l,m) ∈ N we assume that the resistance
is nearly zero and also the magnitude of voltage is 1 p.u. at all
buses. Furthermore, we can, without loss of generality, assume
that θ1 = 0. With these approximations, we can formulate the
power flow constraints as P = Bθ, where P ∈ RK−1 is the
vector of power injections for buses 2, . . . ,K, θ ∈ RK−1 is
the vector of nodal voltage angles, and B ∈ R(K−1)×(K−1)

is the network admittance matrix. The constraint for bus 1 is
linearly dependent on the other constraints and can therefore,
be eliminated.

Let N ∈ {0,−1, 1}K×K be the bus-line incidence matrix
for the distribution network, and let ρ denote the upper bound
on allowed angle difference on any link. Then the DC offer
price optimization problem (DC-PF-DR) can be formulated as
follows.

min
Γ,θ(ε),P (ε)

∑
i∈C γiRi(γi) + λ · Eε

(
D − P 0

inj + Pinj(ε)
)
+

s.t. P (ε) = Bθ(ε)
Pinj(ε) =

∑
k∈G Pk(ε)

Pk(ε) = P ck −Rk(γk)− εk, ∀k ∈ C∥∥Nθ(ε)
∥∥
∞ ≤ ρ,

(12)
where the notation P (ε), θ(ε) and Pinj(ε) emphasizes that
the phase angles, the power on lines, and the overall power
injection is a function of the stochastic error ε. Note that
angle difference constraint can also be modeled as a penalty



term ηEε (Nθ(ε)− ρ)+ in the objective. Unlike the AC-PF-
DR, the DC-PF-DR problem solved efficiently using the SAA
method. For a linear supply function Ri(γi) = aiγi, The SAA
approximation of the DC-PF-DR (12) is a quadratic program.
Note that since we assume that the resistance on transmission
lines is zero, the DC-PF-DR formulation is not able to model
transmission losses.

B. Offer Price optimization without power flows

We also consider an offer price optimization approach
without any power flow constraints. In this approach, we
assume that for any given offer price Γ the total load reduction
is
∑
i∈C Ri(γi)+εi, without taking power flow or transmission

losses into account. The following offer price optimization
problem without power flows (NO-PF-DR)

min
Γ

∑
i∈C

γiRi(γi) + λ ·Eε
[(
D−

(∑
i∈C

Ri(γi) + εi
))

+

]
(13)

can be solved efficiently using the SAA method.

C. Experimental Setup

We compare the performance of our AC power flow
based offer price optimization heuristic with the above two
approaches. We compute the offer prices ΓA for all three for-
mulations A ∈ A = {AC-PF-DR, DC-PF-DR, NO-PF-DR}.
For each price vector ΓA we compute the

DR-cost :
∑
i∈C

γAi Ri(γ
A
i )

Shortfall-penalty : λ · Eε
(
D − P 0

inj + Pinj(Γ
A, ε)

)
+
,

where Pinj(Γ
A, ε) is computed using the AC OPF equations.

We approximate the expectation in the shortfall penalty by
a sample average over M = 100 samples of the stochas-
tic error ε. Since one has to solve an SDP for computing
Pinj(Γ

A, εn) for each sample εn, it is not computationally
efficient to compute the sample average. Instead, we use the
linear approximation P̂ (Γ, ε) defined in (10) and approximate
the sample average using a single SDP. The experimental setup
is described in Algorithm 3.

Remark. In Algorithm 3, we compute the total cost for a given
set of offer prices by solving the SDP relaxation of the optimal
power flow problem. Since the SDP relaxation is not tight in
general, it only provides a lower bound on both the generated
power and the total cost. However, for all the instances in
our computational study, the SDP relaxation has a rank one
optimal solution which implies that the relaxation is tight for
our instances. Therefore, the comparison in Algorithm 3 is
accurate. We would like to emphasize that this is not the
case in general and the SDP objective value only provides
a lower bound on the performance for a given set of offer
prices. If the SDP relaxation is not tight, we can compute an
upper bound on the total cost for a given set of offer prices by
computing a feasible AC power flow solution using Matpower
that computes only a local optimal solution. Computing the
exact total cost for a given set of offer prices is as hard as
computing the optimal power flow which is known to be NP-
hard in general [11].

Algorithm 3: Computational Experiment
1: Compute

ΓAC ← offer-price using AC-PF-DR

ΓDC ← offer-price using DC-PF-DR

ΓDR ← offer-price using NO-PF-DR

2: For A ∈ {AC,DC,DR}, compute DR-cost as∑
i∈C

γAi Ri(γ
A
i ).

3: For all A ∈ A, compute the linear approximation
P̂ (ΓA, ε) for injected AC power at ΓA using
Algorithm 1.

P̂ (ΓA, ε) = Pinj(Γ
A,0) +

∑
i∈C

πAi εi.

4: Sample M = 100 values: ε1, . . . , εM .
5: For each A, compute Shortfall-Penalty as

λ

M

M∑
n=1

(
D − P 0

inj + Pinj(Γ
A,0) +

∑
i∈C

πAi ε
n
i

)
+

.

We conducted extensive numerical experiments on a large
set of IEEE test instances; however, due to space limitations,
we present our results for only the IEEE 57-bus network here.
A comprehensive description of the experiments is deferred
to the full version of the paper. We use the following values
for the parameters in the experiments described in Tables I
and II: λ = 10, ρ = 10 in degrees and target load reduction
D ∈ {2%, 5%, 10%, 15%, 20%, 25%} of the total active load.

The relative difference of total cost between the AC-PF-DR
and DC-PF-DR and AC-PF-DR and NO-PF-DR are reported
in the last two rows of both Tables. We observe that the cost of
the AC power flow based heuristic is significantly lower than
the other two for all values of the target demand reduction D.
The DC-PF-DR and NO-PF-DR heuristics compute identical
solutions where the total demand reduction at the demand
buses is equal to the target D. Since these two approaches
do not account for transmission losses, the actual reduction in
injected power Pinj(Γ) − P 0

inj > D; the DC-PF-DR and NO-
PF-DR end up paying more rebate than is needed to meet the
target. On the other hand, the AC power flow based heuristic
achieves the target demand reduction through a combination
of reduction in demand at demand buses and reduction in
transmission losses (since lower cumulative power needs to
be transmitted). This is because the AC-PF-DR models the
transmission losses in the optimization phase. Therefore, while
the shortfall penalty in all the heuristics is almost zero, the
total payments for the AC power flow based heuristic are
smaller, leading to a significant improvement in the total cost.
We observe similar results in our extensive computational
experiments over a large set of instances and different choices
of parameter values. The details are deferred to the full version
of the paper.



Demand 9.00 22.49 44.98
NO-PF-DR Model:
Payment 2.23 13.92 55.69
Shortfall penalty 0 0 0
Total cost 2.23 13.92 55.69
Max angle diff. 4.57 4.17 3.92
Reduction at nodes 9.00 22.49 44.98
Total Reduction 9.57 23.88 47.62
Average Gamma 0.15 0.39 0.77
CPU time(s) 0.72 0.76 0.76
DC-PF-DR Model:
Payment 2.23 13.92 55.69
Shortfall penalty 0 0 0
Total cost 2.23 13.92 55.69
Max angle diff. 4.57 4.17 3.92
Reduction at nodes 9.00 22.49 44.98
Total Reduction 9.57 23.88 47.62
Average Gamma 0.15 0.39 0.77
CPU time(s) 4.13 3.48 3.20
AC-PF-DR Model:
Payment 2.00 12.41 49.70
Shortfall penalty 0.01 0.04 0.12
Total cost 2.01 12.45 49.82
Max angle diff. 4.57 4.18 3.94
Reduction at nodes 8.53 21.22 42.48
Total Reduction 9.08 22.56 45.02
Average Gamma 0.15 0.36 0.73
CPU time(s) 81.40 113.15 76.14
Iterations 3 4 3
(DC-AC)/DC 10.82% 11.86% 11.77%
(DR-AC)/DR 10.82% 11.86% 11.77%

TABLE I. COMPARISON OF AC-PF-DR, DC-PF-DR AND NO-PF-DR

Demand 67.47 89.96 112.45
NO-PF-DR Model:
Payment 125.43 224.32 353.66
Shortfall penalty 0 0 0
Total cost 125.43 224.32 353.66
Max angle diff. 3.72 3.55 3.39
Reduction at nodes 67.47 89.96 112.45
Total Reduction 71.21 94.69 118.05
Average Gamma 1.16 1.55 1.93
CPU time(s) 0.62 0.76 0.48
DC-PF-DR Model:
Payment 125.43 224.32 353.66
Shortfall penalty 0 0 0
Total cost 125.43 224.32 353.66
Max angle diff. 3.72 3.55 3.39
Reduction at nodes 67.47 89.96 112.45
Total Reduction 71.21 94.69 118.05
Average Gamma 1.16 1.55 1.93
CPU time(s) 3.43 3.26 2.64
AC-PF-DR Model:
Payment 112.44 201.87 319.61
Shortfall penalty 0.15 0.23 0.36
Total cost 112.59 202.10 319.97
Max angle diff. 3.76 3.60 3.44
Reduction at nodes 63.88 85.39 107.00
Total Reduction 67.50 89.96 112.43
Average Gamma 1.10 1.47 1.84
CPU time(s) 132.15 105.02 73.69
Iterations 5 4 3
(DC-AC)/DC 11.40% 10.99% 10.53%
(DR-AC)/DR 11.40% 10.99% 10.53%

TABLE II. COMPARISON OF AC-PF-DR, DC-PF-DR AND NO-PF-DR

VI. CONCLUSIONS

In this paper, we consider a price rebate approach to
demand-response under power flow constraints. We consider
an AC-OPF model that allows us to model transmission
losses and therefore, optimize the offer prices to achieve the
target demand reduction through a combination of reduction
in demand at demand nodes and reduction in transmission
losses. Using an AC-OPF model is important since the DC-
OPF does not model the transmission losses and cannot ac-

count for these reduction at the offer-price optimization stage.
However, the AC-OPF based offer price optimization problem
is non-convex, and therefore, hard to solve. We propose an
iterative data-driven algorithm to compute offer prices (or
price rebates) to achieve the required demand reduction with
minimum possible cost. We conducted a computational study
to compare the performance of our iterative algorithm with
other demand response heuristics. Our results show that our
iterative heuristic performs significantly better than other offer
price optimization approaches based on DC-OPF or without
any power flow constraints that are not able to account for the
savings in transmission losses. Therefore, there is significant
value in using an AC-OPF based model for demand-response
optimization. It is important to note that our iterative algorithm
only computes a local optimal solution and our computational
study compares the performance of our local optimal solution
to other heuristics. An optimal solution for the AC-OPF based
optimization problem will perform even better and designing
a provably near-optimal algorithm is an interesting open ques-
tion.
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