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On Simulating a Class of Bernstein Polynomials
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Given a black box that generates independent Bernoulli samples with an unknown bias p, we consider the
problem of simulating a Bernoulli random variable with bias f(p) (where f is a given function) using a finite
(computable in advance) number of independent Bernoulli samples from the black box. We show that this is
possible if and only if f is a Bernstein polynomial with coefficients between 0 and 1, and we explicitly give
the algorithm. Our results differ from Keane and O’Brien (1994) in that our goal is more modest/stringent,
since we are considering algorithms that use a finite number of samples as opposed to allowing a random
number (such as in acceptance rejection algorithms).
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1. INTRODUCTION
In this paper, we consider the problem of simulating a Bernoulli random variable with
success probability f(p) from independent Bernoulli samples of an unknown bias p ∈
P ⊂ (0, 1) where f is a function such that 0 < f(p) < 1 for all p ∈ P. In [Keane and
O’Brien 1994], it is shown that this is possible if and only if

(1) f is continuous on P, and
(2) either f is constant, or there exists an integer n ≥ 1 such that min(f(p), 1− f(p)) ≥

min(p, 1− p)n, ∀p ∈ P.

(Thus, for example, when P = (0, 1) the function f(p) = p/2 works, but when P =
(0, 0.5) the function f(p) = 2p does not work.) The authors also give a procedure to
simulate a Bernoulli f(p)-variable if the above conditions are satisfied. However, the
number N of Bernoulli-p samples required by the procedure is random and unbounded
even though the expected number of samples is finite. In [Nacu and Peres 2005] the
class of functions, f , that admit fast simulation, i.e., the tail probabilities of the number
of bernoulli samples N is exponentially bounded is characterized. In particular, it is
shown that a function f : P → (0, 1) has a fast simulation if f is real analytic on the
closed interval P ⊂ (0, 1). Conversely, if f has a fast simulation, then it is real analytic
on any open subset of P. Their method of proof involves approximating f by a sequence
of Bernstein polynomials.1

In the present paper as a modest contribution to the field, we are interested in char-
acterizing the family of functions f that can be simulated using a finite number of
bernoulli samples with unknown bias p. We restrict our attention to the class of simu-

1In general, given a function f : [0, 1] → [0, 1], the nth Bernstein approximation is given by Qn(x) =Pn
k=0 f(n/k)

`n
k

´
xk(1− x)n−k.
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lation algorithms where the number of required samples,N , is a constant that depends
only on the function f . It is useful to consider such a class of algorithms for computa-
tional efficiency of the simulation procedure. The need to estimate the probability of an
event where the probability of basic events is unknown arises in many important ap-
plications. For instance, in the network reliability problem, often we need to estimate
the probability that the network will be connected when each link can fail indepen-
dently with an unknown probability. An insurance company needs to estimate that
the probability that there are more than k claims in a given year to manage risk when
each claim happens independently with an unknown probability. Therefore, given a
black-box that generates independent bernoulli samples of basic events (such as link
failure or claim), a fast simulation procedure is important to efficiently estimate the
probability of the required event. This has been addressed in the literature. In [Peres
1992], for example, the problem of generating unbiased bernoulli samples from inde-
pendent bernoulli samples with unknown bias is considered and and a recursive pro-
cedure is derived that is more efficient than the von Neuman’s procedure [Neumann
1951]. In particular, the number of unbiased samples generated by the procedure from
n biased samples is close to the entropy bound. Even in [Nacu and Peres 2005], the
basic motivation is the efficiency of the simulation algorithm as the authors are in-
terested in characterizing the class of functions that can be simulated by a random
number of samples whose distribution has an exponentially decaying tail. Finally, as
a fundamental example, the fact that a Bernoulli 2p rv can’t be simulated by using
Bernoulli (p) rvs with unknown p ∈ (0, 0.5) (proved in [Keane and O’Brien 1994]) led
to a very important result showing that in general, stationary versions of regenerative
processes can’t be simulated (see Section 8, Page 420 in [Asmussen and Glynn 2008];
in particular Example 8.6 on Page 422.)

Interestingly, we can completely characterize the family of functions that can be sim-
ulated using a finite number of bernoulli samples. Furthermore, our characterization
also gives an explicit algorithm for simulating f(p) if f can be simulated using a finite
number of samples. The characterization is based on ideas similar to approximating f
using Bernstein polynomials in [Nacu and Peres 2005]. To describe the characteriza-
tion, let us define the family of Bernstein polynomials.

Definition 1.1. A Bernstein polynomial of degree n is a linear combination of the
following n+ 1 Bernstein basis polynomials,

hj,n(x) =
(
n

j

)
xj(1− x)n−j , j = 0, . . . , n.

Therefore, a bernstein polynomial, f of degree n is defined as

f(x) =
n∑

j=0

αjhj,n,

where αj ∈ R, j = 0, . . . , n are referred to as the Bernstein coefficients.

It is easy to observe that every polynomial is a Bernstein polynomial with the appro-
priate Bernstein coefficients. Moreover, the Bernstein coefficients for any polynomial
can be computed efficiently by solving a simple (lower triangular) system of linear
equations. By expressing the polynomial as a Bernstein polynomial, we can often use
some nice properties of the Bernstein basis polynomial.

We show that a Bernoulli f(p)-random variable can be simulated using a bounded
number of samples of a Bernoulli p-random variable (p ∈ (0, 1) unknown) if and only
if f is a Bernstein polynomial with Bernstein coefficients in the interval [0, 1]. Since
for any polynomial f , the Bernstein coefficients can be computed efficiently, it is easy
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to check whether a particular function f can be simulated using a finite number of
Bernoulli p-samples. Furthermore, as we will see, the proof of the above characteriza-
tion gives an explicit algorithm for the simulation.

2. MAIN RESULT
In this section, we prove our main result. We first show that if f is a polynomial with
Bernstein coefficients between 0 and 1, then a Bernoulli f(p)-variable can be simulated
using a finite number of samples of Bernoulli p-variables. We prove this by giving an
algorithm that uses a finite number of Bernoulli p-samples and an independent aux-
iliary variable with known distribution. We then prove the converse, i.e., if a function
f is simulated using a finite number of independent Bernoulli p-samples and an in-
dependent auxiliary variable with known distribution, then f must be a Bernstein
polynomial with Bernstein coefficients between 0 and 1.

The Simulation Algorithm A. Suppose f is a Bernstein polynomial of degree n with
Bernstein coefficients between 0 and 1:

f(p) =
n∑

j=0

αj

(
n

j

)
pj(1− p)n−j ,

where αj ∈ [0, 1] for all j = 0, . . . , n.

(1) Let X1, . . . , Xn be n independent samples from the Bernoulli distribution with bias
p and let U be an independent sample from the uniform distribution over (0, 1).

(2) Compute

Y =
n∑

j=0

I(U ≤ αj) · I

(
n∑

k=1

Xk = j

)
,

where I(·) denotes the indicator function that outputs 1 if the event is true and 0
otherwise.

(3) Return Y .

Note that the algorithm uses only a finite number (equal to the degree of f ) of samples
of Bernoulli p-variable and one independent sample from a uniform distribution.

PROPOSITION 2.1. Algorithm A simulates a Bernoulli f(p)-variable.

PROOF. Let us compute the probability that Algorithm A returns 1, i.e., P (Y = 1).
Let

Ej = {U ≤ αj} ∩

{
n∑

k=1

Xk = j

}
.
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Therefore, Y = I(E0) + . . . + I(En). Note that events Ej , j = 0, . . . , n are mutually
exclusive. Therefore,

P (Y = 1) = P

 n∑
j=0

I(Ej) = 1


=

n∑
j=0

P (I(Ej) = 1) (1)

=
n∑

j=0

P (U ≤ αj) · P

(
n∑

k=0

Xk = 1

)
(2)

=
n∑

j=0

αj

(
n

k

)
pk(1− p)n−k

= f(p),

where (1) follows as Ej , j = 0, . . . , n are mutually exclusive, Equation (2) follows as U
is an independent sample from Uniform(0, 1) and the second to last equation follows as
X1 + . . .+Xn has a binomial (n, p) distribution.

Next we prove the converse.

PROPOSITION 2.2. Suppose a function f can be simulated using a finite number of
independent Bernoulli p-samples and an independent auxiliary variable from a known
distribution, then f must be a Bernstein polynomial with Bernstein coefficients between
0 and 1.

PROOF. Consider an algorithm Â that uses M independent samples of Bernoulli
p-variable (p unknown) for some M ∈ Z+ and one independent sample of an auxiliary
variable with a known distribution and generates a Bernoulli f(p)-variable. We can
assume wlog that the auxiliary variable is Uniform(0, 1). Let X1, . . . , XM denote the
independent Bernoulli p-samples and U be an independent sample from Uniform(0, 1).
Let Â(X1, . . . , XM , U) denote the output of Algorithm Â.

Note that there are 2M possible values of the M -tuple (X1, . . . , XM ). For any set
of samples (X1, . . . , XM ) and value of U , Â either returns 0 or 1. For any x =
(x1, . . . , xM ) ∈ {0, 1}M , let n(x) = x1 + . . . + xM , the number of 1’s in x. Also, for
any x ∈ {0, 1}M , let

T (x) = {u ∈ [0, 1] | Â(x, u) = 1}.
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Therefore,

P (Â(X1, . . . , XM , U) = 1) =
∑

x∈{0,1}M

P ((X1, . . . , XM ) = x) · P (U ∈ T (x))

=
∑

x∈{0,1}M

(
pn(x)(1− p)M−n(x) · P (U ∈ T (x))

)

=
M∑

j=0

∑
x:n(x)=j

(
pj(1− p)M−j · P (U ∈ T (x)

)

=
M∑

j=0

pj(1− p)M−j

 ∑
x:n(x)=j

P (U ∈ T (x)

 . (3)

Note that for any j = 0, . . . ,M ,∑
x:n(x)=j

P (U ∈ T (x) ≤
(
M

j

)
= αj

(
M

j

)
, for some αj ∈ [0, 1].

Therefore, from (3), we have

P (Â(X1, . . . , XM , U) = 1) =
M∑

j=0

αj

(
M

j

)
pj(1− p)M−j ,

for some αj ∈ [0, 1] for all j = 0, . . . ,M . Since Algorithm Â simulates f(p), then

f(p) =
M∑

j=0

αj

(
M

j

)
pj(1− p)M−j ,

which is a Bernstein polynomial with Bernstein coefficients αj ∈ [0, 1], j = 0, . . . ,M .

From Propositions 2.1 and 2.2, we have the following theorem.

THEOREM 2.3. A function f : P → (0, 1) can be simulated using a finite number of
independent Bernoulli p-samples for all p ∈ P and an independent auxiliary variable
from a known distribution if and only if f is a Bernstein polynomial with Bernstein
coefficients between 0 and 1.
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