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Abstract. Demand-robust versions of common optimization problems were re-
cently introduced by Dhamdhere et al. [4] motivated by the worst-case consider-
ations of two-stage stochastic optimization models. We study the demand robust
min-cut and shortest path problems, and exploit the nature of the robust objective
to give improved approximation factors. Specifically, we give a (1 +

√
2) ap-

proximation for robust min-cut and a7.1 approximation for robust shortest path.
Previously, the best approximation factors wereO(log n) for robust min-cut and
16 for robust shortest paths, both due to Dhamdhere et al. [4].
Our main technique can be summarized as follows: We investigate each of the
second stage scenarios individually, checking if it can be independently serviced
in the second stage within an acceptable cost (namely, a guess of the optimal
second stage costs). For the costly scenarios that cannot beserviced in this way
(“rainy days”), we show that they can be fully taken care of ina near-optimal first
stage solution (i.e., by ”paying today”).
We also consider “hitting-set” extensions of the robust min-cut and shortest path
problems and show that our techniques can be combined with algorithms for
Steiner multicut and group Steiner tree problems to give similar approximation
guarantees for the hitting-set versions of robust min-cut and shortest path prob-
lems respectively.

1 Introduction

Robust optimization has been widely studied to deal with thedata uncertainty in op-
timization problems. In a classical optimization problem,all parameters such as costs
and demands are assumed to be precisely known. A small changein these parameters
can change the optimal solution considerably. As a result, classical optimization is in-
effective in those real life applications where robustnessto uncertainty is desirable.

Traditional approaches toward robustness have focused on uncertainty in data [3, 12,
13]. In a typical data-robust model, uncertainty is modeledas a finite set of scenarios,
where a scenario is a plausible set of values for the data in the model. The objective is to
find a feasible solution to the problem which is “good” in all or most scenarios, where
various notions of “goodness” have been studied. Some of them include
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1. Absolute Robustness (min-max): The objective is to find a solution such that the
maximum cost over all scenarios is minimized.

2. Robust Deviation (min-max regret): For a given solution,regret in a particular sce-
nario is the difference between cost of this solution in thatscenario and the optimal
cost in that scenario. In the robust deviation criteria, theobjective is to minimize
the maximum regret over all scenarios.

More recent attempts at capturing the concept of robust solutions in optimization
problems include the work of Rosenblatt and Lee [19] in the facility design problem,
and Mulveyet al. [14] in mathematical programming. Even more recently, an approach
along similar lines has been advocated by Bertsimaset al. [1, 2]. Other related works
in the data-robust models include heuristics such as branchand bound and surrogate
relaxation for efficiently solving the data-robust instances. A research monograph by
Kouvelis and Yu [11] summarizes this line of work. An annotated bibliography available
online is a good source of references for work in data-robustness [16].

Most of the prior work addresses the problem of robustness under data uncertainty.
In this paper, we consider a model which also allows uncertainty in the problem con-
straints along with the uncertainty in data. We call this model of robustness asdemand-
robust model since it attempts to be robust with respect to problem demands (con-
straints). Our model is motivated by the recent work in two-stage stochastic program-
ming problems with recourse [7, 5, 9, 17, 20]. In a two-stage stochastic approach, the
goal is to find a solution that minimizes the expected cost over all possible scenarios.
While the expected value minimization is reasonable in a repeated decision-making
framework, one shortcoming of this approach is that it does not sufficiently guard
against the worst case over all the possible scenarios. Our demand-robust model for
such problems is a natural way to overcome this shortcoming by postulating a model
that minimizes this worst-case cost.

Let us introduce the new model with the demand-robust min-cut problem: Given an
undirected graphG = (V, E), a root vertexr and costsc on the edges. The uncertainty
in demand and costs is modeled as a finite set of scenarios, oneof which materializes
in the second stage. Theith scenario is a singleton set containing only the nodeti. We
call the nodes specified by the scenariosterminals. An edge costsc(e) in the first stage
andσi · c(e) in the recourse (second) stage if theith scenario is realized. The problem
is to find a setE0 ⊆ E (edges to be bought in the first stage) and for each scenarioi, a
setEi ⊆ E (edges to be bought in the recourse stage if scenarioi is realized), such that
removingE0 ∪ Ei from the graphG disconnectsr from the terminalti. The objective
is to minimize the cost functionmaxi{c(E0) + σi · c(Ei)}.

Note that in the above model, each scenario has a different requirement (in scenario
i, ti is required to be separated fromr). Such a scenario model allows to handle uncer-
tainty in problem constraints. Another point of differencewith the previous data-robust
models is that the demand-robust model is two-stage i.e. solution is bought partially
in first stage and is then augmented to a feasible solution in the second stage after the
uncertainty is realized. However, cost uncertainty in the our demand-robust model is re-
strictive, as each element becomes costlier by the same factor in a particular scenario in
the second stage unlike the data-robust models which handlegeneral cost uncertainties.



1.1 Our Contributions

In this paper we consider the shortest path and min-cut problems in the two-stage
demand-robust model. In a recent paper Dhamdhereet al. [4] introduced the model
of demand robustness and gave approximation algorithms forvarious problems such
as min-cut, multicut, shortest path, Steiner tree and facility location in the framework
of two-stage demand-robustness. They use rounding techniques recently developed for
stochastic optimization problems [7, 8, 17] for many of their results and obtain similar
guarantees for the demand-robust versions of the problem. In this paper we crucially
exploit and benefit from the structure of the demand-robust problem: in the second
stage, every scenario can pay up to the maximum second stage cost without worsening
the solution cost. This is not true for the stochastic versions where the objective is to
minimize the expected cost over all scenarios. At a very highlevel, the algorithms for
the problems considered in this paper are as follows: Guess the maximum second stage
costC in some optimal solution. Using this guess identify scenarios which do not need
any first stage “help” i.e. scenarios for which the best solution costs at most a constant
timesC in the second stage. Such scenarios can be ignored while building the first stage
solution. For the remaining scenarios or a subset of them, webuild a low-cost first stage
solution and prove the constant bounds by a charging argument.

We give the first constant factor approximation for the demand-robust min-cut prob-
lem. The charging argument leading to a constant factor argument crucially uses the
laminarity of minimum cuts separating a given root node fromother terminals. The
previous best approximation factor wasO(log n) due to Dhamdhereet al. [4].

Theorem 1.1. There is a polynomial time algorithm which gives a(1 +
√

2) approxi-
mation for the robust min-cut problem.

For the demand-robust shortest path problem, we give an algorithm with an im-
proved approximation factor of7.1 as compared to the previous16-approximation [4].

Theorem 1.2. There is a polynomial time algorithm which gives a 7.1 approximation
for the robust shortest path problem.

Demand-robust shortest path generalizes the Steiner tree problem and is thusNP-
hard. The complexity of demand-robust min-cut is still open. However, in section 4
we presentNP-hard generalizations of both problems, together with approximation al-
gorithms for them. In particular, we consider “hitting set”versions of demand-robust
min-cut and shortest path problems where each scenario is a set of terminals instead of
a single terminal and the requirement is to satisfy at least one terminal (separate from
the root for the min-cut problem and connect to the root for the shortest path problem)
in each scenario. We obtain approximation algorithms for these “hitting set” variants
by relating them to two classical problems, namely Steiner multicut and group Steiner
tree.

2 Robust Min-Cut

In this section, we present a constant factor approximationfor this problem. To motivate
our approach, let us consider the robust min-cut problem on trees. Suppose we know



the maximum cost that some optimal solution pays in the second stage (sayC). Any
terminalti whose min-cut fromr costs more thanC

σi
should be cut away fromr in the

first stage. Thus, if we knowC, we can identify exactly which terminalsU should be
cut in the first stage. The remaining terminals pay at mostC to buy a cut in the second
stage. If there arek scenarios, then there are onlyk + 1 choices forC that matter, as
there are onlyk + 1 possible sets thatU could be. Though we may not be able to guess
C, we can try all possible values ofU and find the best solution. This algorithm solves
the problem exactly on trees.

The algorithm for general graphs has a similar flavor. In a general graph if for any
terminal the minimumr-ti cut costs more thanC

σi
, then we can only infer that the first

stage should “help” this terminal i.e. buy some edges from ar-ti cut. In the case of
trees, every minimalr-ti cut is a single edge, so the first stage cutsti from the root.
However, this is not true for general graphs. But we prove that a similar algorithm gives
a constant factor approximation using a charging argument.As in the algorithm for
trees, we reduce the needed non-determinism by guessing a set of terminals rather than
C itself.

Algorithm for Robust Min-Cut
T = {t1, t2, . . . , tk} are the terminals,r ← root .
α← (1 +

√
2).

1. For each terminalti, compute the cost (with respect toc) of a minimumr-ti cut,
denotedmcut(ti).

2. LetC be the maximum second stage cost of some optimal solution.
GuessU := {ti : σi ·mcut(ti) > α · C}.

3. First stage solution:E0 ←minimumr-U cut.
4. Second stage solution for scenarioi: Ei ← any minimumr-ti cut inG \E0

If we relabel the scenarios in decreasing order ofσi ·mcut(ti), then for every choice
of C, U = ∅ or U = {t1, t2, . . . , tj} for somej ∈ {1, 2, . . . , k}. Thus, we need to try
only k + 1 values forC. This algorithm runs inÕ(k2mn) time on undirected graphs
using the max flow algorithm of Goldberg and Tarjan [6] to find min cuts. The above
algorithm(1 +

√
2)-approximates the robust min-cut problem.

Proof of Theorem 1.1. Let OPT be an optimal solution, letE∗

0 be the edge set it buys
in stage one, and letC∗

0 andC be the amount it pays in the first and second stage,
respectively. Letα be a constant to be specified later, and letU := {ti : σi ·mcut(ti) >
α · C}, wheremcut(ti) is the cost of minimumr-ti cut in G with respect to the cost
function c. Note that we can handle every terminalti /∈ U by paying at mostαC in
the second stage. We will prove that the first stage solutionE0, given by the algorithm
has costc(E0) ≤ (1 + 2

α−1 )C∗

0 . The output solution is thus amax{α, (1 + 2
α−1 )}-

approximation. Settingα := (1 +
√

2) then yields the claimed approximation ratio.

To showc(E0) ≤ (1+ 2
α−1 )C∗

0 , we exhibit anr-U cut of cost at most(1+ 2
α−1 )C∗

0 .
Recall thatOPT buysE∗

0 in the first stage. Sinceσi · mcut(ti) > C for all ti ∈ U , E0

must “help” each suchti reduce its second stage cost by a large fraction. The high level
idea is as follows: we show how to group terminals ofU into equivalence classes such



that each edge ofE∗

0 helps at most two such classes and then cut away each equivalence
class from the root using a cut that can be charged to its portion ofE∗

0 .
Formally, letG = (V, E) be our input. DefineG′ := (V, E \ E∗

0 ). The goal is to
construct a low-costr-U cut,C. We includeE∗

0 in C. This allows us to ignore terminals
thatE∗

0 separates from the root.U is the set of remaining terminals withσi ·mcut(ti) >
α · C. For a terminalt ∈ U , let Qt ⊂ V be thet side of some minimumr-t cut in
G′. Lemma 2.1 proves that there exist min cuts such thatF := {Qt : t ∈ U} is a
laminar family (see figure 1). LetF be all the node-maximal elements ofF , that is,
F = {Q ∈ F : ∀Q′ ∈ F , eitherQ′ ⊆ Q, or Q′ ∩ Q = φ}. ForQ ∈ F , we sayQ uses
edges{(u, v) ∈ E∗

0 | Q∩{u, v} 6= ∅}. SinceF is laminar, all the sets inF are disjoint.
It follows that each edgee ∈ E∗

0 can be used by at most two sets ofF . For eachQ ∈ F ,
we include the edges ofG′ incident toQ in the cutC, and charge it to the edges ofE∗

0

it uses as follows:
For a graphG = (V, E) andQ ⊂ V , let δG(Q) := {(q, w)|q ∈ Q, w ∈ V \ Q} ∩ E
be the boundary ofQ in graphG. Fix Qti

∈ F , let X = δG(Qti
) ∩ E∗

0 (edges thatQti

uses) and letY = δG(Qti
) \ E∗

0 (edges ofG′ incident toQti
). SinceδG(Qti

) is ar-ti
cut inG,

c(δG(Qti
)) = c(X) + c(Y ) ≥ mcut(ti) (2.1)

Sinceti ∈ U , σi · mcut(ti) > α · C so with (2.1) we have(c(X) + c(Y )) > α·C
σi

.
Also, we know thatOPT pays at mostC in second stage costs for any scenario which
impliesσi · c(Y ) ≤ C. Thus, we havec(Y ) < 1

α−1c(X) Thus we can pay forc(Y )
by charging it to the cost ofX ⊆ E∗

0 and incurring an overhead of1/(α − 1) on the
charged edges. Since each edge inE∗

0 is charged at most twice, the total charge to buy

all edges in
⋃

Q∈F (δG(Q) \ E∗

0 ) is at most2c(E∗

0
)

α−1 =
2C∗

0

α−1 . Thus, a minimumr-U cut
costs at most(1 + 2

α−1 )C∗

0 . ut
Lemma 2.1. Let U , Qt be defined as in the proof of Theorem 1.1 Then there exists a
minimumr-t cut in G′ for each terminalt ∈ U such thatF := {Qt : t ∈ U} is a
laminar family.

Proof. We start with minimally sized setsQt. That is, for eacht ∈ U , Qt is thet side
of a minimumr-t cut in G′, and every vertex setQ′ containingt but not the root such
that |Q′| < |Qt| satisfiesc(δG′(Q′)) > c(δG′(Qt)). We claim this family is laminar.
Suppose not, then there existsA := Qa, B := Qb, a, b ∈ U that violate the laminar
property. Thus,A ∩ B 6= ∅, A * B, andB * A.

Case 1:a ∈ A \ B, b ∈ B \ A. Let X := A ∩ B, A′ := A \ X , andB′ := B \ X .
Note the cut capacity function ofG′, definedf(Q) := c(δG′(Q)), is submodular.
We claim thatf(A′) ≤ f(A) or f(B′) ≤ f(B), contradicting the minimality ofA
andB. Let c(V1, V2) denote the sum of costs of edges fromV1 to V2 in G′, where
V1, V2 ⊆ V . Then

f(A) < f(A′) =⇒ c(X, B′) + c(X, (V \ (A ∪ B))) < c(A′, X) (2.2)

f(B) < f(B′) =⇒ c(X, A′) + c(X, (V \ (A ∪ B))) < c(B′, X) (2.3)

Adding inequalities (2.2) and (2.3), we getc(X, (V \ (A ∪ B))) < 0, which is
clearly impossible.
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Fig. 1. Once the edges bought in the first stage,E∗

0 , are fixed, there exists an optimal (w.r.t.E∗

0 )
second stage solution{E∗

i | i = 1, 2, . . . , k} such that theti sides of the cuts{E∗

0 ∪ E∗

i } are
a laminar family. Here, the labeled vertices are all terminals, the dashed contour corresponds
to E∗

0 , and the dotted contours correspond to second stage edge sets for various terminals. The
node-maximal elements of this family are the terminal side cuts forv1, v5, andv6.

Case 2:a ∈ B (equivalently,b ∈ A). SinceA andB are terminal sides of min-cuts,

max{f(A), f(B)} ≤ f(A ∪ B) (2.4)

f(A ∩ B) + f(A ∪ B) ≤ f(A) + f(B) (2.5)

where (2.5) follows from submodularity. Inequalities (2.4) and (2.5) together imply
f(A∩B) ≤ min{f(A), f(B)}. But f(A∩B) ≤ f(A) contradicts the minimality
of A. ut

3 Demand-Robust Shortest Path Problem

The problem is defined on a undirected graphG = (V, E) with a root vertexr and cost
c on the edges. Theith scenarioSi is a singleton set{ti}. An edgee costsc(e) in the
first stage andci(e) = σi · c(e) in theith scenario of the second stage. A solution to the
problem is a set of edgesE0 to be bought in the first stage and a setEi in the recourse
stage for each scenarioi. The solution is feasible ifE0 ∪ Ei contains a path between
r andti. The cost paid in theith scenario isc(E0) + σi · c(Ei). The objective is to
minimize the maximum cost over all scenarios.

The following structural result for the demand-robust shortest path problem can be
obtained from a lemma proved in Dhamdhereet al. [4].

Lemma 3.1. [4] Given a demand-robust shortest path problem instance onan undi-
rected graph, there exists a solution that costs at most twice the optimum such that the
first stage solution is a tree containing the root.

The above lemma implies that we can restrict our search in thespace of solutions
where first stage is a tree containing the root and lose only a factor of two. This property
is exploited crucially in our algorithm.



Algorithm for Robust Shortest Path
Let C be the maximum second stage cost of some fixed connected optimal solution.
T = {t1, t2, . . . , tk} are the terminals,r ← root,α← 1.775, V ′ ← φ.

1. V ′ := {ti|distc(ti, r) > 2α·C

σi
}

2. B := {Bi = B(ti,
α·C

σi
)| ti ∈ V ′}, whereB(v, d) is a ball of radiusd aroundv with

respect to costc. Choose a maximal setBI of non-intersecting balls fromB in order of
non-decreasing radii.

3. GuessR0 := {ti|Bi ∈ BI}.
4. First stage solution:E0 ← The Steiner tree on terminalsR0 ∪ {r} output by the best

approximation algorithm available.
5. Second stage solution for scenarioi: Ei ← Shortest path fromti to the closest node in the

treeE0

3.1 Algorithm

Lemma 3.1 implies that there is a first stage solution which isa tree containing the root
r and it can be extended to a final solution within twice the costof an optimum solution.
We call such a solution as aconnected solution. Fix an optimal connected solution, say
E∗

0 , E∗

1 , . . . , E∗

k . Let C be the maximum second stage cost paid by this solution over
all scenarios, i.e.C = maxk

i=1{σi · c(E∗

i )}. Therefore, for any scenarioi, either there
is path fromti to root r in E∗

0 , or there is a vertex within a distanceC
σi

of ti which
is connected tor in E∗

0 , where distance is with respect to the cost functionc, denoted
distc(·, ·). We use this fact to obtain a constant factor approximation for our problem.

The algorithm is as follows: LetC be the maximum second stage cost paid by the
connected optimal solution (fixed above) in any scenario. Weneed to try onlyk · n
possible values ofC 3, so we can assume that we have correctly guessedC. For each
scenarioti, consider a shortest path (sayPi) to r with respect to costc. If c(Pi) ≤ 2α·C

σi
,

then we can handle scenarioi in the second stage with cost only a factor2α more than
the optimum. Thus,ti can be ignored in building the first stage solution. Hereα > 1 is
a constant to be specified later. LetV ′ = {ti | distc(r, ti) > 2α·C

σi
}.

For eachti ∈ V ′, let Bi be a ball of radiusα·C
σi

aroundti. Here, we include internal
points of the edges in the ball. We collectively refer to vertices in V and internal points
on edges aspoints, VP . Thus,Bi = {v ∈ VP | distc(ti, v) ≤ α·C

σi
}.

The algorithm identifies a set of terminalsR0 ⊆ V ′ to connect to the root in the
first stage such that the remaining terminals inV ′ are close to some terminal inR0 and
thus, can be connected to the root in the second stage paying alow-cost.

Proposition 3.1. There exist a set of terminalsR0 ⊆ V ′ such that:

1. For everyti, tj ∈ R0, we haveBi ∩ Bj = φ; and
2. For everyti ∈ V ′ \ R0, there is a representativerep(ti) = tj ∈ R0 such that

Bi ∩ Bj 6= φ and α·C
σj

≤ α·C
σi

.

Proof. Consider terminals inV ′ in non-decreasing order of the radiiα·C
σt

of the cor-
responding ballsBt. If terminal ti is being examined andBi ∩ Bj = φ, ∀tj ∈ R0,

3 For each scenarioi, the second stage solution is a shortest path fromti to one of the n vertices
(possiblyti), so there are at mostk · n choices of C.
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then includeti in R0. If not, then there existstj ∈ R0 such thatBi ∩ Bj 6= φ; define
rep(ti) = tj. Note thatα·C

σj
≤ α·C

σi
as the terminals are considered in order of non-

decreasing radii of the corresponding balls. ut

The First Stage Tree. The first stage tree is a Steiner tree on the terminal setR0∪{r}.
However, in order to bound the cost of first stage tree we buildthe tree in a slightly
modified way. For an illustration, refer to Figure 2.

Let G′ be a new graph obtained when the ballsB(ti,
C
σi

) corresponding to every
terminalti ∈ R0 are contracted to singleton vertices. We then build a Steiner treeE01

in G′ with the terminal set as the shrunk nodes corresponding to terminals inR0 and
the root vertexr. In Figure 2,E01 is the union of solid edges and the thick edges.
Now, for every shrunk node corresponding toB(ti,

C
σi

), we connect each tree edge

incident toB(ti,
C
σi

) to terminalti using a shortest path; these edges are shown as
dotted lines in Figure 2 and are denoted byE02. Our first stage solution is the Steiner
treeE0 = E01 ∪ E02.

Lemma 3.2. The cost ofE0 is at most1.55α
α−1 timesc(E∗

0 ), the first stage cost of the
optimal connected solution.

Proof. We know that the optimal first stage tree,E∗

0 connects some vertex in the ball
B(ti,

C
σi

) to the rootr for everyti ∈ R0, for otherwise the maximum second stage cost
of OPT would be more thanC. Thus,E∗

0 induces a Steiner tree on the shrunk nodes in
G′. We build a Steiner tree on the shrunk nodes as terminals using the algorithm due to
Robins and Zelikovsky [18]. Thus,

c(E01) ≤ 1.55 c(E∗

0 ) (3.6)

Now, consider edges inE02. Consider a pathq ∈ E02 connecting some edge in-
cident toB(ti,

C
σi

) to ti. Sinceq is the shortest path between its end points, we have

c(q) ≤ C
σi

. Now, consider a path from terminalti alongq until it reachesB(ti,
α·C
σi

)

and label the portion betweenB(ti,
C
σi

) andB(ti,
α·C
σi

) asp(q). By construction, we

havec(p(q)) ≥ (α−1)·C
σi

, soc(q) ≤ 1
α−1 · c(p(q)).



For any two pathsq1, q2 ∈ E02, the pathsp(q1) andp(q2) are edge-disjoint. Clearly,
if q1 andq2 are incident to distinct terminals ofR0, thenp(q1) andp(q2) are contained
in disjoint balls and thus are edge-disjoint. Ifq1 andq2 are incident to the same terminal,
then it is impossible thatp(q1)∩p(q2) 6= φ asE01 is a tree on the shrunk graph. Hence,
we have

∑

e∈E02

c(e) =
∑

q∈E02

c(q) ≤
∑

q∈E02

1

α − 1
· c(p(q)) ≤

∑

e∈E01

1

α − 1
· c(e) (3.7)

where the last inequality is due to edge-disjointness ofp(q1) andp(q2) for any two
pathsq1, q2 ∈ E02. Thus,c(E0) = c(E01) + c(E02) ≤ c(E01) + 1

α−1 · c(E01) ≤
1.55α
α−1 · c(E∗

0 ), where the last inequality follows from (3.6). ut

Second Stage. The second stage solution for each scenario is quite straightforward.
For any terminalti, Ei is the shortest path fromti to the closest node inE0.

Lemma 3.3. The maximum second stage cost for any scenario is at most2α · C.

Proof. We need to consider the following cases:

1. ti ∈ R0: Since the first stage treeE0 connectsti to r, Ei = φ. Thus,c(Ei) = 0.
2. ti ∈ V ′ \ R0: By Proposition 3.1, there exists a representative terminal tj ∈ R0

such thatBi ∩Bj 6= φ andσj ≥ σi. Therefore,distc(ti, tj) ≤ α·C
σi

+ α·C
σj

≤ 2α·C
σi

.
We know thattj is connected tor in E0. Thus, the closest node toti in the first
stage tree is at a distance at most2α·C

σi
. Hence,σi · c(Ei) ≤ 2α · C.

3. ti /∈ V ′: Then the shortest path fromti to r with respect to costc is at most2α·C
σi

.

Hence, the closest node toti in the first stage tree is at a distance at most2α·C
σi

and
σi · c(Ei) ≤ 2α · C. ut

Proof of Theorem 1.2. From Lemma 3.2, we get thatc(E0) ≤ 1.55α
α−1 c(E∗

0 ). From
Lemma 3.3, we get that the second stage cost is at most2α · C. Chooseα = 3.55

2 =
1.775. Thus, we getc(E0) ≤ (3.55)·c(E∗

0 ) andmaxk
i=1{σi ·c(Ei)} ≤ (3.55)·C. From

Lemma 3.1 we know thatc(E∗

0 ) + C ≤ 2 · OPT, whereOPT is the cost of optimal
solution to the robust shortest path instance. Together theprevious three inequalities
imply c(E0) + maxk

i=1{σi · c(Ei)} ≤ (7.1) · OPT ut

4 Extensions to Hitting Versions

In this problem, we introduce generalizations of demand-robust min-cut and shortest
path problems that are closely related to Steiner multicut and group Steiner tree, re-
spectively. In a Steiner multicut instance, we are given a graphG = (V, E) andk sets
of verticesX1, X2, . . . , Xk and our goal is to find the cheapest set of edgesS whose
removalseparateseachXi, i.e. noXi lies entirely within one connected component of
(V, E \ S). If

⋂k

i=1 Xi 6= ∅, we call the instancerestricted. In a group Steiner tree in-
stance, we are given a graphG = (V, E), a rootr, andk sets of verticesX1, X2, . . . , Xk



and our goal is to find a minimum cost set of edgesS that connects at least one vertex in
eachXi, i = 1, . . . , k to the rootr. We show how approximation algorithms for these
problems can be combined with our techniques to yield approximation algorithms for
“hitting versions” of demand-robust min-cut and shortest path problems.

In the hitting version of robust min-cut (resp. shortest path), each scenarioi is spec-
ified by an inflation factorσi and a set of nodesTi ⊂ V (rather than a single node).
A feasible solution is a collection of edge sets{E0, E1, . . . , Ek} such that for each
scenarioi, E0 ∪ Ei contains an root-t cut (resp. path) for somet ∈ Ti. The goal is to
minimizec(E0) + maxi{σi · c(Ei)}.

4.1 Robust Hitting Cuts

Robust hitting cut isΩ(log k)-hard, wherek is the number of scenarios, even when
the graph is a star. In fact, if we restrict ourselves to inputs in which the graph is a
star, the root is the center of the star, andσ = ∞ for all scenarios, then robust hitting
cut on these instances is exactly the hitting set problem. Incontrast, we can obtain an
O(log k) approximation for robust hitting cut on trees, andO(log n · log k) in general
using results of Nagarajan and Ravi [15] in conjunction withthe following theorem.

Theorem 4.1. If for some class of graphs there is aρ-approximation for Steiner multi-
cut on restricted instances, then for that class of graphs there is a(ρ+2)-approximation
for robust hitting cut. Conversely, if there is aρ-approximation for robust hitting cut then
there is aρ-approximation for Steiner multicut on restricted instances.

Algorithm: Let α = 1
2 (ρ+1+

√

ρ2 + 6ρ + 1) and letC be the cost that some optimal
solution pays in the second stage. For each terminalt in some group, compute the cost of
a minimum root-t cut, denotedmcut(t). LetT ′ := {Ti : ∀t ∈ Ti, σi ·mcut(t) > α·C}.
Note that there are onlyk +1 possibilities, as in the robust min-cut algorithm. For each
terminal setTi ∈ T ′, separate at least one terminal inTi from the root in the first stage
using anρ-approximation algorithm for Steiner Multicut [10, 15].
Proof of Theorem 4.1. We first show that aρ-approximation for robust hitting cut
implies aρ-approximation for Steiner multicut on restricted instances. Given a restricted
instance of Steiner multicut(G, X1, X2, . . . , Xk) build a robust hitting cut instance as
follows: use the same graph and costs, set the rootr to be any element of

⋂

i Xi, and
create scenariosTi = Xi \ r with σi = ∞ for eachi. Note that solutions to this
instance correspond exactly to Steiner multicuts of the same cost. Thus robust hitting
cut generalizes Steiner multicut on restricted instances.

We now show the approximate converse, that aρ-approximation for Steiner multicut
on restricted instances implies a(ρ + 2)-approximation for robust hitting cut. LetOPT

be an optimal solution, and letE∗

0 be the edge set it buys in stage one, and letC1 and
C2 be the amount it pays in the first and second stage, respectively. Note we can handle
everyTi /∈ T ′ while paying at mostα · C2.

We prove that the first stage edgesE0 ⊂ E[G] given by our algorithm satisfy all
scenarios inT ′, and have costc(E0) ≤ ρ(1 + 2

α−1 )C1. Thus, the total solution cost is
at mostρ(1 + 2

α−1 )C1 + α · C2. Compared to the optimal cost,C1 + C2, we obtain



a max{α, ρ(1 + 2
α−1 )}-approximation. Settingα = 1

2 (ρ + 1 +
√

ρ2 + 6ρ + 1) then
yields the claimed(ρ + 2) approximation ratio.

A cut is called aT ′-cut if it separates at least one terminal in eachT ∈ T ′ from
the root. There exists aT ′-cut of cost at most(1 + 2

α−1 )C1, by the same argument
as in the proof of Theorem 1.1. SupposeOPT cuts awayt∗i when scenarioTi occurs.
ThenOPT is also an optimal solution to the robust min-cut instance onthe same graph
with terminals{t∗i | i = 1, 2, . . . , k} ask scenarios. Since, for allt ∈ T such that
T ∈ T ′, we haveσt · mcut(t) > α · C, we can construct a root-{t∗i | i = 1, 2, . . . , k}
cut of cost at most(1 + 2

α−1 )C1. Thus, the cost of an optimalT ′-cut is at most(1 +
2

α−1 )C1. Now apply theρ-approximation for Steiner multicut on restricted instances.
To build the Steiner multicut instance, we use the same graphand edge costs, and create
a groupsXi = Ti ∪ {root} for eachTi ∈ T ′. Clearly, the instance is restricted. Note
that every solution to this instance is aT ′-cut of the same cost, and vice-versa. Thus a
ρ-approximation for for Steiner multicut on restricted instances yields aT ′-cut of cost
at mostρ(1 + 2

α−1 )C1. ut

Corollary 4.1. There is a polynomial timeO(log n · log k)-approximation algorithm
for robust hitting cut on instances withk scenarios andn nodes, and anO(log k)-
approximation algorithm for robust hitting cut on trees.

4.2 Robust Hitting Paths

Theorem 4.2. If there is aρ-approximation for group Steiner tree then there is a2ρ-
approximation for robust hitting path. If there is aρ-approximation for robust hitting
path, then there is aρ-approximation for group Steiner tree.

Proof. Note that robust hitting path generalizes group Steiner tree (given a GST in-
stance with graphG, rootr and groupsX1, X2, . . . , Xk, use the same graph and root,
make each group a scenario, and setσi = ∞ for all scenariosi). Thus aρ-approximation
for robust hitting path immediately yields aρ-approximation for group Steiner tree.

Now suppose we have anρ-approximation for group Steiner tree. Lemma 3.1 guar-
antees that there exists a solution{E0, E1, . . . , Ek} of cost at most2OPT whose first
stage edges,E0, are a tree containing rootr.

The algorithm is as follows. GuessC := maxi{σic(Ei)}. Note that for each sce-
narioi the treeE0 must touch one of the balls in{B(t, C/σi)|t ∈ Ti}, whereB(v, x) :=
{u| distc(v, u) ≤ x}. Thus we can construct groupsXi :=

⋃

t∈Ti
B(t, C/σi) for each

scenarioi and use theρ-approximation for group Steiner tree on these groups to obtain
a set of edgesE′

0 to buy in the first stage.
Note thatc(E′

0) ≤ ρc(E0) and any scenarioi has a terminalt ∈ Ti that is within
distanceC/σi of some vertex incident on an edge of treeE′

0. We conclude that the total
cost is at mostρc(E0) + C ≤ 2ρ · OPT. ut

5 Conclusion

In this paper we give improved approximation algorithms forrobust min-cut and short-
est path problems and extend our results to an interesting ”hitting-set” variant. It would



be interesting to use the techniques introduced in this paper to obtain better approxima-
tions for robust minimum multicut and Steiner tree problems. The technique of guessing
and pruning crucially uses the fact that each scenario can pay up to the maximum sec-
ond stage cost without worsening the optimal cost. However,this is not true for the
stochastic optimization problems and hence our technique doesn’t extend to stochastic
versions in a straightforward way. It would be interesting to adapt this idea for stochastic
optimization.
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