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Abstract. Demand-robust versions of common optimization problemsewe-
cently introduced by Dhamdhere et al. [4] motivated by thesivoase consider-
ations of two-stage stochastic optimization models. Wdysthe demand robust
min-cut and shortest path problems, and exploit the natitfeecobust objective
to give improved approximation factors. Specifically, weega (1 + v/2) ap-
proximation for robust min-cut andal approximation for robust shortest path.
Previously, the best approximation factors wéx@og n) for robust min-cut and
16 for robust shortest paths, both due to Dhamdhere et al. [4].

Our main technique can be summarized as follows: We invastigach of the
second stage scenarios individually, checking if it cannolependently serviced
in the second stage within an acceptable cost (namely, @ @fethe optimal
second stage costs). For the costly scenarios that canrsatrieed in this way
(“rainy days”), we show that they can be fully taken care od imear-optimal first
stage solution (i.e., by "paying today”).

We also consider “hitting-set” extensions of the robust-guhand shortest path
problems and show that our techniques can be combined vgtrigdms for
Steiner multicut and group Steiner tree problems to givalaimpproximation
guarantees for the hitting-set versions of robust min-oat shortest path prob-
lems respectively.

1 Introduction

Robust optimization has been widely studied to deal withda& uncertainty in op-
timization problems. In a classical optimization probleath,parameters such as costs
and demands are assumed to be precisely known. A small cliatigese parameters
can change the optimal solution considerably. As a redalsésical optimization is in-
effective in those real life applications where robustrieamcertainty is desirable.

Traditional approaches toward robustness have focusedaartainty in data[3, 12,
13]. In a typical data-robust model, uncertainty is modeled finite set of scenarios,
where a scenario is a plausible set of values for the dataimtidel. The objective is to
find a feasible solution to the problem which is “good” in allmost scenarios, where
various notions of “goodness” have been studied. Some af thelude
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1. Absolute Robustness (min-max): The objective is to findlat®n such that the
maximum cost over all scenarios is minimized.

2. Robust Deviation (min-max regret): For a given soluti@gret in a particular sce-
nario is the difference between cost of this solution in st&nario and the optimal
cost in that scenario. In the robust deviation criteria, dbgctive is to minimize
the maximum regret over all scenarios.

More recent attempts at capturing the concept of robustisakiin optimization
problems include the work of Rosenblatt and Lee [19] in thalifg design problem,
and Mulveyet al.[14] in mathematical programming. Even more recently, giragch
along similar lines has been advocated by Bertsietaal. [1, 2]. Other related works
in the data-robust models include heuristics such as brandhbound and surrogate
relaxation for efficiently solving the data-robust instascA research monograph by
Kouvelis and Yu [11] summarizes this line of work. An annethbibliography available
online is a good source of references for work in data-rotasst [16].

Most of the prior work addresses the problem of robustnedsiutiata uncertainty.
In this paper, we consider a model which also allows unastan the problem con-
straints along with the uncertainty in data. We call this elaf robustness ademand-
robust model since it attempts to be robust with respect to problemahds (con-
straints). Our model is motivated by the recent work in twage stochastic program-
ming problems with recourse [7,5,9, 17, 20]. In a two-stametsastic approach, the
goal is to find a solution that minimizes the expected cost allgpossible scenarios.
While the expected value minimization is reasonable in @&agd decision-making
framework, one shortcoming of this approach is that it doetssufficiently guard
against the worst case over all the possible scenarios. @ueadd-robust model for
such problems is a natural way to overcome this shortcomyngadstulating a model
that minimizes this worst-case cost.

Let us introduce the new model with the demand-robust mirpmblem: Given an
undirected grapli = (V, E), a root vertex- and costs: on the edges. The uncertainty
in demand and costs is modeled as a finite set of scenario®favidch materializes
in the second stage. TH& scenario is a singleton set containing only the nhd&Vve
call the nodes specified by the scenat&rsninals An edge costs(e) in the first stage
ando; - c(e) in the recourse (second) stage if e scenario is realized. The problem
is to find a settly C E (edges to be bought in the first stage) and for each scehaxio
setFE; C E (edgesto be boughtin the recourse stage if scen#irealized), such that
removingE, U E; from the graphG disconnects from the terminat;. The objective
is to minimize the cost functiomax;{c(Ey) + o; - ¢(E;)}-

Note that in the above model, each scenario has a differgaireament (in scenario
1, t; IS required to be separated froth Such a scenario model allows to handle uncer-
tainty in problem constraints. Another point of differenvei¢h the previous data-robust
models is that the demand-robust model is two-stage i.atisnlis bought partially
in first stage and is then augmented to a feasible solutionersécond stage after the
uncertainty is realized. However, cost uncertainty in thedemand-robust model is re-
strictive, as each element becomes costlier by the sanw fact particular scenario in
the second stage unlike the data-robust models which hgedkeral cost uncertainties.



1.1 Our Contributions

In this paper we consider the shortest path and min-cut pnablin the two-stage
demand-robust model. In a recent paper Dhamdkeei. [4] introduced the model
of demand robustness and gave approximation algorithmeafidous problems such
as min-cut, multicut, shortest path, Steiner tree andifaddcation in the framework
of two-stage demand-robustness. They use rounding tasdsiigcently developed for
stochastic optimization problems [7, 8, 17] for many of thesults and obtain similar
guarantees for the demand-robust versions of the problerhid paper we crucially
exploit and benefit from the structure of the demand-robusblpm:in the second
stage, every scenario can pay up to the maximum second stageithout worsening
the solution costThis is not true for the stochastic versions where the abds to
minimize the expected cost over all scenarios. At a very kaghl, the algorithms for
the problems considered in this paper are as follows: Ghesniaximum second stage
costC' in some optimal solution. Using this guess identify scevsawhich do not need
any first stage “help” i.e. scenarios for which the best sotutosts at most a constant
timesC in the second stage. Such scenarios can be ignored whitrigyuthe first stage
solution. For the remaining scenarios or a subset of thenbuilé a low-cost first stage
solution and prove the constant bounds by a charging argumen

We give the first constant factor approximation for the detheobust min-cut prob-
lem. The charging argument leading to a constant factorraegd crucially uses the
laminarity of minimum cuts separating a given root node frotiher terminals. The
previous best approximation factor w@glog n) due to Dhamdheret al. [4].

Theorem 1.1. There is a polynomial time algorithm which givegla+ /2) approxi-
mation for the robust min-cut problem.

For the demand-robust shortest path problem, we give anitdgowith an im-
proved approximation factor gt 1 as compared to the previol§-approximation [4].

Theorem 1.2. There is a polynomial time algorithm which gives a 7.1 appration
for the robust shortest path problem.

Demand-robust shortest path generalizes the Steiner tobdem and is thudP-
hard. The complexity of demand-robust min-cut is still opEiowever, in section 4
we presenNP-hard generalizations of both problems, together with apipnation al-
gorithms for them. In particular, we consider “hitting se€rsions of demand-robust
min-cut and shortest path problems where each scenariceisod terminals instead of
a single terminal and the requirement is to satisfy at leastterminal (separate from
the root for the min-cut problem and connect to the root ferghortest path problem)
in each scenario. We obtain approximation algorithms fes¢h“hitting set” variants
by relating them to two classical problems, namely Steineltiout and group Steiner
tree.

2 Robust Min-Cut

In this section, we present a constant factor approximatiotiis problem. To motivate
our approach, let us consider the robust min-cut problenre®st Suppose we know



the maximum cost that some optimal solution pays in the skstage (say’). Any
terminalt; whose min-cut fromr costs more thaHC— should be cut away fromin the
first stage. Thus, if we know', we can identify exactly which terminal$ should be
cut in the first stage. The remaining terminals pay at niost buy a cut in the second
stage. If there aré scenarios, then there are orilyt 1 choices forC that matter, as
there are only: + 1 possible sets thdf could be. Though we may not be able to guess
C, we can try all possible values 6f and find the best solution. This algorithm solves
the problem exactly on trees.

The algorithm for general graphs has a similar flavor. In aegalrgraph if for any
terminal the minimunr-¢; cut costs more tha@ then we can only infer that the first
stage should “help” this terminal i.e. buy some edges fromtacut. In the case of
trees, every minimal-t; cut is a single edge, so the first stage aytdom the root.
However, this is not true for general graphs. But we provedtsimilar algorithm gives
a constant factor approximation using a charging argunfnin the algorithm for
trees, we reduce the needed non-determinism by guessinggtsaminals rather than
C itself.

Algorithm for Robust Min-Cut
T = {t1,ta,...,tx} are the terminals; — root .

a— (14+2).

1. For each terminal;, compute the cost (with respectdpof a minimumr-¢; cut,
denotedmcut(¢;).

2. LetC be the maximum second stage cost of some optimal solution.
Gues := {t; : 0; - mcut(t;) > o - C}.

3. First stage solution®y «— minimum~-U cut.

4. Second stage solution for scenatrid’; < any minimumr-¢; cutinG \ Ey

If we relabel the scenarios in decreasing order;ofncut(¢;), then for every choice
of C,U =0orU = {t1,te,...,t;} forsomej € {1,2,...,k}. Thus, we need to try
only k + 1 values forC. This algorithm runs irO(k?mn) time on undirected graphs
using the max flow algorithm of Goldberg and Tarjan [6] to finthrouts. The above
algorithm(1 + v/2)-approximates the robust min-cut problem.

Proof of Theorem 1.1. Let OPT be an optimal solution, leE; be the edge set it buys
in stage one, and lef; andC' be the amount it pays in the first and second stage,
respectively. Letv be a constant to be specified later, andlet= {t; : o; - mcut(¢;) >
a - C}, wheremcut(t;) is the cost of minimum-¢; cut in G with respect to the cost
function c¢. Note that we can handle every terminal¢ U by paying at mosteC' in
the second stage. We WiII prove that the first stage solufiprgiven by the algorithm
has cost(Ey) < (1 + -25)C;. The output solution is thus max{a, (1 + —27)}-
approximation. Settmg = (1 ++/2) then yields the claimed apprOX|mat|on rat|o

To showe(Ey) < (14 =27)Cg, we exhibit an-U cut of cost at mostl + —2-)Cj.
Recall thatOPT buys E} |nthe first stage. Since; - mcut(t;) > C forall ¢; € U Ey

must “help” each such; reduce its second stage cost by a large fraction. The high lev
idea is as follows: we show how to group terminaldbinto equivalence classes such



that each edge df; helps at most two such classes and then cut away each equigale
class from the root using a cut that can be charged to itsquoofi £/ .

Formally, letG = (V, E) be our input. Defing?’ := (V, E \ E{). The goal is to

construct a low-cost-U cut,C. We includeE; in C. This allows us to ignore terminals
that Ef; separates from the rodf. is the set of remaining terminals with - mcut(¢;) >
«a - C. Foraterminak € U, letQ; C V be thet side of some minimum-¢ cut in
G’. Lemma 2.1 proves that there exist min cuts such fiat= {Q; : t € U} is a
laminar family (see figure 1). LeF' be all the node-maximal elements &% that is,
F={QeF:vQ € F, eitherQ’ CQ, orQ' NQ = ¢}. ForQ € F, we sayQ uses
edged{(u,v) € Ef | QN{u,v} # 0}. SinceF is laminar, all the sets ifi' are disjoint.
It follows that each edge € Ej; can be used by at most two setsraffFor each) € F,
we include the edges @¥’ incident toQ in the cutC, and charge it to the edges Bf;
it uses as follows:
Foragraph? = (V, E) andQ C V, letéc(Q) := {(q,w)lg € Q,w e V\Q}NE
be the boundary of) in graphG. Fix Q;, € F, let X = §¢(Q+,) N E§ (edges thaf),,
used and letY = 6¢(Q:,) \ ES (edges ofZ’ incident toQy,). Sinceds (Q:,) is ar-t;
cutinG,

¢(06:(Qr,)) = e(X) + e(Y) > meut(t;) (2.1)
Sincet; € U, o; - mecut(t;) > o - C so with (2.1) we havéc(X) + c¢(Y)) > <<,

Also, we know thaOPT pays at mostC' in second stage costs for any scenario which
implieso; - ¢(Y) < C. Thus, we have(Y) < —-c(X) Thus we can pay for(Y)
by charging it to the cost ok C E{ and incurring an overhead @ (o« — 1) on the
charged edges. Since each edgé&jnis charged at most twice, the total charge to buy
all edges inJy - (0c(Q) \ E7) is at most% = % Thus, a minimum-U cut

costs at mostl + -27)Cj. m

Lemma2.1. LetU, @Q; be defined as in the proof of Theorem 1.1 Then there exists a
minimumy-¢ cut in G’ for each terminalt € U such thatF := {Q; : t € U} isa
laminar family.

Proof. We start with minimally sized setg;. That is, for eacht € U, Q; is thet side
of a minimumyr-t cut in G’, and every vertex s&p’ containingt but not the root such
that|Q'| < |Q:| satisfiesc(dg/(Q")) > ¢(da/(Q+)). We claim this family is laminar.
Suppose not, then there exists:= Q,, B := Q, a,b € U that violate the laminar
property. ThusANB # 0, A ¢ B,andB ¢ A.

Caselia e A\B,be B\ A.LetX := AnB, A := A\ X,andB’ := B\ X.
Note the cut capacity function @¥’, definedf(Q) := ¢(d¢/(Q)), is submodular.
We claim thatf (A’) < f(A) or f(B’) < f(B), contradicting the minimality ofA
andB. Let¢(V1, V) denote the sum of costs of edges fréinto 15 in G, where
V1,Vo C V. Then

f(A) < f(A) = c¢(X,B)+c(X,(V\(AUB))) < (A", X) (2.2)
f(B) < f(B') = ¢(X,A")+c(X,(V\(AUB))) < c(B',X) (2.3)

Adding inequalities (2.2) and (2.3), we g&tX, (V \ (AU B))) < 0, which is
clearly impossible.



Fig. 1. Once the edges bought in the first stafig, are fixed, there exists an optimal (w.f;)
second stage solutiofF; | i = 1,2,...,k} such that the; sides of the cut§ E; U E;'} are

a laminar family. Here, the labeled vertices are all terisinthe dashed contour corresponds
to Eg, and the dotted contours correspond to second stage edgiisearious terminals. The
node-maximal elements of this family are the terminal sias éor v, , vs, andwvs.

Case 2:a € B (equivalentlyp € A). SinceA and B are terminal sides of min-cuts,

max{f(4), f(B)} < f(AUB) (2.4)
J(ANB)+ f(AUB) < f(A) + f(B) (2.5)

where (2.5) follows from submodularity. Inequalities (Pahd (2.5) together imply
f(ANB) <min{f(A), f(B)}.But f(An B) < f(A) contradicts the minimality
of A. O

3 Demand-Robust Shortest Path Problem

The problem is defined on a undirected graphk- (V, E) with a root vertex- and cost
c on the edges. Th&" scenariaS; is a singleton seft;}. An edgee costsc(e) in the
first stage and; (e) = o; - c(e) in thei*" scenario of the second stage. A solution to the
problem is a set of edgds, to be bought in the first stage and a &&tin the recourse
stage for each scenarioThe solution is feasible iE, U E; contains a path between
r andt;. The cost paid in thé® scenario isc(Eo) + o; - ¢(E;). The objective is to
minimize the maximum cost over all scenarios.

The following structural result for the demand-robust séstrpath problem can be
obtained from a lemma proved in Dhamdhetael. [4].

Lemma 3.1. [4] Given a demand-robust shortest path problem instanceomundi-
rected graph, there exists a solution that costs at mosetiie optimum such that the
first stage solution is a tree containing the root.

The above lemma implies that we can restrict our search isphee of solutions
where first stage is a tree containing the root and lose ordgtaff of two. This property
is exploited crucially in our algorithm.



Algorithm for Robust Shortest Path
Let C be the maximum second stage cost of some fixed connectedabstiation.
T = {t1,t2,...,t.} are the terminals; « root,a « 1.775, V' «+ ¢.

L V"= {ti] diste(ts, r) > 22€}

2. B:= {B; = B(t:;, 29)| t; € V'}, whereB(v,d) is a ball of radius? aroundv with
respect to cost. Choose a maximal séf; of non-intersecting balls fron in order of
non-decreasing radii.

3. Guessk? := {t;|B; € Br}.

4. First stage solutionE, «— The Steiner tree on terminaB® U {r} output by the bes
approximation algorithm available.

5. Second stage solution for scenaiid; < Shortest path from; to the closest node in th
tree E

D

3.1 Algorithm

Lemma 3.1 implies that there is a first stage solution whiehtige containing the root

r and it can be extended to a final solution within twice the obah optimum solution.

We call such a solution asa@nnected solutiar-ix an optimal connected solution, say
E§,Ef,...,E;. LetC be the maximum second stage cost paid by this solution over
all scenarios, i.eC' = max®_, {o; - ¢(E})}. Therefore, for any scenarigeither there

is path from¢; to rootr in Ej, or there is a vertex within a d|stan<£e of ¢; which

is connected to in Ej, where distance is with respect to the cost funchpdenoted
dist.(-, -). We use this fact to obtain a constant factor approximatowfir problem.

The algorithm is as follows: Lef’ be the maximum second stage cost paid by the
connected optimal solution (fixed above) in any scenario.néked to try onlyk - n
possible values of’ 3, so we can assume that we have correctly gue§sdgbr each
scenarid;, consider a shortest path (sRy) to r with respect to cost If ¢(P;) < 2% C,
then we can handle scenaiio the second stage with cost only a fac2armore than
the optimum. Thus,; can be ignored in building the first stage solution. Here 1 is
a constant to be specified later. &t = {¢; | dist.(r,t;) > 20"0}

For each; € V', let B; be a ball of radlué*— aroundt;. Here, we include internal
points of the edges in the ball. We collect|vely refer to io&$ in V and internal points
on edges apoints Vp. Thus,B; = {v € Vp | dist.(t;,v) < “af}.

The algorithm identifies a set of termina®® C V' to connect to the root in the
first stage such that the remaining terminal§’inare close to some terminal i?° and
thus, can be connected to the root in the second stage palongaost.

Proposition 3.1. There exist a set of terminal®” C V' such that:

1. Foreveryt;,t; € R°, we haveB; N B; = ¢; and
2. For everyt; € V' \ RO there is a representativeep(t;) = ¢; € R° such that
B;NBj # ¢and %< < «C.

Proof. Consider terminals iV’ in non-decreasing order of the radiigitg of the cor-
responding balls3;. If terminalt; is being examined ané; N B; = ¢, Vt; € R°,

% For each scenarig the second stage solution is a shortest path frotm one of the n vertices
(possiblyt;), so there are at most- n choices of C.



Fig. 2. lllustration of first-stage tree computation described @mima 3.2. The balls with solid
lines denoteB(t;, &), while the balls with dotted lines denofg(t;, %<).

then mcIudet in RO, If not, then there exists; € R° such thatB; N B; # ¢; define
rep(t;) = t;. Note that®~ € < @ C as the terminals are con5|dered in order of non-

decreasmg radii of the correspondlng balls. a

TheFirst Stage Tree. The first stage tree is a Steiner tree on the terminak8et {}.
However, in order to bound the cost of first stage tree we bhiddtree in a slightly
modified way. For an illustration, refer to Figure 2.

Let G’ be a new graph obtained when the badl§;, C%) corresponding to every
terminalt; € R° are contracted to singleton vertices. We then build a Stéiae Ey;
in G’ with the terminal set as the shrunk nodes correspondingtairtals in R° and
the root vertexr. In Figure 2, Ey; is the union of soIid edges and the thick edges.
Now, for every shrunk node corresponding Bgt;, & a— we connect each tree edge

incident to B(t;, UQ) to terminalt; using a shortest path; these edges are shown as

dotted lines in Flgure 2 and are denotedMys. Our first stage solution is the Steiner
treeEy = Ep1 U Epa.

Lemma3.2. The cost ofE is at mostL:25¢ timesc(Ey), the first stage cost of the
optimal connected solution.

Proof. We know that the optimal first stage trefg; connects some vertex in the ball
B(t;, g) to the rootr for everyt; € RP, for otherwise the maximum second stage cost
of OPT would be more thad. Thus,E; induces a Steiner tree on the shrunk nodes in
G’. We build a Steiner tree on the shrunk nodes as terminalg tisinalgorithm due to
Robins and Zelikovsky [18]. Thus,

Now, consider edges ify2. Consider a patly € Ey2 connecting some edge in-
cident toB(t;, g) to ¢;. Sinceq is the shortest path between its end points, we have
c(q) < GQ Now, consider a path from terminal alongq until it reachesB(t;, ag’—C)

and label the portion betweefi(t;, - £ and B(t;, <€) asp(q). By construction, we
havec(p(q)) > 2=2C soc(q) < 215 - e(p(g)).

’L?a



For any two pathsg;, g2 € Fo2, the path®(q;) andp(g2) are edge-disjoint. Clearly,
if g1 andgo are incident to distinct terminals @#°, thenp(q;) andp(g2) are contained
in disjoint balls and thus are edge-disjointg{fandg; are incident to the same terminal,
then it is impossible that(q: ) Np(g2) # ¢ asEy; is a tree on the shrunk graph. Hence,
we have

Y= Yo s Y el s Y o) 37)

e€Eo2 g€ Eo2 g€ Eo2 e€Eo1

where the last inequality is due to edge-disjointnessgf) andp(q2) for any two
pathSql,qQ S EQQ. ThUS,C(EQ) = C(E(n) “+ C(EOQ) S C(EOl) =+ ﬁ . C(E()l) S
L55a . o(E¥), where the last inequality follows from (3.6). O

a—1

Second Stage. The second stage solution for each scenario is quite stfaigfard.
For any terminat;, F; is the shortest path from to the closest node if.

Lemma 3.3. The maximum second stage cost for any scenario is at2nost’.

Proof. We need to consider the following cases:

1. t; € R": Since the first stage trefé, connects; tor, E; = ¢. Thus,c(E;) = 0.

2. t; € V''\ R°: By Proposition 3.1, there exists a representative terhtina R°
such thatB; N B, # ¢ ando; > o;. Thereforedist.(t;,t;) < < C + O‘JC < 2 20:C
We know thatt; is connected ta in Ey. Thus, the closest node toin the flrst
stage tree is at a distance at m%%ﬁ Henceg; - ¢(E;) <2a- C.

3. t; ¢ V': Then the shortest path fromto r with respect to cost is at mostm .
Hence, the closest nodetpin the first stage tree is at a distance at rr?@&c— and

o;-c(E;) <2a-C. O
Proof of Theorem 1.2. From Lemma 3.2, we get tha{E;) < L22¢(Ef). From
Lemma 3.3, we get that the second stage cost is at daost”. Choosen = % =

1.775. Thus, we get(Ey) < (3.55)-c¢(Ey) andmax?_, {o;-c(E;)} < (3.55)-C. From
Lemma 3.1 we know that(Ej) + C < 2 - OPT, whereOPT is the cost of optimal
solution to the robust shortest path instance. Togetheptéeious three inequalities
imply ¢(Ep) + max®_,{o; - c¢(E;)} < (7.1) - OPT O

4 Extensionsto Hitting Versions

In this problem, we introduce generalizations of demarizisd min-cut and shortest
path problems that are closely related to Steiner multiagt group Steiner tree, re-
spectively. In a Steiner multicut instance, we are givenaplt: = (V, E) andk sets

of verticesXy, X», ..., X} and our goal is to find the cheapest set of edgjeghose
removalseparategachX,, i.e. noX; lies entirely within one connected component of
(V,E\S).If ﬂle X, # 0, we call the instanceestricted In a group Steiner tree in-
stance, we are given a graph= (V, E), arootr, andk sets of verticex(;, Xs, ..., Xj



and our goal is to find a minimum cost set of edgdblat connects at least one vertexin
eachX;,i = 1,...,k to the rootr. We show how approximation algorithms for these
problems can be combined with our techniques to yield appration algorithms for
“hitting versions” of demand-robust min-cut and shortesthgproblems.

In the hitting version of robust min-cut (resp. shorteshpatach scenariois spec-
ified by an inflation factor; and a set of nodes; C V (rather than a single node).
A feasible solution is a collection of edge s€tBy, F1, ..., Ex} such that for each
scenarioi, Ey U F; contains an root-cut (resp. path) for somee T;. The goal is to
minimizec(Ey) + max;{o; - ¢(E;)}.

4.1 Robust Hitting Cuts

Robust hitting cut is2(log k)-hard, wherek is the number of scenarios, even when
the graph is a star. In fact, if we restrict ourselves to isgatwhich the graph is a
star, the root is the center of the star, ang- oo for all scenarios, then robust hitting
cut on these instances is exactly the hitting set problemohrirast, we can obtain an
O(log k) approximation for robust hitting cut on trees, aliflog n - log k) in general
using results of Nagarajan and Ravi [15] in conjunction wiité following theorem.

Theorem 4.1. If for some class of graphs there ispeapproximation for Steiner multi-
cut on restricted instances, then for that class of grapbsglis a(p+2)-approximation
for robust hitting cut. Conversely, if there igaapproximation for robust hitting cut then
there is ap-approximation for Steiner multicut on restricted instasc

Algorithm: Leta = %(p-i— 14 +/p? + 6p + 1) and letC be the cost that some optimal
solution pays in the second stage. For each termiinadome group, compute the cost of
a minimum roott cut, denotedncut(t). Let7’ := {T; : Vt € T;, o;-mcut(t) > a-C}.
Note that there are only+ 1 possibilities, as in the robust min-cut algorithm. For each
terminal sefl; € 7', separate at least one terminalflinfrom the root in the first stage
using anp-approximation algorithm for Steiner Multicut [10, 15].
Proof of Theorem 4.1. We first show that g-approximation for robust hitting cut
implies ap-approximation for Steiner multicut on restricted instasidGiven a restricted
instance of Steiner multictz, X1, Xo, ..., Xx) build a robust hitting cut instance as
follows: use the same graph and costs, set theirdotbe any element df), X;, and
create scenario%; = X; \ r with o; = oo for eachi. Note that solutions to this
instance correspond exactly to Steiner multicuts of theesaost. Thus robust hitting
cut generalizes Steiner multicut on restricted instances.

We now show the approximate converse, thatapproximation for Steiner multicut
on restricted instances implieg a+ 2)-approximation for robust hitting cut. L&PT
be an optimal solution, and léf; be the edge set it buys in stage one, and’leind
C, be the amount it pays in the first and second stage, respigchiagte we can handle
everyT; ¢ T’ while paying at most - Cs.

We prove that the first stage edgBs C FE[G] given by our algorithm satisfy all
scenarios ir7”’, and have cost(Ey) < p(1 + =%;)C1. Thus, the total solution cost is

at mostp(1 + —2;)C1 + o - Co. Compared to the optimal cosfy + C», we obtain



amax{a, p(1 + =25)}-approximation. Settingg = 3(p + 1 + \/p> + 6p + 1) then
yields the claimedp + 2) approximation ratio.

A cut is called aZ”’-cut if it separates at least one terminal in edéhke 7’ from
the root. There exists @’-cut of cost at mostl + —2;)C1, by the same argument
as in the proof of Theorem 1.1. Suppd3BT cuts awayt; when scenarid’; occurs.
ThenOPT is also an optimal solution to the robust min-cut instancéhersame graph
with terminals{t} | i = 1,2,...,k} ask scenarios. Since, for all € T such that
T € T', we haves, - mcut(t) > « - C, we can constructa rodttf | i = 1,2,...,k}
cut of cost at mostl + —2;)Cy. Thus, the cost of an optimal’-cut is at mos{(1 +
%)Cl. Now apply thep-approximation for Steiner multicut on restricted instag.c
To build the Steiner multicut instance, we use the same gaagledge costs, and create
a groupsX; = T; U {root} for eachT; € 7'. Clearly, the instance is restricted. Note
that every solution to this instance i7a-cut of the same cost, and vice-versa. Thus a
p-approximation for for Steiner multicut on restricted mstes yields & ’-cut of cost
atmostp(1 + -25)C. 0

Corallary 4.1. There is a polynomial timé(log n - log k)-approximation algorithm
for robust hitting cut on instances with scenarios and: nodes, and arO(log k)-
approximation algorithm for robust hitting cut on trees.

4.2 Robust Hitting Paths

Theorem 4.2. If there is ap-approximation for group Steiner tree then there i8a
approximation for robust hitting path. If there is@approximation for robust hitting
path, then there is @-approximation for group Steiner tree.

Proof. Note that robust hitting path generalizes group Steinex fgéven a GST in-
stance with grapld, rootr and groupsXi, Xs, ..., X%, use the same graph and root,
make each group a scenario, andset oo for all scenarios). Thus gp-approximation
for robust hitting path immediately yieldsgaapproximation for group Steiner tree.

Now suppose we have grapproximation for group Steiner tree. Lemma 3.1 guar-
antees that there exists a solutiphy, F1, ..., Ej} of cost at mosROPT whose first
stage edgedyy, are a tree containing roet

The algorithm is as follows. Guess := max;{o;c¢(F;)}. Note that for each sce-
nariosi the treeE, musttouch one of the balls §B(¢, C/0;)|t € T;}, whereB(v, z) :=
{u| distc(v,u) < x}. Thus we can construct group§ := (J,., B(t,C/0;) for each
scenaria and use the-approximation for group Steiner tree on these groups tainbt
a set of edge&y to buy in the first stage.

Note thatc(E()) < pc(Ep) and any scenaribhas a terminat € T; that is within
distanceC'/o; of some vertex incident on an edge of tigg We conclude that the total
costis at mospe(Ey) + C < 2p - OPT. O

5 Conclusion

In this paper we give improved approximation algorithmsrfdsust min-cut and short-
est path problems and extend our results to an interestittngiset” variant. It would



be interesting to use the techniques introduced in thismtapebtain better approxima-
tions for robust minimum multicut and Steiner tree probletse technique of guessing
and pruning crucially uses the fact that each scenario campo the maximum sec-
ond stage cost without worsening the optimal cost. Howetés,is not true for the
stochastic optimization problems and hence our technigesrt extend to stochastic
versions in a straightforward way. It would be interestimgdapt this idea for stochastic
optimization.
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