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Abstract In this paper, we study the performance of static solutions for two-
stage adjustable robust linear optimization problems with uncertain constraint
and objective coefficients and give a tight characterization of the adaptivity gap.
Computing an optimal adjustable robust optimization problem is often intractable
since it requires to compute a solution for all possible realizations of uncertain
parameters [16]. On the other hand, a static solution is a single (here and now)
solution that is feasible for all possible realizations of the uncertain parameters
and can be computed efficiently for most dynamic optimization problems. We
show that for a fairly general class of uncertainty sets, a static solution is optimal
for the two-stage adjustable robust linear optimization problem. This is highly
surprising in view of the usual perception about the conservativeness of static
solutions. Furthermore, when a static solution is not optimal for the adjustable
robust problem, we give a tight approximation bound on the performance of the
static solution that is related to a measure of non-convexity of a transformation of
the uncertainty set. We also show that our bound is at least as good (and in many
case significantly better) as the bound given by the symmetry of the uncertainty
set [9,8].
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1 Introduction

In most real world problems, problem parameters are uncertain at the optimization
or decision-making phase and stochastic and robust optimization are two differ-
ent paradigms to address this parameter uncertainty. In a stochastic optimiza-
tion approach, we model uncertainty using probability distributions and optimize
the expected value of the objective. Stochastic optimization was introduced by
Dantzig [13] and Beale [1], and since then has been extensively studied in liter-
ature. We refer the reader to several textbooks including Infanger [19], Kall and
Wallace [20], Prekopa [22], Shapiro [23], Shapiro et al. [24] and the references
therein for a comprehensive review of stochastic optimization. While the stochas-
tic optimization approach has its merits, it is by and large computationally in-
tractable even when the constraint and objective functions are linear. Shapiro and
Nemirovski [25] give hardness results for two-stage and multi-stage stochastic op-
timization problems where they show that the multi-stage stochastic optimization
problem is computationally intractable even if approximate solutions are desired.
Dyer and Stougie [14] show that a multi-stage stochastic optimization problem
where the distribution of uncertain parameters in any stage also depends on the
decisions in past stages is PSPACE-hard. Even for the stochastic problems that
can be solved efficiently, it is difficult to estimate the probability distributions of
the uncertain parameters from historical data.

Robust optimization is another paradigm for dynamic optimization that has
been recently considered (see Ben-Tal and Nemirovski [3,4,5], El Ghaoui and Le-
bret [15], Bertsimas and Sim [10,11], Goldfarb and Iyengar [17]). In a robust
optimization approach, the uncertain parameters are assumed to belong to some
uncertainty set. The goal is to construct a single (static) solution that is feasible
for all possible realizations of the uncertain parameters from the set and optimizes
the worst case objective value. We point the reader to the survey by Bertsimas et
al. [6] and the book by Ben-Tal et al. [2] and the references therein for an exten-
sive review of the literature in robust optimization. This approach is significantly
more tractable and for a large class of problems, the robust problem is equivalent
to the corresponding deterministic problem in computational complexity [6,2].
However, the robust optimization approach is perceived to be highly conservative
as it optimizes over the worst-case realization of uncertain parameters, and the
solution is not adjustable to the uncertain parameter realization. However, com-
puting an optimal adjustable robust solution is computationally intractable even
for two-stage linear optimization problems. In fact, Feige et al. [16] show that it is
hard to approximate a two-stage fractional set covering problem within a factor
of Ω(log n).

In this paper, we study the performance of static solutions for two-stage ad-
justable robust linear optimization problems under uncertain constraint and ob-
jective coefficients. Approximation bounds for the performance of static solutions
in two-stage and multi-stage linear optimization problems have been studied in
the literature. Bertsimas and Goyal [7] show that if the uncertainty set is per-
fectly symmetric (such as a hypercube or an ellipsoid), a static solution gives a
2-approximation for the adjustable robust linear covering problems under right
hand side uncertainty. Bertsimas et al. [9] generalize the result for general con-
vex compact uncertainty sets and show that the performance of the static so-
lution depends on a measure of symmetry of the uncertainty set, introduced in
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Minkowski [21]. They also extend the approximation bounds to multi-stage prob-
lems. However, the models in [7] and [9] consider linear optimization problems with
only covering constraints of the form aTx ≥ b, a ∈ Rn and b ≥ 0. Moreover, the
uncertainty appears only in the right hand side of the constraints. Therefore, they
do not capture many important applications including revenue management and
resource allocation problems where we require packing constraints with uncertain
constraint coefficient. For instance, in a typical revenue management problem, the
goal is to allocate scarce resources to a demand with uncertain resource require-
ments such that the total revenue is maximized. The constraints in the problem
corresponding to resource capacities are packing constraints and the uncertainty
related to resource requirements appears in the constraint coefficients.

1.1 Our Models

We consider the following two-stage adjustable robust linear optimization problem,
ΠAR under uncertain constraint coefficients.

zAR = max cTx+ min
B∈U

max
y(B)

dTy(B)

Ax+By(B) ≤ h

x ∈ Rn1
+

y(B) ∈ Rn2
+ ,

(1.1)

where A ∈ Rm×n1 , c ∈ Rn1
+ ,d ∈ Rn2

+ ,h ∈ Rm+ . The second-stage constraint ma-

trix B ∈ Rm×n2
+ is uncertain and belongs to a full dimensional compact convex

uncertainty set U ⊆ Rm×n2
+ . The decision variables x represent the first-stage

decisions before the constraint matrix B is revealed. While y(B) represent the
second-stage or recourse decision variables after observing the uncertain constraint
matrix B ∈ U . Therefore, the (adjustable) second-stage decisions depend on the
uncertainty realization. We can assume without loss of generality that U is down-

monotone (see Appendix A), since for any first-stage solution x, the optimal solu-
tion y(B) for any B ∈ U is also feasible for any B̂ ∈ Rm×n2

+ if B̂ ≤ B.
We can model a two-stage resource allocation problem under uncertain resource

requirements using (1.1) where h ∈ Rm+ represent the resource capacities, A denote
the resource requirements of demands in first-stage, x denote the first-stage alloca-
tion decisions, B ∈ U denote the uncertain resource requirements in second-stage
arising from an uncertainty set U and y(B) denote the second-stage adjustable
resource allocation decisions. However, computing an optimal adjustable robust
solution is computationally intractable [16].

The corresponding static robust optimization problem, ΠRob can be formulated
as follows.

zRob = max cTx+ dTy

Ax+By ≤ h, ∀B ∈ U
x ∈ Rn1

+

y ∈ Rn2
+ .

(1.2)

Note that the second-stage solution y is static and does not depend on the re-
alization of uncertain B. Both first-stage and second-stage decisions x and y are
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selected before the second-stage uncertain constraint matrix is known and (x,y) is
feasible for all B ∈ U . We can show that an optimal static robust solution to (1.2)
can be computed efficiently and our goal is compare the performance of an opti-
mal static robust solution with respect to the optimal adjustable robust solution
of (1.1).

The above models have been considered in the literature. Ben-Tal and Ne-
mirovski [4] consider the corresponding one-stage problem under uncertain con-
straint coefficients. They show that a static solution is optimal if the uncertainty
set, U is constraint-wise where each constraint i = 1, . . . ,m can be selected inde-
pendently from a compact convex set Ui. In other words, U is a Cartesian product
of Ui, i = 1, . . . ,m, i.e.,

U = U1 × U2 × . . .× Um.

However, the authors do not discuss performance of static solutions if the constraint-
wise condition on U is not satisfied. Bertsimas and Goyal [8] consider a general
multi-stage convex optimization problem under uncertain constraints and objec-
tive functions and show that the performance of the static solution is related to
the symmetry of the uncertainty set, U . However, the symmetry bound in [8]
can be quite loose in many instances. For example, consider the case when U is
constraint-wise where each Ui, i = 1, . . . ,m is a simples, i.e.,

Ui = {x ∈ Rn+ | eTx ≤ 1}.

The symmetry of U is O(1/n) [9] and the results in [8] imply an approximation
bound of Ω(n). While from Ben-Tal and Nemirovski [4], we know that a static
solution is optimal.

1.2 Our contributions

In this paper, we analyze the performance of static solutions as compared to an
optimal fully-adjustable solution for two-stage adjustable robust linear optimiza-
tion problems under constraint and objective uncertainty. Our main contributions
are summarized below.

Optimality of static solution. We give a tight characterization of the condi-
tions under which a static solution is optimal for the two-stage adjustable robust
problem. The optimality of static solutions depends on the geometric properties
of a transformation of the uncertainty set. In particular, we show that the static
solution is optimal if and only if the transformation of U is convex. If U is a
constraint-wise set, we show that the transformation of U is convex. Therefore,
our result generalizes the result in Ben-Tal and Nemirovski [4] where the authors
show that a static solution is optimal for one-stage adjustable robust problem if
U is a constraint-wise set. We also present other families of uncertainty sets for
which the transformation is convex.

This result is quite surprising as the worst-case choice ofB ∈ U usually depends
on the first-stage solution even if U is constraint-wise unless when U is a hypercube.
For the case of hypercube, each uncertain element can be selected independently
from an interval and in that case, the worst-case B is independent of the first-
stage decision. However, a constraint-wise set is a Cartesian product of general
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convex sets. We show that if the transformation of U is convex, there is an optimal
recourse solution for the worst-case choice of B ∈ U that is feasible for all B ∈ U .
Furthermore, we show that our result can also be interpreted as the following
min-max theorem.

min
B∈U

max
y≥0

{dTy | By ≤ h} = max
y≥0

min
B∈U

{dTy | By ≤ h}.

The inner minimization on the max-min problem implies that the solution y must
be feasible for all B ∈ U and therefore, is a static robust solution. We would like to
note that the above min-max result does not follow from the general saddle-point
theorem [12].

Approximation bounds for the static solution. We give a tight approximation
bound on the performance of the optimal static solution for the adjustable robust
problem when the transformation of U is not convex and the static solution is
not optimal. We relate the performance of static solutions to a natural measure of
non-convexity of the transformation of U . We also present a family of uncertainty
sets and instances where we show that the approximation bound is tight, i.e., the
ratio of the optimal objective value of the adjustable robust problem (1.1) and the
optimal objective value of the robust problem (1.2) is exactly equal to the bound
given by the measure of non-convexity.

We also compare our approximation bounds with the bound in Bertsimas and
Goyal [8] where the authors relate the performance of the static solutions with
the symmetry of the uncertainty set. We show that our bound is stronger than
the symmetry bound in [8]. In particular, for any instance, we can show that our
bound is at least as good as the symmetry bound, and in fact in many cases,
significantly better. For instance, consider the following uncertainty set

U =

B ∈ Rm×n+ |
∑
i,j

Bij ≤ 1

 .

In this case, sym(U) = 1/mn [9] and the symmetry bound is Ω(mn). However, our
bound is 1, i.e., a static solution is optimal for the adjustable robust problem.

Models with both constraint and objective uncertainty. We extend our result
to two-stage models where both constraint and objective coefficients are uncer-
tain. In particular, we consider a two-stage model where the uncertainty in the
second-stage constraint matrix, B is independent of the uncertainty in the second-
stage objective d. Therefore, (B,d) belong to a convex compact uncertainty set U
that is a Cartesian product of the uncertainty set of constraint matrices, UB and
uncertainty set of second-stage objective, Ud.

We show that our results for the model with only constraint coefficient uncer-
tainty can also be extended to this case of both constraint and objective uncer-
tainty. In particular, we show that a static solution is optimal if and only if the
transformation of UB is convex. Furthermore, if the transformation is not convex,
then the approximation bound on the performance of the optimal static solution is
related to the measure of non-convexity of the transformation of UB . Surprisingly,
the approximation bound or the optimality of a static solution does not depend
on the uncertainty set of objectives, Ud. If the transformation of UB is convex, a
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static solution is optimal for all convex compact uncertainty sets Ud ⊆ Rn2
+ . We

also present a family of examples to show that our bound is tight for this case as
well.

We also consider a two-stage adjustable robust model where in addition to the
second-stage constraint matrix, B and objective, d, the right hand side h of the
constraints is also uncertain and

(B,h,d) ∈ U = UB,h × Ud,

where U is a convex compact set that is a Cartesian product of uncertainty set for
(B,h) and uncertainty set for d. For this case, we give a sufficient condition for the
optimality of a static solution that is related to the convexity of the transformation
of uncertainty set UB,h. Note again that the optimality of a static solution does
not depend on the uncertainty set of objectives, Ud. However, our approximation
bounds do not extend for this case if the transformation of UB,h is not convex.

Outline. The rest of the paper is organized as follows: In Section 2, we discuss the
optimality of static solutions for the two-stage adjustable robust problem under
constraint uncertainty and relate it to the convexity of an appropriate transforma-
tion of the uncertainty set. In Section 3, we introduce a measure of non-convexity
for any compact set and in Section 4, we present a tight approximation bound for
the performance of an optimal static solution for the adjustable robust problem,
that is related to the measure of non-convexity of the transformation of the un-
certainty set. In Section 5, we extend our result to two-stage models where both
second-stage constraint and objective are uncertain.

2 Optimality of static solutions

In this section, we present a tight characterization of the conditions under which
a static robust solution computed from (1.2) is optimal for the adjustable robust
problem (1.1). We introduce a transformation of the uncertainty set U and relate
the optimality of a static solution to the convexity of the transformation.

An optimal static solution for (1.2) can be computed efficiently. Note that a
static solution (x,y) is feasible for all B ∈ U . To observe that an optimal static
robust solution can be computed in polynomial time, consider the separation prob-
lem: given a solution x,y, we need to decide whether or not there exists B ∈ U
and j ∈ {1, . . . ,m} such that

eTj (Ax+By) > hj ,

and find a separating hyperplane if (x,y) is not feasible. Therefore, by solving m

linear optimization problems over U we can decide whether the given solution is
feasible or obtain a separating hyperplane. From the equivalence of the separa-
tion and optimization [18], we can compute an optimal static robust solution in
polynomial time. In fact, in Appendix B, we give a compact linear formulation to
compute the optimal static solution for ΠRob.

We can easily see that the static solution is a lower bound of the optimal value
of the adjustable robust problem. Suppose (x∗,y∗) is an optimal solution for ΠRob.
Then, x = x∗,y(B) = y∗ for all B ∈ U is feasible for ΠAR. Therefore,

zAR ≥ zRob. (2.1)
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We would like to study the conditions under with zAR ≤ zRob. Suppose (x∗,y∗(B))
for all B ∈ U is a fully-adjustable optimal solution for ΠAR. Then

zAR = cTx∗ + min
B∈U

max
y(B)

{
dTy(B)

∣∣ By(B) ≤ h−Ax∗
}

zRob ≥ cTx∗ + max
y≥0

{
dTy

∣∣ By ≤ h−Ax∗, ∀B ∈ U } .
Note that h−Ax∗ ≥ 0, since otherwise the second-stage problem becomes infea-
sible for ΠAR. In fact, we can assume without loss of generality that h−Ax∗ > 0.
Otherwise, it is easy to see that zAR = zRob: suppose (h − Ax∗)i = 0 for some i.
Since U is a full-dimensional convex set, we can find B̂ ∈ U such that Bij > 0 for
all j = 1, . . . , n2. Therefore,

min
B∈U

max
y(B)≥0

{
dTy(B)

∣∣ By(B) ≤ h−Ax∗
}
≤ max
y≥0

{
dTy | B̂y ≤ h−Ax∗

}
= 0,

which implies zAR = zRob. Therefore, we need to study conditions under which

max
y≥0

{
dTy

∣∣By ≤ h−Ax∗, ∀B ∈ U } ≥ min
B∈U

max
y≥0

{
dTy

∣∣By ≤ h−Ax∗} , (2.2)

where h−Ax∗ > 0.

2.1 One-stage models

Motivated by (2.2), we consider the following one-stage adjustable robust problem
ΠI

AR(U ,h):

zIAR(U ,h) = min
B∈U

max
y

dTy

By ≤ h

y ∈ Rn+,

(2.3)

where h ∈ Rm+ ,d ∈ Rn+ and U ⊆ Rm×n+ is the convex, compact and down-monotone

uncertainty set. The corresponding one-stage static robust problem ΠI
Rob(U ,h) can

be formulated as follows:

zIRob(U ,h) = max dTy

By ≤ h, ∀B ∈ U
y ∈ Rn+.

(2.4)

Ben-Tal and Nemirovski [4] study these one-stage models and show that the solu-
tion of ΠI

Rob(U ,h) is optimal if the uncertainty set U is a Cartesian product of its
projection onto its row vector spaces.

Consider ΠI
AR(U ,h) as defined in (2.3). We can write the dual problem of the

inner maximization problem.

zIAR(U ,h) = min{hTα | BTα ≥ d,B ∈ U ,α ∈ Rm+}.

Substituting λ = hTα and α = λµ, we can reformulate zIAR(U ,h) as follows.

zIAR(U ,h) = min {λ | λBTµ ≥ d, hTµ = 1, B ∈ U ,µ ∈ Rm+}. (2.5)
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Fig. 1: The boundary of the set T (U , e) when n = 3.

2.2 Transformation of U

Motivated from the formulation (2.5), we define the following transformation
T (U ,h) of the uncertainty set U ∈ Rm×n+ and h > 0.

T (U ,h) =
{
BTµ

∣∣∣ hTµ = 1, B ∈ U , µ ≥ 0
}
. (2.6)

For instance, if h = e, then T (U , e) is the set of all convex combinations of rows
of B ∈ U for all B ∈ U . Note that T (U , e) is not necessarily convex in general. We
discuss several examples below to illustrate properties of T (U ,h).

Example 1 (U where T (U ,h) is non-convex). Consider the following uncertainty
set U :

U =

B ∈ [0, 1]n×n

∣∣∣∣∣∣ Bij = 0, ∀i 6= j,

n∑
j=1

Bjj ≤ 1

 . (2.7)

T (U , e) is non-convex. Figure 1 illustrates T (U , e) when n = 3. In fact, in Theo-
rem 2, we prove that T (U ,h) is non-convex for all h > 0. On the other hand, in
the following two lemmas, we show that T (U ,h) can be convex for all h > 0 for
some interesting families of examples.

Example 2 (Constraint-wise uncertainty set). Suppose the uncertainty set U is
constraint-wise where each constraint i = 1, . . . ,m can be selected independently
from a compact convex set Ui. In other words, U is a Cartesian product of Ui, i =
1, . . . ,m, i.e.,

U = U1 × U2 × . . .× Um,

then T (U ,h) is convex for all h > 0. In particular, we have the following lemma.

Lemma 1 Suppose the convex compact uncertainty set U is a Cartesian product of its

row vector spaces of the following form:

U = {B | BT ej ∈ Uj},
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where Uj is a compact convex set in Rn+. Then T (U ,h) is convex for all h > 0.

We provide a detailed proof of Lemma 1 in Appendix C. In Ben-Tal and Ne-
mirovski [4], the authors show a static solution is optimal for the one-stage ad-
justable robust problem if U is constraint-wise. In later discussion, we show that a
static solution is optimal if and only if T (U ,h) is convex for all h > 0; thereby gen-
eralizing the result in [4]. Note that constraint-wise uncertainty is quite analogous
to independence in distributions for stochastic optimization problems.

Example 3 (Symmetric projections). Suppose the uncertainty set U has sym-
metric projections, i.e., the projections of U onto each of its row vector spaces are
the same, then T (U ,h) is convex for all h > 0. In particular, we have the following
lemma.

Lemma 2 Consider any convex compact uncertainty set U ⊆ Rm×n+ . For any j =
1, . . . ,m, let

Uj =
{
b | ∃ B ∈ U , b = BT ej

}
.

Suppose U is such that Ui = Uj for all i, j ∈ {1, . . . ,m}. Then T (U ,h) is convex for

all h > 0.

We provide a proof of Lemma 2 in Appendix C.
We would like to note that a permutation invariant set is an important class of

uncertainty set that is a special case of having symmetric projections. We define a
set U ⊆ Rm×n+ to be permutation invariant if for any B ∈ U and any permutation
σ of [m], the matrix obtained by permuting the rows of B, say Bσ also belongs to
U . For any permutation invariant U ,

b ∈ Uj for some j = 1, . . . ,m⇒ b ∈ Ui, ∀i = 1, . . . ,m.

This implies that U has symmetric projections and T (U ,h) is convex for all h > 0.

2.3 Main Theorem

Now, we introduce the main theorem which gives a tight characterization of the
optimality of the static solution for the two-stage adjustable robust problem.

Theorem 1 (Optimality of Static Solutions) Let zAR be the objective of the two-

stage adjustable robust problem ΠAR defined in (1.1) and zRob be that of ΠRob defined

in (1.2). Then, zAR = zRob if and only if T (U ,h) is convex for all h > 0.

Note that zAR = zRob implies that the optimal static robust solution for ΠRob

is also optimal for the adjustable robust problem, ΠAR. In order to prove Theo-
rem 1, we first reformulate ΠI

AR(U ,h) and ΠI
Rob(U ,h) as optimization problems over

T (U ,h). From (2.5) and the definition of T (U ,h), we have the following lemma.

Lemma 3 Given U ⊆ Rm×n+ and h > 0, the one-stage adjustable robust problem

ΠI
AR(U ,h) defined in (2.3) can be formulated as

zIAR(U ,h) = min {λ | λb ≥ d, b ∈ T (U ,h)}. (2.8)
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We can also reformulateΠI
Rob(U ,h) as an optimization problem over conv(T (U ,h)

as follows.

Lemma 4 Given U ⊆ Rm×n+ and h > 0, the one-stage static robust problem ΠI
Rob(U ,h)

defined in (2.4) can be formulated as

zIRob(U ,h) = min {λ | λb ≥ d, b ∈ conv(T(U ,h))}. (2.9)

Proof Suppose

U = conv(B1, . . . ,BK)

where Bj ∈ U , j = 1, . . . ,K are the extreme points of U . Let bji = BT
j ei, we can

rewrite (2.4) as follows.

zIRob(U ,h) = max
{
dTy

∣∣ Bjy ≤ h, ∀j = 1, . . . ,K,y ∈ Rn+
}
.

Again, by writing the dual problem, we have

zIRob(U ,h) = min


K∑
j=1

hTαj

∣∣∣∣∣∣
K∑
j=1

BT
j α

j ≥ d,αj ∈ Rm+


Denote θj = hTαj , λ = eT θ, we have

zIRob(U ,h) = min

λ
∣∣∣∣∣∣ λ

K∑
j=1

θj
λ
BT
j
αj

θj
≥ d,αj ≥ 0


= min

λ
∣∣∣∣∣∣ λ

K∑
j=1

θj
λ
b̂j ≥ d, b̂j ∈ T (U ,h)


= min{λ | λb ≥ d, b ∈ conv(T (U ,h))}

where the second equality holds because hT α
j

θj
= 1, j = 1, . . . ,K. ut

Note that the formulations (2.8) and (2.9) are bilinear optimization problems
over T (U ,h) and not necessarily convex even if T (U ,h) is convex. However, the
reformulations provide interesting geometric insights about the relation between
the adjustable robust and static robust problems with respect to properties of
U . Figure 2 illustrates the geometric interpretation of zIAR(U ,h) and zIRob(U ,h) in
terms of the formulation in Lemma 3 and 4. Now, we are ready to prove Theorem 1.

Proof of Theorem 1 Suppose T (U ,h) is convex for all h > 0. Let (x∗,y∗(B),B ∈ U)
be an optimal fully-adjustable solution to ΠAR. Then

zAR = cTx∗ + min
B∈U

max
y(B)≥0

{
dTy(B)

∣∣ By(B) ≤ h−Ax∗
}

= cTx∗ + zIAR(U ,h−Ax∗),
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Fig. 2: A geometric illustration of zIAR(U ,h) and zIRob(U ,h) when d = 1
2e:

For zIAR(U ,h), the optimal solution b is the point where d intersects with the
boundary of T (U ,h), while for zIRob(U ,h), the optimal solution is b = d since
d ∈ conv(T (U ,h)).

where the second equation follows from (2.3). We can assume without loss of
generality that h−Ax∗ > 0 as discussed earlier. Now,

zRob ≥ cTx∗ + max
y≥0

{
dTy

∣∣ By ≤ h−Ax∗, ∀B ∈ U }
= cTx∗ + zIRob(U ,h−Ax∗)
= cTx∗ + zIAR(U ,h−Ax∗) (2.10)

= zAR,

where the first inequality follows as x∗ is a feasible first-stage solution for the static
robust problem. The second equation follows from (2.4). Equation (2.10) follows
from Lemma 3 and Lemma 4 and the fact that T (U ,h − Ax∗) is convex. Also,
from (2.1) we know that zAR ≥ zRob which implies zAR = zRob.

Conversely, suppose zAR = zRob. For the sake of contradiction, assume T (U ,h)
is non-convex for some h = ĥ. Then, there must exist b̂ ∈ Rn+ such that b̂ 6∈ T (U , ĥ)

but b̂ ∈ conv(T (U , ĥ)). Consider the following instance of ΠAR and ΠRob:

A = 0, c = 0, h = ĥ, d = b̂.

Note that in this case, we have zAR = zIAR(U , ĥ) and zRob = zIRob(U , ĥ). Therefore,
by our assumption,

zIAR(U , ĥ) = zIRob(U , ĥ).

Since b̂ ∈ conv(T (U , ĥ)), α = 1, b = b̂ is a feasible solution for zIRob(U , ĥ). Therefore,
zIRob(U , ĥ) ≤ 1, which implies zIAR(U , ĥ) ≤ 1. However, this would further imply that
there exists some b1 ∈ T (U , ĥ) such that b1 ≥ b̂. Since U is down-monotone by
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our assumption, so is T (U , ĥ) (see Appendix A). Therefore, b̂ ∈ T (U , ĥ), which is
a contradiction. ut

2.4 Min-Max Theorem interpretation

We can interpret a special case of Theorem 1 as a min-max theorem. Consider the
case A = 0, c = 0, in which we have

zAR = zIAR(U ,h), zRob = zIRob(U ,h).

Recall:

zIAR(U ,h) = min
B∈U

max
y

{
dTy

∣∣∣∣ By ≤ h} .
We define the following function:

f(y,B) =

{
dTy, if By ≤ h
−∞, otherwise.

Now, we can express zIAR(U ,h) and zIRob(U ,h) as follows:

zIAR(U ,h) = min
B∈U

max
y

f(y,B)

and

zIRob(U ,h) = max
y

min
B∈U

f(y,B).

Therefore, from Theorem 1, we have:

min
B∈U

max
y

f(y,B) = max
y

min
B∈U

f(y,B) (2.11)

if and only if T (U ,h) is convex. We would like to note that the min-max equal-
ity (2.11) does not follow from the general Saddle-Point Theorem [12] since f(y,B)
is not a quasi-convex function of B.

3 Measure of non-convexity

In this section, we introduce a measure of non-convexity for general compact sets
and show that the performance of the optimal static solution is related to this
measure of non-convexity of the transformation T (U ,h) of the uncertainty set U .

Definition 1 Given compact set S, we define the measure of non-convexity, κ(S)
as follows.

κ(S) = min {α | conv(S) ⊆ αS } . (3.1)
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Fig. 3: A geometric illustration of κ(S) when n = 2: S is down-monotone and
shaded with dot lines, conv(S) is marked with dashed lines, and the outmost curve
is the boundary of κ · S. Draw a line from the origin which intersects with the
boundary of S at v and the boundary of conv(S) at u. κ(S) is the largest ratio of
such u and v’s.

For any compact set S ⊆ Rn, κ(S) is the smallest factor by which S must be
scaled to contain the convex hull of S. Note that it is not translation invariant, i.e.,
κ(S + v) 6= κ(S). If S is convex, then κ(S) = 1. Therefore, if the uncertainty set U
is a Cartesian product of its row vector spaces, then κ(T (U ,h)) = 1 for all h > 0

(Lemma 1). On the other hand, if S is non-convex, then κ(S) > 1. For instance,
consider the following set:

Sn =

{
x ∈ Rn+

∣∣∣∣∣
n∑
i=1

x
1
2

j ≤ 1

}
Figure 3 illustrates set Sn for n = 2 and its measure of non-convexity. In

Theorem 2, we prove that Sn is non-convex for n > 1 and κ(Sn) = n. Moreover,
consider the uncertainty set U defined in (2.7):

U =

B ∈ [0, 1]n×n

∣∣∣∣∣∣ Bij = 0, ∀i 6= j,

n∑
j=1

Bjj ≤ 1

 .

We had mentioned earlier that T (U , e) is non-convex. In fact, we can show that
T (U , e) = Sn in this case. We introduce a family of uncertainty sets Uθ such that
T (U ,h) is non-convex for all h ≥ 0.

Theorem 2 Suppose the uncertainty set U is:

Uθ =

B ∈ [0, 1]n×n

∣∣∣∣∣∣ Bij = 0, ∀i 6= j,

n∑
j=1

Bθjj ≤ 1

 .
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with θ > 0. Then,

1. T (Uθ,h) can be written as:

T (Uθ,h) =

b ∈ Rn+

∣∣∣∣∣∣
n∑
j=1

(
bj
hj

) θ
θ+1

≤ 1

 (3.2)

2. The convex hull of T (Uθ,h) can be written as:

conv(T (Uθ,h)) =

b ∈ Rn+

∣∣∣∣∣∣
n∑
j=1

bj
hj
≤ 1

 . (3.3)

3. T (Uθ,h) is non-convex for all h > 0.

4. κ(T (Uθ,h)) = n
1
θ for all h > 0.

We present the proof of Theorem 2 in Appendix D.

4 Approximation bounds

In this section, we consider the general case where a static solution is not optimal
for the adjustable robust problem, and with the measure of non-convexity defined
in (3.1), we present a tight bound on the performance of the optimal two-stage
static solution for the adjustable robust problem defined in (1.1). We also compare
our bound with the symmetry bound introduced by Bertsimas and Goyal [8]. In
particular, we show that our bound is at least as good as the symmetry bound,
and is significantly better in many cases.

We prove the following theorem which illustrates the relationship between the
performance of the static solution and the non-convexity of T (U ,h).

Theorem 3 For any compact set U ⊆ Rm×n+ , let

ρ(U) = max{κ(T (U ,h)) | h > 0}.

Let zAR be the optimal value of ΠAR in (1.1) and zRob be the optimal value of ΠRob

in (1.2). Then,

zAR ≤ ρ(U) · zRob.

Furthermore, we can show that the bound is tight.

Proof Suppose (x∗,y∗(B),B ∈ U) is an optimal fully-adjustable solution for ΠAR.
Based on the discussion in Theorem 1, we can assume without loss of generality
that h−Ax∗ > 0. Then

zAR = cTx∗ + min
B∈U

max
y(B)≥0

{
dTy(B) | By(B) ≤ h−Ax∗

}
= cTx∗ + zIAR(U ,h−Ax∗),

and
zRob ≥ cTx∗ + max

y

{
dTy | By ≤ h−Ax∗, ∀B ∈ U

}
= cTx∗ + zIRob(U ,h−Ax∗).

(4.1)



A Tight Characterization of the Performance of Static Solutions 15

Let ĥ = h − Ax∗ and κ = κ(T (U , ĥ)). From Lemmas 4, we can reformulate
zIRob(U , ĥ) as follows.

zIRob(U , ĥ) = min
b∈conv(T (U,ĥ))

{λ | λb ≥ d, λ ≥ 0}. (4.2)

Suppose (λ̂, b̂) be the minimizer for zIRob(U , ĥ) in (4.2). Therefore,

b̂ ∈ conv(T (U , ĥ))⇒ 1

κ
· b̂ ∈ T (U , ĥ).

Now,

zIAR(U , ĥ) = min
b∈T (U,ĥ)

{λ | λb ≥ d, λ ≥ 0}

≤ κ · λ̂
= κ · zIRob(U , ĥ), (4.3)

where the first equation follows from the reformulation of zIAR(U , ĥ) in Lemma 3.
The second inequality follows as (1/κ)b̂ ∈ T (U , ĥ) and λ̂b̂ ≥ d and the last equality
follows as zIRob(U , ĥ) = λ̂. Therefore,

zAR = cTx∗ + zIAR(U ,h−Ax∗)
≤ cTx∗ + κ · zIRob(U ,h−Ax∗) (4.4)

≤ κ ·
(
cTx∗ + zIRob(U ,h−Ax∗)

)
≤ ρ(U) · zRob, (4.5)

where (4.4) follows from (4.3) and the last inequality follows from (4.1) and the
fact that κ = κ(T (U , ĥ)) ≤ ρ(U).

Tightness of the bound. We can show that the bound is tight. In particular,
given any scalar µ > 1 and some n ∈ Z+, take A = 0, c = 0,d = e,h = e and
θ = logµ n. Consider the following uncertainty set:

U =

B ∈ [0, 1]n×n

∣∣∣∣∣∣ Bij = 0, ∀i 6= j,

n∑
j=1

Bθjj ≤ 1.

 .

For ΠAR, we have

zAR = min
B

max
y

eTy
∣∣∣∣∣∣ Bjjyj ≤ 1, j = 1, . . . , n,

n∑
j=1

Bθjj ≤ 1


= min

B


n∑
j=1

1

Bjj

∣∣∣∣∣∣
n∑
j=1

Bθjj ≤ 1

 .

This is a convex problem and by solving the KKT conditions, we have the optimal
solution as Bjj = n−

1
θ for j = 1, . . . , n. Hence, the optimal value of zAR = n · n

1
θ =

n1+
1
θ .
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For ΠRob, we have

zRob = max
y

{
eTy

∣∣∣∣ Bjjyj ≤ 1, ∀B ∈ U , j = 1, . . . , n.

}
The constraints essentially enforce Bjjyj ≤ 1 for all Bjj ≤ 1, j = 1, . . . , n. We only
need to consider the extreme case where Bjj = 1, which yields yj = 1. Therefore,
zRob = n and

zAR
zRob

=
n1+

1
θ

n
= n

1
θ = µ.

On the other hand, from Theorem 2, since κ(T (U ,h)) = n
1
θ for all h > 0, we

have ρ(U) = n
1
θ = µ. Therefore, zAR = ρ(U) · zRob, i.e., our bound is tight. ut

In Theorem 3, we prove a bound on the optimal objective value, zAR of ΠAR

with respect to the optimal objective value, zRob of ΠRob. Note that this also implies
a bound on the performance of the optimal static robust solution for ΠRob for the
adjustable robust problem, ΠAR. Furthermore, in using a static robust solution,
(x̂, ŷ) for the two-stage adjustable robust problem, we only implement the first-
stage solution, x̂ and recompute the optimal second-stage solution, y(B) after the
uncertain constraint matrix, B is known. Therefore, the cost of such a solution
would only be better than zRob which is at most ρ(U) · zAR.

4.1 Comparison with symmetry bound [8]

Bertsimas and Goyal [8] consider a general two-stage adjustable robust convex
optimization problem with uncertain convex constraints and under mild condi-
tions, show that the performance of a static solution is related to the symmetry of
the uncertainty set. In this section, we compare our bound κ(U) defined in (3.1)
with the symmetry bound of [8] for the case of two-stage adjustable robust lin-
ear optimization problem under uncertain constraints. The notion of symmetry is
introduced by Minkowski [21].

Definition 2 Given a nonempty convex compact uncertainty set S ⊆ Rm and a
point s ∈ S, the symmetry of s with respect to S is defined as:

sym(s,S) := max{α ≥ 0 | s+ α(s− ŝ) ∈ S, ∀ŝ ∈ S}.

The symmetry of the set S is defined as:

sym(S) := max{sym(s,S) | s ∈ S}. (4.6)

The maximizer of (4.6) is called the point of symmetry.

In Bertsimas and Goyal [8], the authors prove the following bound on the per-
formance of static solution for the two-stage adjustable robust convex optimization
with uncertain constraints under some mild conditions.

zAR ≤
(

1 +
1

sym(U)

)
· zRob

We show that for the case of two-stage adjustable robust linear optimization under
uncertain constraints, our approximation bound in 3 is at least as good as the
symmetry bound for all instances.
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Theorem 4 Consider uncertainty set U ⊆ Rm×n+ . Then,

max{κ(T (U ,h)) | h > 0} ≤ 1 +
1

sym(U)
.

Proof For a given h > 0, from the definition of κ(·) in (3.1), we have

conv(T (U ,h)) ⊆ κ(T (U ,h)) · T (U ,h).

Therefore, it is sufficient to show

conv(T (U ,h)) ⊆
(

1 +
1

sym(U)

)
· T (U ,h) (4.7)

for all h > 0. Let

B0 = arg max{sym(B,U) | B ∈ U}

be the point of symmetry. Then, from the result in [9], we have(
1 +

1

sym(U)

)
·B0 ≥ B, ∀B ∈ U . (4.8)

Now, given any h > 0, consider an arbitrary b ∈ conv(T (U ,h)). There exists
B1, . . . ,BK ∈ U such that

b =
K∑
j=1

θjB
T
j λ

j , hTλj = 1, λj ∈ Rm+ , j = 1, . . . ,K, eT θ = 1, θ ∈ RK+ .

From (4.8), since B1, . . . ,BK ∈ U , we have

b ≤
K∑
j=1

θj

(
1 +

1

sym(U)

)
BT

0 λ
j

=

(
1 +

1

sym(U)

)
BT

0

 K∑
j=1

θjλ
j

 ∈ (1 +
1

sym(U)

)
· T (U ,h).

The last inequality holds because

hT

 K∑
j=1

θjλ
j

 =

 K∑
j=1

θjh
Tλj

 = eT θ = 1.

Since U is down-monotone by assumption, so is T (U ,h) (Appendix A), and we
have

b ∈
(

1 +
1

sym(U)

)
· T (U ,h)

and therefore the theorem. ut
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Uncertainty set Our bound Symmetric bound [8]

Constraint-wise set U = U1 × . . .× Um 1 1 + 1
min1≤i≤m sym(Ui)

Permutation invariant U 1 1 + 1
sym(U)

{B : ||B||θ1 ≤ 1, ||B||θ2 ≤ r} ⊂ Rm×n+ 1 1 + r(mn)
1
θ1

{B : ||B||1 ≤ 1} ⊂ Rm×n+ 1 1 +mn

{B : ||B||θ ≤ 1} ⊂ Rm×n+ 1 1 + (mn)
1
θ

{B :
∑n
j=1Bjj ≤ 1, Bij = 0, ∀i 6= j} ⊂ [0, 1]n×n n 1 + n

{B :
∑n
j=1B

θ
jj ≤ 1, Bij = 0, ∀i 6= j} ⊂ [0, 1]n×n n

1
θ 1 + n

1
θ

Table 1: A comparison between the non-convexity bound and the symmetry
bound for various uncertainty sets. All the norms are entry-wise, i.e., ||A||p =(∑m

i=1

∑n
j=1 |aij |

p
)1/p

.

Theorem 4 states that our bound in Theorem 3 is at least as good as the
symmetry bound. In fact, consider the following example:

U =

B ∈ [0, 1]n×n

∣∣∣∣∣∣
∑
i,j

Bij ≤ 1

 .

In this case, U has symmetric projections. Therefore, from Lemma 2, T (U ,h) is
convex for all h > 0 and

max{κ(T (U ,h)) | h > 0} = 1.

On the other hand, U is a simplex and as shown in Bertsimas et al. [9], sym(U) = 1
n2 .

Therefore,

1 +
1

sym(U)
= n2 + 1,

i.e., our bound is significantly better than the symmetry bound.
Furthermore, Table 1 compares our bound with the symmetry bound across

several interesting uncertainty sets. Noticeably, our bound is better in all the
examples.

5 Two-stage Model with Constraint and Objective uncertainty

In this section, we consider a two-stage adjustable robust linear optimization prob-
lem where both constraint and objective coefficients are uncertain. In particular,

we consider the following two-stage adjustable robust problem, Π
(B,d)
AR .

z
(B,d)
AR = max cTx+ min

(B,d)∈U
max
y(B,d)

dTy(B,d)

Ax+By(B,d) ≤ h

x ∈ Rn1
+

y(B,d) ∈ Rn2
+ ,

(5.1)

where A ∈ Rm×n1 , c ∈ Rn1
+ , h ∈ Rm+ , and (B,d) are uncertain second-stage con-

straint matrix and objective that belong to a convex compact uncertainty set
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U ⊆ Rm×n2
+ × Rn2

+ . We consider the case where the uncertainty in constraint ma-
trix, B does not depend on the uncertainty in objective coefficients d. Therefore,

U = UB × Ud,

where UB ⊆ Rm×n2
+ is a convex compact uncertainty set of constraint matrices

and Ud ⊆ Rn2
+ is a convex compact uncertainty set of the second-stage objective.

As previous sections, we can assume without loss of generality that UB is down-
monotone.

We formulate the corresponding static robust problem, Π
(B,d)
Rob , as follows.

z
(B,d)
Rob = max

x,y
min
d∈Ud

cTx+ dTy

Ax+By ≤ h, ∀B ∈ UB

x ∈ Rn1
+

y ∈ Rn2
+ .

(5.2)

We can compute an optimal static robust solution efficiently. It is easy to see that
the separation problem for (5.2) can be solved in polynomial time. In fact, we can
also give a compact LP formulation to compute an optimal static robust solution

similar to (1.2). Now, suppose the optimal solution of Π
(B,d)
Rob is (x∗,y∗), then

x = x∗,y(B,d) = y∗ for all (B,d) ∈ U is a feasible solution to Π
(B,d)
AR . Therefore,

z
(B,d)
AR ≥ z(B,d)Rob . (5.3)

We prove the following main theorem.

Theorem 5 Let z
(B,d)
AR be the optimal objective value of Π

(B,d)
AR in (5.1) defined over

the uncertainty U = UB × Ud. Let z
(B,d)
Rob be the optimal objective value of Π

(B,d)
Rob

in (5.2). Also, let

ρ(UB) = max
h>0

κ(T (UB ,h)).

Then,

z
(B,d)
AR ≤ ρ(UB) · z(B,d)Rob .

Furthermore, the bound is tight.

If T (UB ,h) is convex for all h > 0, then ρ(UB) = 1 and z
(B,d)
AR ≤ z(B,d)Rob . In this

case, Theorem 5 implies that a static solution is optimal for the adjustable robust

problem, Π
(B,d)
AR . Therefore, if UB is constraint-wise or has symmetric projections

then T (UB ,h) is convex for all h > 0 (Lemmas 1 and 2). In general, the per-
formance of static solution depends on the worst-case measure of non-convexity
of T (UB ,h) for all h > 0. Surprisingly, the approximation bound for the static
solution does not depend on the uncertain set of objectives, Ud.

To prove the Theorem 5, we need to introduce the following one-stage models
as in Section 2, ΠI

AR(U ,h) and ΠI
Rob(U ,h).

zIAR(U ,h) = min
(B,d)∈U

max
y

dTy

By ≤ h

y ∈ Rn+,

(5.4)
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zIRob(U ,h) = max
y

min
d∈Ud

dTy

By ≤ h, ∀B ∈ UB

y ∈ Rn+.

(5.5)

where U = UB × Ud and h > 0. Similar to Lemma 3 and Lemma 4, we can
reformulate the above problems as optimization problems over the transformation
set T (UB ,h).

Lemma 5 The one-stage adjustable robust problem ΠI
AR(U ,h) defined in (5.4) can be

written as:

zIAR(U ,h) = min{ λ | λb ≥ d, b ∈ T (UB ,h),d ∈ Ud}.

Proof Consider ΠI
AR(U ,h), by writing the dual of its inner maximization problem,

we have

zIAR(U ,h) = min{hTα | BTα ≥ d, (B,d) ∈ U ,α ∈ Rm+}

= min
{
λhT

(
α

λ

) ∣∣∣ λBT
(
α

λ

)
≥ d,hTα = λ, (B,d) ∈ U ,α ∈ Rm+

}
.

= min{ λ | λb ≥ d, b ∈ T (UB ,h),d ∈ Ud},

where the last equality holds because U = UB × Ud. ut

Lemma 6 The one-stage static robust problem ΠI
Rob(U ,h) defined in (5.5) can be

written as:

zIRob(U ,h) = min{ λ | λb ≥ d, b ∈ conv(T (UB ,h)),d ∈ Ud}.

Proof Suppose
U = conv((B1,d1) . . . , (BK ,dK))

where (Bj ,dj), j = 1, . . . ,K are the extreme points of U . We can rewrite (5.5) as
follows.

zIRob(U ,h) = max{ z | Bjy ≤ h, z − dTj y ≤ 0, ∀j = 1, . . . ,K,y ∈ Rn+}.

Again, by writing the dual problem, we have

zIRob(U ,h) = min


K∑
j=1

hTαj

∣∣∣∣∣∣
K∑
j=1

BT
j αj ≥

K∑
j=1

βjdj , e
Tβ = 1,αj ∈ Rm+ ,β ∈ RK+

 .

Note that U = UB × Ud, d can be chosen regardless of B. Therefore, denote
θj = hTαj , λ = eT θ and we have

zIRob(U ,h) = min


K∑
j=1

θjh
T

(
αj
θj

) ∣∣∣∣∣∣ λ
K∑
j=1

θj
λ
BT
j

(
αj
θj

)
≥ d,d ∈ Ud,αj ≥ 0


= min

 λ

∣∣∣∣∣∣ λ
K∑
j=1

θj
λ
b̂j ≥ d, b̂j ∈ T (UB ,h),d ∈ Ud


= min{ λ | λb ≥ d, b ∈ conv(T (UB ,h)),d ∈ Ud},

where the second equality holds because hT
(
αj
θj

)
= 1, j = 1, . . . ,K. ut
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Now, we are ready to prove Theorem 5.

Proof of Theorem 5 Suppose (x∗,y∗(B,d), (B,d) ∈ U) is a fully-adjustable optimal

solution for Π
(B,d)
AR . As discussed earlier, we can assume without loss of generality

that h−Ax∗ > 0. Then,

z
(B,d)
AR = cTx∗ + min

(B,d)∈U
max

y(B,d)≥0

{
dTy(B,d)

∣∣ By(B,d) ≤ h−Ax∗
}

= cTx∗ + zIAR(U ,h−Ax∗), (5.6)

and
z
(B,d)
Rob ≥ cTx∗ + max

y≥0
min
d∈Ud

{
dTy

∣∣∣ By ≤ h−Ax∗, ∀B ∈ UB }
= cTx∗ + zIRob(U ,h−Ax∗).

(5.7)

Let ĥ = h−Ax∗ and κ = κ(T (UB , ĥ)). Suppose (λ̂, b̂, d̂) is an optimal solution for
ΠI

Rob(U , ĥ). Therefore

b̂ ∈ conv(T (UB , ĥ)) ⇒ 1

κ
· b̂ ∈ T (UB , ĥ).

Also,

λ̂ · b̂ ≥ d̂ ⇒ (κλ̂) ·
(

1

κ
b̂

)
≥ d̂,

which implies that (κλ̂, b̂/κ, d̂) is a feasible solution to ΠI
AR(U , ĥ) and

zIAR(U , ĥ) ≤ κ · zIRob(U , ĥ).

From (5.6), we have

z
(B,d)
AR = cTx∗ + zIAR(U ,h−Ax∗)

≤ cTx∗ + κ · zIRob(U ,h−Ax∗)
≤ κ · (cTx∗ + zIRob(U ,h−Ax∗)) (5.8)

≤ κ · z(B,d)Rob ,

where (5.8) holds because κ ≥ 1, the last inequality holds from (5.7).
We can show that the bound is tight using the same family of uncertainty sets

of matrices UBθ in the discussion of Theorem 3:

UBθ =

B ∈ [0, 1]n×n

∣∣∣∣∣∣ Bij = 0, ∀i 6= j,

n∑
j=1

Bθjj ≤ 1

 .

Consider the following instance of Π
(B,d)
AR and Π

(B,d)
Rob :

A = 0, c = 0,h = e,Ud = {e}.

From the discussion in Theorem 3, the bound in Theorem 5 is tight. ut

Note that surprisingly, the bound only depends on the measure of non-convexity
of UB and is not related to Ud. Therefore, if T (UB ,h) is convex for all h > 0, then

a static solution is optimal for the adjustable robust problem, Π
(B,d)
AR irrespective



22 D. Bertsimas, V. Goyal, and B. Lu

of Ud. As a special case where there is no uncertainty in B, i.e., UB = {B0}, and
the only uncertainty is in Ud, T (UB ,h) is convex for all h > 0 and a static solu-
tion is optimal. In fact, the optimality of static solution in this case follows from
von Neumann’s Min-max theorem [26]. Therefore, we can interpret the result as
a generalization of von Neumann’s theorem.

General Case when U is not a Cartesian product. For the general case where
the uncertainty set U of constraint matrices, B and objective coefficients, d is not
a Cartesian product of the respective uncertainty sets, our bound of Theorem 5
does not extend. Consider the following example:

A = 0, c = 0,h = e,

U =

(B,d) ∈ Rn×n+ ×Rn+

∣∣∣∣∣∣
n∑
i=1

Bii ≤
n∑
j=1

dj ≤ 1,d ≥ ε

n
e, Bij = 0, ∀i 6= j

 .

Now,

z
(B,d)
AR = min

(B,d)∈U
max
y

{
dTy

∣∣ Bjjyj ≤ 1, ∀j = 1, . . . , n, y ≥ 0
}

= min
(B,d)∈U

n∑
j=1

dj
Bjj

≥ 1,

where the second equation follows from the fact that at optimum of the outer
minimization problem, Bjj > 0 for all j = 1, . . . , n and yj = 1/Bjj for the inner
maximization problem. Otherwise, if Bjj = 0 for some j, then yj and djyj are both
unbounded as dj > ε/n > 0. The last equality follows as for any (B,d) ∈ U ,

n∑
j=1

Bjj ≤
n∑
j=1

dj ,

which implies that Bjj ≤ dj for some j ∈ [n].

For the robust problem, Π
(B,d)
Rob , consider any static solution y ≥ 0. For all

j = 1, . . . , n,
Bjjyj ≤ 1, ∀(B,d) ∈ U .

Since there exist (B,d) ∈ U such that Bjj = 1, yj ≤ 1 for all j = 1, . . . , n. Moreover,
y = e is a feasible solution as Bjj ≤ 1 for all (B,d) ∈ U for all j ∈ [n]. Therefore,

z
(B,d)
Rob = min

(B,d)∈U
dT e ≤ ε,

where the second inequality follows by setting dj = ε/n for all j = 1, . . . , n. There-
fore,

z
(B,d)
AR ≥ 1

ε
· z(B,d)Rob ,

where ε > 0 is arbitrary. Therefore, the performance of the optimal static robust
solution as compared to the optimal fully adjustable solution can not be bounded
by the measure of non-convexity as in Theorem 5.
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5.1 Constraint, right-hand-side and objective uncertainty

In this section, we discuss the case where all of the right-hand-side vector, con-
straint and objective coefficients are uncertain. Consider the following adjustable

robust problem, Π
(B,h,d)
AR .

z
(B,h,d)
AR = max cTx+ min

(B,h,d)∈UB,h,d
max

y(B,h,d)
dTy(B,h,d)

Ax+By(B,h,d) ≤ h

x ∈ Rn1
+

y(B,h,d) ∈ Rn2
+ ,

(5.9)

where A ∈ Rm×n1 , c ∈ Rn1
+ . In this case, (B,h,d) ∈ UB,h,d are uncertain and

UB,h,d ⊆ Rm×n2
+ ×Rm+ ×Rn2

+ is convex and compact. We consider the case that the
uncertainties in constraint matrix,B and right-hand-side vector, h are independent
of the uncertainty in the objective coefficients d, i.e.,

UB,h,d = UB,h × Ud,

where UB,h ⊆ Rm×(n2+1) is the convex compact uncertainty set of constraint
matrices and right-hand-side vectors, and Ud ⊆ Rn2 is the convex compact set of
the constraint coefficients.

The corresponding static robust version, Π
(B,h,d)
Rob , can be formulated as follows.

z
(B,h,d)
Rob = max

x,y
min
d∈Ud

cTx+ dTy

Ax+By ≤ h, ∀(B,h) ∈ UB,h

x ∈ Rn1
+

y ∈ Rn2
+ .

(5.10)

We can compute an optimal solution for (5.10) efficiently by solving a compact
LP formulation for its separation problem. Now, we study the performance of
static solution and show that it is optimal if UB,h is constraint-wise. In particular,
we have the following theorem.

Theorem 6 Let z
(B,h,d)
AR be the optimal value of Π

(B,h,d)
AR defined in (5.9) and z

(B,h,d)
Rob

be the optimal value of Π
(B,h,d)
Rob defined in (5.10). Suppose UB,h is constraint-wise,

then the static solution is optimal for Π
(B,h,d)
AR , i.e.,

z
(B,h,d)
AR = z

(B,h,d)
Rob . (5.11)

To prove Theorem 6, we need to introduce the one-stage models. Consider the
one-stage adjustable robust problem, ΠI

AR(UB,h,d)

zIAR(UB,h,d) = min
(B,h,d)∈UB,h,d

max
y

dTy

By ≤ h

y ∈ Rn+,

(5.12)
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where UB,h,d = UB,h × Ud. The corresponding one-stage static robust problem
ΠI

Rob(UB,h,d) can be formulated as follows

zIRob(UB,h,d) = max
y

min
d∈Ud

dTy

By ≤ h, ∀(B,h) ∈ UB,h

y ∈ Rn+,

(5.13)

We can reformulate these models as optimization problems over T (UB,h, e).

Lemma 7 The one-stage adjustable robust problem ΠI
AR(UB,h,d) defined in (5.12) can

be written as

zIAR(UB,h,d) = min{ λt | λb ≥ d, (b, t) ∈ T (UB,h, e),d ∈ Ud}.

We present the proof of Lemma 7 in Appendix E.

Lemma 8 The one-stage static-robust problem ΠI
Rob(UB,h,d) defined in (5.13) can be

written as

zIRob(UB,h,d) = min{ λt | λb ≥ d, (b, t) ∈ conv(T (UB,h, e)),d ∈ Ud}.

We present the proof of Lemma 8 in Appendix E. Now, with the formulations
in Lemma 7 and Lemma 8, we are ready to prove Theorem 6.

Proof of Theorem 6 Suppose the optimal solution of Π
(B,h,d)
Rob is (x̃, ỹ), then x =

x̃,y(B,h,d) = ỹ for all (B,h,d) ∈ U is a feasible solution to Π
(B,h,d)
AR . Therefore,

z
(B,h,d)
AR ≥ z(B,h,d)Rob . (5.14)

On the other hand, suppose (x∗,y∗(B,h,d), (B,h,d) ∈ UB,h,d) is a fully-

adjustable optimal solution for Π
(B,h,d)
AR . As discussed earlier, we can assume with-

out loss of generality that h−Ax∗ > 0 for all h such that (B,h) ∈ UB,h for some
B. Then,

z
(B,h,d)
AR = cTx∗ + min

(B,h,d)∈UB,h,d
max
y≥0

{
dTy

∣∣ By ≤ h−Ax∗}
= cTx∗ + zIAR(UB,h−Ax

∗,d), (5.15)

and

z
(B,h,d)
Rob ≥ cTx∗ + max

y≥0
min
d∈Ud

{
dTy

∣∣∣ By ≤ h−Ax∗, ∀(B,h) ∈ UB,h
}

= cTx∗ + zIRob(UB,h−Ax
∗,d). (5.16)

Since UB,h is constraint-wise, so is UB,h−Ax
∗
. Therefore, T (UB,h−Ax

∗
, e) is con-

vex from Lemma 1 and T (UB,h−Ax
∗
, e) = conv(T (UB,h−Ax

∗
, e)). From Lemma 7

and Lemma 8, this implies that

zIAR(UB,h−Ax
∗,d) = zIRob(UB,h−Ax

∗,d).
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Therefore, from (5.15) and (5.16), we have

z
(B,h,d)
AR ≤ z(B,h,d)Rob .

Together with (5.14), we have z
(B,h,d)
AR = z

(B,h,d)
Rob . ut

We would like to note, we can not extend the approximation bounds similar
to Theorem 5 in this case. In fact, the measure of non-convexity of T (UB,h, e) is
not even well defined in this case since UB,h is not down-monotone.

6 Conclusion

In this paper, we study performance of static robust solution as an approximation
of two-stage adjustable robust linear optimization problem under uncertain con-
straints and objective. We give a tight characterization of the performance of static
solution and relate it to the measure of non-convexity of the transformation T (U , ·)
of the uncertainty set U . In particular, we show that a static solution is optimal
if and only if T (U ,h) is convex for all h > 0. If T (U , ·) is not convex, the measure
of non-convexity of T (U , ·) gives a tight bound on the performance of static solu-
tions. For several interesting families of uncertainty sets such as constraint-wise
or symmetric projections, we show that T (U ,h) is convex for all h > 0; thereby,
generalizing the result of Ben-Tal and Nemirovski [4]. Also, our approximation
bound is strictly better than the symmetry bound in Bertsimas and Goyal [8].

We also extend our result to models where both constraint and objective coeffi-
cients are uncertain. We show that if U = UB×Ud, where UB is the set of uncertain
second-stage constraint matrices, B and Ud is the set of uncertain second-stage
objective, then the performance of static solution is related to the measure of
non-convexity of T (UB , ·). In particular, a static solution is optimal if T (UB ,h)
is convex for all h > 0. Surprisingly, the performance of static solution does not
depend on the uncertainty set Ud. We also present several examples to illustrate
such optimality and the tightness of the bound.

Our results develop new geometric intuition about the performance of static
robust solutions for adjustable robust problems. The reformulations of the ad-
justable robust and static robust problems based on the transformation T (U , ·) of
the uncertainty set U give us interesting insights about properties of U where the
static robust does not perform well. Therefore, our results provide useful guidance
in selecting uncertainty sets such that the adjustable robust problem can be well
approximated by a static solutions.
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A Down-monotone

In this section, we show that in ΠI
AR(U ,h) defined in (2.3) and ΠI

Rob(U ,h) defined in (2.4),
we can assume U to be down-monotone without loss of generality, where down-monotone is
defined as follows.

Definition 3 A set S ⊆ Rn is down-monotone if s ∈ S and t ≤ s implies t ∈ S.

Given S ⊆ Rn, we can construct the down-hull of S, denoted by S↓ as follows.

S↓ = {t ∈ Rn | ∃s ∈ S : t ≤ s}. (A.1)

Given uncertainty set U ∈ Rm×n+ and h > 0, if U is down-monotone, then U↓ = U . There-

fore, ΠI
AR(U↓,h) is essentially the same problem with ΠI

AR(U ,h) and we have zIAR(U↓,h) =

zIAR(U ,h). Similar arguments applies for ΠI
Rob(U ,h) and zIRob(U↓,h) = zIRob(U ,h). On the

other hand, if U is not down-monotone, then U ( U↓. Then, we prove the following lemma.
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Lemma 9 Given uncertainty set U ∈ Rm×n+ and h > 0, let zIAR(U ,h) be the optimal value

of ΠI
AR(U ,h) defined in (2.3), zIRob(U ,h) be the optimal value of ΠI

Rob(U ,h) defined in (2.4).

Suppose U is not down-monotone, let U↓ be defined as in (A.1). Then,

zIAR(U↓,h) = zIAR(U ,h), zIRob(U↓,h) = zIRob(U ,h).

Proof Consider an arbitrary X ∈ U↓ and X 6∈ U , i.e., X ∈ U↓\U . From (A.1), there exists
B ∈ U such that X ≤ B. Since B,X and y are all non-negative, any y ∈ Rn+ satisfies By ≤ h
also satisfies Xy ≤ h. Therefore,

max{dTy|By ≤ h,y ∈ Rn+} ≤ max{dTy|Xy ≤ h,y ∈ Rn+}.

Take minimum over all B ∈ U on the left side, we have

min
B∈U

max
y
{dTy|By ≤ h,y ∈ Rn+} ≤ max

y
{dTy|Xy ≤ h,y ∈ Rn+}.

Since X is arbitrarily chosen in U↓\U , we can take minimum of all X ∈ U↓\U on the right
side

min
B∈U

max
y
{dTy|By ≤ h,y ∈ Rn+} ≤ min

X∈U↓\U
max
y
{dTy|Xy ≤ h,y ∈ Rn+}.

Therefore, the minimizer of the outer problem of ΠI
AR(U↓,h) is in U , which implies

min
B∈U

max
y
{dTy|By ≤ h,y ∈ Rn+} = min

X∈U↓
max
y
{dTy|Xy ≤ h,y ∈ Rn+}.

As a result, we have zIAR(U↓,h) = zIAR(U ,h).
Similarly, any y ∈ Rn+ satisfies By ≤ h for all B ∈ U is guaranteed to be feasible to

Xy ≤ h for all X ∈ U↓\U . Therefore, we can remove the constraints generated by B ∈ U↓\U
in ΠI

Rob(U↓,h) and conclude that zIRob(U↓,h) = zIRob(U ,h). ut

Therefore, we can assume without loss of generality that U is down-monotone in (2.3)
and (2.4). Now, we generalize the result for the two-stage problems ΠAR in (1.1) and ΠRob

in (1.2). Consider the following adjustable robust problem, Π↓AR

z↓AR = max cTx+ min
B∈U↓

max
y(B)

dTy(B)

Ax+By(B) ≤ h

x ∈ Rn1
+

y(B) ∈ Rn2
+ ,

(A.2)

and the corresponding two-stage static robust problem, Π↓Rob

z↓Rob = max cTx+ dTy

Ax+By ≤ h, ∀B ∈ U↓

x ∈ Rn1
+

y ∈ Rn2
+ .

(A.3)

Again, given uncertainty set U ∈ Rm×n2
+ and h > 0, if U is down-monotone, then U↓ = U .

Therefore, Π↓AR is essentially the same problem with ΠAR and we have z↓AR = zAR. Similarly,

z↓Rob = zRob. For the case when U is not down-monotone, we prove the following lemma:

Lemma 10 Given uncertainty set U ∈ Rm×n2
+ and h > 0, let zAR and zRob be the optimal

values of ΠAR defined in (1.1) and ΠRob defined in (1.2), respectively. Suppose U is not down-

monotone, let U↓ be defined as in (A.1). Let z↓AR and z↓Rob be the optimal values of Π↓AR defined

in (A.2) and Π↓Rob defined in (A.3), respectively. Then,

z↓AR = zAR, z
↓
Rob = zRob.
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Proof Suppose (x∗,y∗(B),B ∈ U↓) is an optimal solution of Π↓AR. Based on the discussion in
Theorem 1, we can assume without loss of generality that h−Ax∗ > 0. Then,

z↓AR = cTx∗ + min
B∈U↓

max
y∈Rn2

+

{
dTy | By ≤ h−Ax∗

}
= cTx∗ + zIAR(U↓,h−Ax∗)

= cTx∗ + zIAR(U ,h−Ax∗)
≤ zAR.

The second equation holds from Lemma 9, and the last inequality holds because x = x∗ is a

feasible first-stage solution. Therefore, z↓AR ≤ zAR.
Conversely, suppose (x̃, ỹ(B),B ∈ U) is the optimal solution for ΠAR. Again, we can

assume without loss of generality that h−Ax̃ > 0. Using similar arguments, we have

zAR = cT x̃+ min
B∈U

max
y∈Rn2

+

{
dTy

∣∣∣∣∣ By ≤ h−Ax̃
}

= cT x̃+ zIAR(U ,h−Ax̃)

= cT x̃+ zIAR(U↓,h−Ax̃)

≤ z↓AR.

The last inequality holds because x = x̃ is a feasible first-stage solution for z↓AR. Therefore, in

both cases, we have zAR ≤ z↓AR. Together with previous result, we have z↓AR = zAR. In the same

way, we can show that z↓Rob = zRob, we omit it here. ut

Next, we prove the following lemma which is crucial for proving Theorem 1.

Lemma 11 Given a down-monotone set U ⊆ Rm×n+ , let T (U ,h) be defined as in (2.6), then

T (U ,h) is down-monotone for all h > 0.

Proof Consider an arbitrary h > 0 and y ∈ T (U ,h) ⊆ Rn+ such that

y = BTλ,hTλ = 1,λ ≥ 0,B ∈ U .

Then, for any z ∈ Rn+ such that z ≤ y, set

B̂ij =
zj

yj
Bij , i = 1, . . . ,m, j = 1, . . . , n.

Clearly, B̂ ≤ B since z ≤ y. Therefore, B̂ ∈ U from the assumption that U is down-monotone.
Then,

z = B̂
T
λ,hTλ = 1,λ ≥ 0, B̂ ∈ U ,

which implies z ∈ T (U ,h). ut

B A compact formulation to compute ΠRob

Suppose the uncertainty set U is:

U =

B =


bT1
bT2
. . .
bTm


∣∣∣∣∣∣∣∣

m∑
i=1

P jbj ≤ q, bj ∈ Rn2
+

 ,
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The problem ΠRob defined in (1.2) is equivalent to

zRob = max cTx+ dTy

s.t. max
B∈U

eTj (Ax+By) ≤ hj , ∀j = 1, . . . ,m

x ∈ Rn1
+

y ∈ Rn2
+ ,

(B.1)

For each j, by strong duality, we have

max
bj

bTj y
∣∣∣∣∣∣
m∑
j=1

P jbj ≤ q, bj ≥ 0

 = min
αj≥0

{
qTαj | P Tj αj ≥ y,P Tkαj ≥ 0, ∀k 6= j

}
.

Therefore, we can convert (B.1) into the following form

zRob = max cTx+ dTy

eTj Ax+αTj q ≤ hj , ∀j = 1, . . . ,m

y − P Tj αj ≤ 0, ∀j = 1, . . . ,m

− P Tkαj ≤ 0, ∀j = 1, . . . ,m, k 6= j

αj ∈ Rm+ , ∀j = 1, . . . ,m

x ∈ Rn1
+

y ∈ Rn2
+ ,

which is a linear optimization problem and can be solved in polynomial time.

C Proofs of Lemmas 1 and 2

Proof of Lemma 1 Consider any v1,v2 ∈ T (U ,h). Therefore, for j = 1, 2,

vj = BTj λ
j ,hTλj = 1,λj ≥ 0,Bj ∈ U .

For any arbitrary α ∈ [0, 1], let µi = αλ1i + (1− α)λ2i and bji = BTj ei for i = 1, . . . ,m. Then,

αv1 + (1− α)v2 =

m∑
i=1

(
αλ1i b

1
i + (1− α)λ2i b

2
i

)
=

m∑
i=1

µi

(
αλ1i
µi
b1i +

(1− α)

µi
λ2i b

2
i

)

=

m∑
i=1

µi · b̂i

=B̂
T
µ,

where b̂i ∈ Ui since b̂i is a convex combination of b1i and b2i for all i = 1, . . . ,m and Ui is

convex. Also, note that B̂ ∈ U and hTµ = αhTλ1 + (1− α)hTλ2 = 1, we have

αv1 + (1− α)v2 ∈ T (U ,h).

Therefore, T (U ,h) is convex. ut
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Proof of Lemma 2 Note that in (2.6), hTµ = 1, which implies µj ≤ 1
hj

for j = 1, . . . ,m. We

assume without loss of generality that h1 ≤ hj for j = 2, . . . ,m. Note that U is down-monotone,
so is Uj , j = 1, . . . ,m. Therefore, for j = 2, . . . ,m, we have

1

hj
Uj ⊆

1

h1
U1 ⊆ T (U ,h)

where the second set inequality holds because we can take µ = e1
h1

in (2.6). Note that U1 is

convex, so is 1
h1
U1. Now, consider an arbitrary v ∈ T (U ,h) such that

v = BTλ,hTλ = 1,λ ≥ 0,B ∈ U .

Let bj = BT ej , we have

v =

m∑
j=1

λjbj

=
m∑
j=1

λjhj ·
1

hj
bj

=
1

h1
b̂,

where b̂ ∈ U1. The last equation holds because hTλ = 1 and 1
hj
Uj ⊆ 1

h1
U1. Therefore,

T (U ,h) =
1

h1
U1,

which is convex. ut

D Proof of Theorem 2

1. For given h > 0, note that:

T (Uθ,h) =

{(
b1

h1
, . . . ,

bn

hn

) ∣∣∣∣ b ∈ T (Uθ, e)

}
.

Therefore, it is sufficient to show:

T (Uθ, e) = A :=

b ∈ Rn+

∣∣∣∣∣∣
n∑
j=1

b
θ
θ+1
j ≤ 1

 .

Consider any b ∈ ∂A, i.e., b ∈ Rn+ such that

n∑
j=1

b
θ
θ+1
j = 1.

Set

λj = b
θ
θ+1
j , xj = b

1
θ+1
j .

Then,

λjxj = bj , e
Tλ = 1,

n∑
j=1

xj
θ = 1,

which implies b ∈ T (Uθ, e). Since bothA and T (Uθ, e) are down-monotone, this further implies
A ⊆ T (Uθ, e).
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Conversely, consider the following problem:

max
λ,x≥0


n∑
i=1

(λjxj)
θ
θ+1

∣∣∣∣∣∣ eTλ = 1,

n∑
j=1

xθj ≤ 1.


From Holder’s Inequality, we have

n∑
i=1

(λjxj)
θ
θ+1 ≤ (eTλ)

θ
θ+1 ·

 n∑
j=1

xθj

 1
θ+1

≤ 1.

Therefore, for any b ∈ T (Uθ, e), we have

n∑
j=1

b
θ
θ+1
j ≤ 1,

which implies b ∈ A. Therefore, T (Uθ, e) ⊆ A.

2. Similarly, it is sufficient to show

conv(T (Uθ, e)) = B :=

b ∈ Rn+

∣∣∣∣∣∣
n∑
j=1

bj ≤ 1

 .

From (3.2), we see that ej ∈ T (Uθ, e). For any b ∈ ∂B, by taking λ = b as the convex
multiplier, we have

b =

n∑
j=1

bjej .

Therefore, ∂B ⊆ conv(T (Uθ, e)). Since both B and conv(T (Uθ, e)) are down-monotone, we
have B ⊆ conv(T (Uθ, e)).

Conversely, consider the following problem:

max
b≥0

eT b
∣∣∣∣∣∣
n∑
j=1

b
θ

1+θ
j ≤ 1

 = max
a≥0


n∑
j=1

a
1+θ
θ

j

∣∣∣ eTa ≤ 1


Note that

f(x) =

n∑
j=1

x
1+θ
θ

j

is a convex function, we have

n∑
j=1

a
1+θ
θ

j ≤ (eTa)
1+θ
θ ≤ 1.

Therefore, for any b ∈ T (Uθ, e), we have b ∈ B. Also note that B is convex, therefore,
conv(T (Uθ, e)) ⊆ B.

3. From (3.2) and (3.3), we see that

1

n
diag

(
1

hj

)
· e ∈ conv(T (Uθ,h)), but

1

n
diag

(
1

hj

)
· e 6∈ T (Uθ,h).

Therefore, T (Uθ,h) is non-convex for all h > 0.
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4. Now, we compute κ(Uθ,h). Remember that

κ(Uθ,h) = min{α | conv(T (Uθ,h)) ⊆ αT (Uθ,h)} = min{α |
1

α
conv(T (Uθ,h)) ⊆ T (Uθ,h)}.

From (3.3) and scaling, we can observe that it is equivalent to find the largest α such that the
hyperplane b ∈ Rn+

∣∣∣∣∣∣
n∑
j=1

bj

hj
=

1

α


intersects with the boundary of T (Uθ,h). Therefore, we formulate the following problem:

κ(Uθ,h)
−1

= min
b≥0


n∑
j=1

bj

hj

∣∣∣∣∣∣
n∑
j=1

(
bj

hj
)
θ

1+θ = 1


= min
a≥0


n∑
j=1

a
1+θ
θ

j

∣∣∣∣∣∣
n∑
j=1

aj = 1


By solving KKT conditions for the convex problem above, the optimal solution is a = 1

n
· e.

Therefore, we have

κ(Uθ,h) = (n · n−
1+θ
θ )−1 = n

1
θ ,

which completes our proof. ut

E Proofs of Lemmas 7 and 8

Proof of Lemma 7 We can write the dual of the inner problem of (5.12):

z
(B,h,d)
AR = min{hTα | BTα ≥ d, (B,h,d) ∈ UB,h,d,α ∈ Rm+ }

= min
{
λhT

(α
λ

) ∣∣∣ λBT (α
λ

)
≥ d,hTα = λ, (B,h) ∈ UB,h,d ∈ Ud,α ∈ Rm+

}
= min{ λt | λb ≥ d, (b, t) ∈ T (UB,h, e),d ∈ Ud},

where the second equality holds because UB,h,d = UB,h × Ud. ut

Proof of Lemma 8 Suppose

UB,h,d = conv((B1,h1,d1) . . . , (BK ,hK ,dK))

where (Bj ,hj ,dj), j = 1, . . . ,K are the extreme points of UB,h,d. We can rewrite (5.13) as
follows.

z
(B,h,d)
Rob = max{ z | Bjy ≤ hj , z − dTj y ≤ 0, ∀j = 1, . . . ,K,y ∈ Rn+}.

By writing the dual problem, we have:

z
(B,h,d)
Rob = min


K∑
j=1

hTj αj

∣∣∣∣∣∣
K∑
j=1

BTj αj ≥
K∑
j=1

βjdj , e
Tβ = 1,αj ∈ Rm+ ,β ∈ RK+

 .

Note that UB,h,d = UB,h × Ud, d can be chosen regardless of B and h. Therefore, denote
θj = hTj αj , λ = eT θ and we have

z
(B,h,d)
Rob = min

 λ
K∑
j=1

θj

λ
hTj

(
αj

θj

) ∣∣∣∣∣∣ λ
K∑
j=1

θj

λ
BTj

(
αj

θj

)
≥ d,d ∈ Ud,αj ≥ 0


= min

 λ
K∑
j=1

θj

λ
t̂j

∣∣∣∣∣∣ λ
K∑
j=1

θj

λ
b̂j ≥ d, (b̂j , t̂j) ∈ T (UB,h, e),d ∈ Ud


= min{ λt | λb ≥ d, (b, t) ∈ conv(T (UB,h, e)),d ∈ Ud},
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where the second equality holds because eT
(
αj
θj

)
= 1, j = 1, . . . ,K. ut
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