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Abstract

We consider a stochastic knapsack problem where each item has a known profit but a random size.
The goal is to select a profit maximizing set of items such that the probability of the total size of selected
items exceeding the knapsack size is at most a given threshold. We present a PTAS for the case when
each item size is normally distributed and independent of other items. We present a parametric LP
formulation and show that it is a good approximation of the chance-constrained stochastic knapsack
problem. Furthermore, we give a polynomial time algorithm to round any fractional solution of the
parametric LP to obtain an integral solution whose profit is within (1 + ε)-factor of the objective value
of the fractional solution for any ε > 0.

1 Introduction
We consider the following stochastic variant of the classical knapsack problem. We are given n items with
profits p1, p2, . . . , pn, a knapsack size B and a reliability level 0.5 < ρ < 1. Item i has a random size Si
distributed according to a known distribution and independent of the sizes of other items. The goal is to
select a subset S of items such that,

Pr

(∑
i∈S

Si ≤ B

)
≥ ρ, (1.1)

and the profit is maximized. We refer to (1.1) as the chance-constraint and the problem as the chance-
constrained knapsack problem. Our model finds applications in problems where there is only one stage of
decision making under uncertainty. For instance, consider a typical capital investment problem where a
central planner needs to select a set of projects to invest the available capital from a universe of projects
where each project has an uncertain investment requirement and becomes known only after the project has
been selected and started. The central planner would ideally like to invest in the set of projects that have a
high profit or return while not exceeding the budget constraint. The solution might be highly conservative
if we require that the budget is not exceeded in any possible realization of the investment requirements of
selected projects. A chance-constrained model overcomes this drawback by allowing constraint violation
for a small fraction of the unlikely realizations.

We present an PTAS for the chance-constrained knapsack problem when item sizes are normally dis-
tributed and independent of other items. It is known [1] that in the case of normally distributed item sizes
the chance-constraint can be formulated as a 0-1 conic program. However, we show that the integrality gap
of the conic formulation is large. We reformulate the problem as a parametric LP and give a rounding algo-
rithm that rounds any fractional solution to a (1 + ε)-approximate integral solution for any constant ε > 0
in time polynomial in the input size and 1

ε .
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Several stochastic variants of the classical knapsack problem have been studied in literature. Henig [5]
and Carraway et al. [2] consider the stochastic variant where item sizes are known but the profit of each item
is distributed normally and independent of others and the goal is to maximize the probability that the profit
is at least a given threshold. The authors present dynamic programming and branch and bound heuristics to
solve this problem to optimality. Papastavrou et al. [9] and Kleywegt et al. [8] consider a variant called the
stochastic and dynamic knapsack problem where items arrive online according to some stochastic process -
the size and profit of each item is known only after the item arrives and you are required to decide whether to
select the item or not when it arrives. Dean, Goemans and Vondrak [3] study the benefit of adaptivity in the
online stochastic knapsack problem and give a polynomial time non-adaptive policy that is within a factor
4 of the optimal adaptive policy. Note that an adaptive policy depends on the remaining knapsack capacity
while a non-adaptive policy does not.

Kleinberg et al. [7] and Goel and Indyk [4] consider a chance-constrained stochastic knapsack prob-
lem similar to the one considered in this paper. Kleinberg et al. [7] consider the case where item sizes
have a Bernoulli-type distribution (with only two possible sizes for each item), and provide an O(log 1

1−ρ)-
approximation algorithm where ρ is the threshold probability. Goel and Indyk [4] provide a PTAS for the
case when item sizes have Poisson or exponential distribution. However, the algorithm in [4] violates the
chance constraint by a factor of (1 + ε). In contrast, we present an PTAS for the case when item sizes are
normally distributed while satisfying the chance-constaint strictly.

2 Conic Integer Formulation
We consider the case when each item j has a normally distributed size with mean aj and standard deviation
σj independent of the other items. Let xj denote whether item j has been selected or not. Then the stochastic
knapsack problem can be formulated as follows:

max


n∑
j=1

pjxj

∣∣∣∣∣∣ Pr
∑

j

Sjxj ≤ B

 ≥ ρ, x ∈ {0, 1}n
 . (2.1)

We simplify the probabilistic constraint as follows:

Pr

∑
j

Sjxj ≤ B

 = Pr

∑j (Sjxj − ajxj)√∑
j σ

2
jx

2
j

≤
B −

∑
j ajxj√∑

j σ
2
jx

2
j


= Pr

Z ≤ B −
∑

j ajxj√∑
j σ

2
jx

2
j

 ,

where Z =

(P
j(Sjxj−ajxj)qP

j σ
2
jx

2
j

)
. Since the item sizes are normally distributed and independent of other

items, Z is a standard normal variable with mean 0 and standard deviation 1. Let φ denote the cumulative
distribution function of the standard normal variate. Therefore, the probabilistic constraint can be rewritten
as follows.

Pr

Z ≤ B −
∑

j ajxj√∑
j σ

2
jx

2
j

 ≥ ρ⇒ B −
∑

j ajxj√∑
j σ

2
jx

2
j

≥ φ−1(ρ),

Therefore, we can reformulate (2.1) as:

max


n∑
j=1

pj · xj

∣∣∣∣∣∣ φ−1(ρ)
√∑

j

σ2
jx

2
j +

∑
j

ajxj ≤ B, x ∈ {0, 1}n
 . (2.2)



If we relax the 0-1 constraints on xj to 0 ≤ xj ≤ 1 for all j = 1, . . . , n, the formulation in (2.2) is a
second order conic program and can be solved in polynomial time since φ−1(ρ) ≥ 0 for ρ ≥ 0.5. Note
that we assume that ρ > 0.5 since for ρ = 0.5, φ−1(ρ) = 0 and the conic constraint in (2.2) reduces to a
linear constraint which implies that the chance constraint knapsack problem with normally distributed item
sizes is equivalent to the deterministic knapsack problem where each item size is fixed at its expected size.
Furthermore, we also require that ρ is strictly less than 1 as φ−1(1) is unbounded and the trivial solution
x = 0 is the only feasible solution (assuming σj > 0 for all j = 1, . . . , n). We show in the following
example that the integrality gap of the conic relaxation is Ω(

√
n).

Large Integrality Gap Example. Consider the following instance: pj = σj = 1, aj = 1/
√
n for all

j = 1, . . . , n,B = 3, ρ = 0.95. Any integral solution can include at most two items; therefore, the integral
profit is at most 2. Now, consider the fractional solution xj = 1√

n
. Then,

n∑
j=1

ajxj + φ−1(ρ)

√√√√ n∑
j=1

σ2
jx

2
j = 1 + φ−1(ρ) < 3.

Therefore, the fractional solution is feasible and the optimal fractional profit is at least
√
n which shows that

the integrality gap of the conic formulation is Ω(
√
n).

3 Parametric LP Reformulation
We reformulate the second order conic program as a parametric LP and obtain a polynomial time approxi-
mation scheme for the chance constrained knapsack problem. Suppose we know that the sum of mean sizes
of the items selected in an optimal solution is µ∗. Then, the conic constraint in (2.2) can be expressed as,∑

j

ajxj ≤ µ∗

(
φ−1(p)

)2∑
j

σ2
jx

2
j

 ≤ (B − µ∗)2 (3.1)

Since x2
j = xj for xj ∈ {0, 1}, we can simplify (3.1) to:

(
φ−1(p)

)2 (∑
j σ

2
jxj

)
≤ (B−µ∗)2. Therefore, we

can formulate the chance constrained knapsack problem as a parametric 2-dimensional knapsack problem
where µ is the parameter corresponding to the total mean size of the selected items. We consider powers of
(1 + ε), i.e., (1 + ε)j , j = 0, . . . , log(1+ε)B for some constant ε > 0, as different choices of the parameter

µ. Therefore, the number of different choices of µ is O
(

logB
ε

)
which is polynomial in the input size.

We also guess the value of optimal profit OPT by considering powers of (1 + ε). Let P =
∑n

j=1 pj ;

we consider O
(

logP
ε

)
different choices of OPT. At most 1

ε items can have profit greater than εOPT.

Therefore, for each guess of OPT = (1 + ε)j we consider all subsets of cardinality at most 1
ε of the items

that have profit more than εOPT to include in the solution. For each guess O of OPT and each choice
of subset of items of individual profit more than εOPT, we solve a subproblem Π(S1, S2, O) where S2 is
the set of items whose profit is more than ε · O and are included in the final solution and we are required
to choose a subset of items from S1 ⊂ [n] that maximizes the total profit. Let Π(S1, S2, O, µ) denote the
problem where the total mean size of all items selected from S1 is at most µ. Therefore, we can formulate



Π(S1, S2, O, µ) as the following 2-dimensional knapsack problem:

max
∑
j∈S1

pjxj +
∑
j∈S2

pj∑
j∈S1

ajxj ≤ µ (3.2)

(
φ−1(p)

)2∑
j∈S1

σ2
jxj

 ≤

B − µ−∑
j∈S2

aj

2

−
(
φ−1(p)

)2∑
j∈S2

σ2
j

 (3.3)

xj ∈ {0, 1}

Algorithm A for the Chance-constrained Knapsack Problem is described in Figure 1 and Algorithm A(Π)
for Π(S1, S2, O, µ) is described in Figure 2.

Algorithm A for Chance-constrained Knapsack Problem.

Input: Given n items where item j has profit pj and a normally distributed size with mean aj and
standard deviation σj , knapsack size B, reliability level 0.5 < ρ < 1 and a constant ε > 0. Let
pm = minj∈[n] pj , P =

∑
j∈[n] pj .

Initialize N1 = blog1+ε pmc, N2 = dlog1+ε P e, xA = 0, PA ← 0.

1. For t = N1, . . . , N2,

(a) Let O = (1 + ε)t and let Sε = {j ∈ [n]|pj ≥ ε ·O}.
(b) For each set S ⊂ Sε such that |S| < 1

ε ,

i. Solve Π([n] \ Sε, S,O) and let xS denote the integral solution returned by A(Π).
ii. If PA < pTxS , then xA ← xS and PA ← pTxS .

2. Return the solution xA.

Figure 1: Algorithm A for Chance-constrained Knapsack Problem

In the following lemma, we show that we can find a good integral solution to the problem Π(S1, S2, O, µ).

Lemma 3.1 Consider the problem Π(S1, S2, O, µ) such that pj ≤ ε ·O for all j ∈ S1. If P ∗ is the optimal
profit for Π(S1, S2, O, µ), then there is a polynomial time algorithm to find a feasible set of items whose
profit is at least (P ∗ − 2ε ·O).

Proof: Consider the 2-dimensional knapsack formulation of Π(S1, S2, O, µ) and consider a basic optimal
solution x̃ of the LP relaxation. Since there are only two constraints other than the bound constraints, at least
(|S1|− 2) bound constraints must be tight for x̃. Therefore, at least (|S1|− 2) variables out of |S1| variables
are integral in any basic optimal solution. Let j1, j2 ∈ S such that x̃j1 , x̃j2 are fractional. We know that
pj ≤ ε ·O for all j ∈ S1. Consider the following solution, x̂ where for any j ∈ S, x̂j = 0 if j = j1, j2 and
x̂j = x̃j otherwise. Clearly, x̂ is an integral solution and

∑
j∈S1

pj x̂j ≥
∑

j∈S1
pj x̃j − 2ε · O. Therefore,

we obtain an integral solution such that
∑

j∈S1
pj x̂j +

∑
j∈S2

pj ≥ P ∗ − 2ε ·O.

In the following lemma we show that for an appropriately chosen value ofO and µ and subsets S1, S2 ⊂
[n], the problem Π(S1, S2, O, µ) has optimal profit at least OPT/(1 + ε).



Algorithm A(Π) for Π(S1, S2, O).

Let µmin = minj∈S1 aj . Initialize Nl = blog1+ε µminc, Nh = dlog1+εBe, xs = 0, Ps ← 0.

1. For t = Nl, . . . , Nh,

(a) Let µ = (1 + ε)t and let x̃(µ) be a basic optimal solution for Π(S1, S2, O, µ).

(b) Using Lemma 3.1 find an integral solution x̂(µ) such that

n∑
j=1

pj · x̂(µ)j ≥
n∑
j=1

pj · x̃(µ)j − 2ε ·O

(c) If Ps <
∑

j∈S1
pj x̂(µ)j +

∑
j∈S2

pj , then

xs ← x̂(µ)
Ps ←

∑
j∈S1

pj x̂(µ)j +
∑

j∈S2
pj

2. Return the solution xs.

Figure 2: Algorithm A(Π) for Π(S1, S2, O)

Lemma 3.2 Let S∗ be the set of items selected by an optimal solution and let OPT =
∑

i∈S∗ pi. Consider l,
such that (1+ ε)l−1 ≤ OPT < (1+ ε)l. LetO = (1+ ε)l and let, Sε = {i ∈ [n] | pi ≥ ε ·O}, S1 = [n]\Sε,
and S2 = Sε ∩ S∗. Then the optimal profit for the problem Π(S1, S2, O) is at least OPT/(1 + ε).

Proof: Let µ∗ =
∑

j∈S∗ aj , µ
1 =

∑
j∈S1∩S∗ aj , µ

2 =
∑

j∈S2
aj and let k be such that (1 + ε)k−1 ≤

µ1 < (1 + ε)k. Let β = (1 + ε)k−1 and we consider the problem Π(S1, S2, O, β). Consider the following
fractional solution, x̃ for Π(S1, S2, O, β) where x̃j = 1

1+ε for all j ∈ S1∩S∗ and 0 otherwise. We first show
that x̃ is a feasible fractional solution for Π(S1, S2, O, (1 + ε)k−1). It is easy to observe that x̃ satisfies (3.2)



as
∑

j∈S1
aj x̃j =

∑
j∈S1∩S∗ aj ·

1
1+ε = µ1

1+ε ≤ β. Also,

(
φ−1(p)

)2 ·
∑
j∈S1

σ2
j x̃j

 =
(
φ−1(p)

)2 ·
 ∑
j∈S1∩S∗

σ2
j ·

1
1 + ε



≤

(B − µ∗)2 −
(
φ−1(p)

)2 ·
∑
j∈S2

σ2
j


1 + ε

(3.4)

=

(B − µ1 − µ2)2 −
(
φ−1(p)

)2 ·
∑
j∈S2

σ2
j


1 + ε

≤

(B − β − µ2)2 −
(
φ−1(p)

)2 ·
∑
j∈S2

σ2
j


1 + ε

(3.5)

< (B − β − µ2)2 −
(
φ−1(p)

)2 ·
∑
j∈S2

σ2
j

 ,

where (3.4) follows as S∗ = (S1∩S∗)∪S2 is an optimal solution and thus satisfies
(
φ−1(p)

)2·(∑j∈S∗ σ
2
j

)
≤

(B − µ∗)2. Inequality (3.5) follows as β ≤ µ1. This implies that x̃ satisfies (3.3) and is a feasible solution
for Π(S1, S2, O, β). The profit achieved by the fractional solution x̃ is:∑

j∈S1

pj x̃j +
∑
j∈S2

pj =
∑

j∈S1∩S∗

pj
1 + ε

+
∑
j∈S2

pj >
OPT

1 + ε
,

where the last equality follows because S∗ = (S1 ∩ S∗) ∪ S2.

Theorem 3.3 Given ε > 0, there is a polynomial time algorithm that gives a (1 − 3ε)-approximation for
the chance constrained knapsack problem with reliability, (0.5 + δ) ≤ ρ ≤ (1 − δ) for some fixed δ > 0.
Furthermore, the running time of A is

O

(
log (B/µm) · log (P/pm) · n

1
ε

ε2
· n3.5 · L

)
,

where P =
∑n

j=1 pj , pm = min{pj | j = 1, . . . , n}, µm = min{aj | j = 1, . . . , n} and L is the input size
of the problem.

Proof: Let OPT denote the profit value of an optimal solution and let S∗ be the set of items selected in
OPT. Consider l, such that, (1 + ε)l−1 ≤ OPT < (1 + ε)l and let O = (1 + ε)l. Let Sε = {i ∈ [n]|pi ≥
ε · O}, S1 = [n] \ Sε and S2 = S ∩ S∗. Note that Algorithm A considers the guess O for the optimal
value. Also, since |S2| < 1

ε the subproblem Π(S1, S2, O) is considered as one of the subproblems in the
algorithm A. Let µ(1) =

∑
j∈S1∩S∗ aj . Consider k such that (1 + ε)k−1 ≤ µ(1) < (1 + ε)k and let

β = (1+ε)k−1. Clearly, the subproblem Π(S1, S2, O, β) is considered in the algorithmA(Π) while solving
Π(S1, S2, O). From Lemma 3.2, we know that the optimal profit for the subproblem Π(S1, S2, O, β) is at
least OPT

1+ε . Furthermore, using Lemma 3.1 we can find a set of items Ŝ for the problem Π(S1, S2, O, β) such



that
∑

j∈Ŝ pj ≥
OPT
1+ε − 2ε · O ≥

(
1

1+ε − 2ε
)
· OPT ≥ (1 − 3ε) · OPT. Therefore, Algorithm A finds an

integral solution that has profit at least (1−3ε)·OPT. To bound the running time ofA, note that we consider
O (log (P/pm) /ε) different choices of the optimal profit value O. Also, we consider O

(
n1/ε

)
choices of

the set of items S for the subproblem Π for each choice of O. Furthermore, in the subroutine A(Π), we
solve O (log (B/µm) /ε) different sub-problems for solving Π(S1, S2, O) for given subsets S1, S2 ⊂ [n]
and a choice for optimal profit O. Therefore, Algorithm A solves and rounds

O

(
log (B/µm) · log (P/pm) · n

1
ε

ε2

)
,

linear programs. Each LP has at most n variables and it is easy to observe that the input size of each LP is
O(L) since δ ≤ φ−1(ρ) ≤ φ−1(1− δ) which implies that φ−1(ρ) is bounded between constants for a fixed
δ > 0. Therefore, each LP can be solved inO(n3.5L) time [6] and can be rounded inO(n) time by scanning
each variable and setting the fractional ones to zero (following the proof of Lemma 3.2), which completes
the proof of the running time of the algorithm.
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