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Summary 

This paper addresses the retrospective detection of step 
changes at unknown time points in the correlation structure of 
two or more climate times series. Both the variance of in
dividual series and the covariance between series are ad
dressed. For a sequence of vector-valued observations with an 
approximate multivariate normal distribution, the proposed 
method is a parametric likelihood ratio test of the hypothesis 
of constant covariance against the hypothesis of at least one 
shift in covariance. The formulation of the test statistic and 
its asymptotic distribution are taken from Chen and Gupta 
(2000). This test is applied to the series comprised of the 
mean summer NIN03 index and the Indian monsoon rainfall 
index for the years 1871-2003. The most likely change point 
year was found to be 1980, with a resulting p-value of 
0.12. The same test was applied to the series of NIN03 and 
Northeast Brazil rainfall observations from the years 1856
2001. A shift was detected in 1982 which is significant at 
the I % level. Some or all of this shift in the covariance matrix 
can be attributed to a change in the variance of the Northeast 
Brazil rainfall.· A variation of this methodology designed to 
increase power under certain multiple change point alterna
tives, specificall\y when a shift is followed by a reversal, is 
also presented. Simulations to assess the power of the test 
under various alternatives are also included, in addition to a 
review of the literature on alternative methods. 
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1. Introduction 

Assessing the stability over time of climate pro
cesses and the connections between them is cru
cial to our understanding of a changing climate. 
Changes in variability or connections between 
processes, if robust, can profoundly change our 
assessment of climate impacts and affect climate 
predictability. An area of great recent concern 
is the relationship between the Indian mon
soon rainfall (IMR) and the EI Nino/Southern 
Oscillation (ENSO) phenomenon. The existence 
of a significant negative correlation between time 
series has been long been observed (Walker and 
Bliss 1937), but whether the strength of the rela
tionship has decreased in recent decades is a sub
jectof current debate. 

Running correlation analysis, in which corre
lations are computed in overlapping moving win
dows, has frequently been used in an attempt to 
document and understand changes in the correla
. tion between two climate indices. In particular, 
the existence of low-frequency modes of vari
ability is of current interest in many areas of 
climate research, and running correlations have 
been used to represent the multi-decadal evolu
tion of the relationship between two processes. 

mailto:lfr24@columbia.edu
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Fig. 1. Comparing the 21-year windowed running correlations of the IMRjENSO time series with those of two uncorrelated 
simulated white noise processes illustrates Gershunov et a\"s (2001) observation that apparent periodic fluctuations in running 
correlations are not reliable indicators of a changing underlying correlation structure, as these fluctuations exist even in stable, 
uncorrelated processes 

Among others, Krishnamurthy and Goswami 
(2000) have used running correlations to argue 
for the existence of low-frequency (15-25 year) 
oscillations in the relationship between the IMR 
and ENSO. Parthasarathy et at (1991) used 
similar techniques to examine the relationships 
between monsoon rainfall and other climate 
variables. 

However, Gershunov et al. (2001) have shown 
that there are serious problems in the physical 
interpretation of the results of a running-correla
tion analysis. These problems stem from the fact 
that a running correlation analysis applied to any 
two processes, even independent processes, pro
duces what appears to be a low-frequency peri
odic evolution in the correlation. This however, is 
merely an artifact of the method itself and does 
not reflect any characteristic of the relationship 
between the processes. Sample correlations are 
inherently subject to random fluctuations, and 
the overlapping nature of the running correla
tions turns these fluctuations into smooth trends. 
Figure 1 {and similar figures in Gershunov et aL 
(2001)) compares the results of running correla
tion analysis of the ENSO /IMR relationship and 
of two uncorrelated white noise processes. 

Gershunov et al. (200l) propose a method of 
determining whether observed fluctuations in run
ning correlations are different from what would 
be expected by chance. They suggest comparing 
the standard deviation (SD) of an observed series 
of running correlations with upper and lower con
fidence bounds computed from the bootstrapped 

SDs of simulated processes with stationary 
correlations. 

In their scheme, the SD of the running correla
tions of the ENSO /IMR series is compared to 
simulations of bivariate Gaussian observations 
with a correlation of 0.6 (the correlation of the 
entire ENSO jIMR series is about -0.6). They 
find that the ENSO /IMR series is actually signif
icantly less variable than the simulations, with 
the observed SD below 5th percentile of the boot
strapped SDs of the simulations. They suggest 
that there is a physical process moderating the 
fluctuations of the sliding correlations. 

While Gershunov et al.'s simulations help to 
illuminate the distribution of a running correla
tion series with constant correlation, the use of 
the SDs of the running correlation to characterize 
the evolution of the process is an indirect way to 
address the issue of a potentially changing rela
tionship. The hypotheses being tested using their 
proposed method are not clearly related to the 
behavior of the processes themselves. Rather, 
they refer only to their running correlations, sta
tistics whose variability does not give clear in
sight into the underlying correlation structure. 

K won et al. (2005) use running correlation 
analysis and empirical orthogonal functions to 
examine the connection between ENSO and the 
Western North Pacific (WNP) summer monsoon. 
They apply the significance test suggested by 
Gershunov and find that the variation in the slid
ing correlations is significant at the 10% confi
dence level. Based on a comparison of the first 
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two leading empirical orthogonal functions (EOF) 
of WNP summer-mean precipitation (based on 
station data), they conclude that the relationship 
in the period from 1994-2003 is weaker than in 
1979-1993. In the first time period they find that 
the first mode of variation is one which is highly 
correlated with ENSO, and the second mode is 
highly correlated with another precipitation in
dex, WNP Monsoon index (WNPMI). In the lat
ter period, they find the same 2 dominant modes, 
but the order is reversed. In other words, the 
ENSO mode is the first dominant mode in the 
1979-1993 period, and drops to the second dom
inant mode in the 1994-2004 period. The authors 
conclude from this that the relationship with 
ENSO has weakened. This is clearly an interest
ing observation, but it is difficult to firmly dis
tinguish from chance variability without knowing 
the probability of such a reversal happening 
by chance. 

Maraun and Kurths (2005) use nonlinear time
series methods to investigate the evolution of the 
phase coherence between ENSO and IMR series 
over the 1871-2004 time period. They decom
pose the interannual oscillation dynamics of the 
two series into amplitude and phase, assessing 
the relationship between them in terms of phase 
coherence irrespective of the amplitUde. They 
find periods (1886-1908 and 1964-1980) in 
which the phases are strongly coupled in com
parison to the rest of the time period. They also 
develop a simulation scheme by which to judge 
statistical significance. Empirical probabiHties of 
typical lengths of interannual oscillations are 
computed from the ENSO and IMR series and 
used to create 1,000,000 pairs of annually re
solved ISO-year time series. Based on the simu
lations, the observed periods of phase coherence 
are found to be highly significant. 

Kumar et al. (1999) use resampling methods 
to estimate the 95% upper confidence bound for 
21-year sliding correlations and conclude that a 
change in the behavior of the ENSO/IMR corre
lations has occurred. The series is resampled 
1000 times in random 21-year chunks, and 5th 

and 95th percentiles of the 1000 sample correla
tion coefficients are computed. When the series 
of observed running correlation is compared to 
the bootstrapped 90% confidence range they find 
that in recent decades the sliding correlations 
have exceeded the upper confidence bound (i.e. 

are closer to zero than would be expected un
der the hypothesis of constant correlation) and 
conclude that the ENSO/IMR relationship has 
become weaker. Implicitly, the authors have ex
amined each of the 121 individual values of 
the running correlations. This creates mUltiple 
testing issues: even when all observations are 
drawn from the same distribution, we expect 
that 10% will fall outside of a 90% confidence 
range purely by chance. In light of these issues, 
the statistical significance of the exceedance 
of the 95% upper confidence bound in 1980 is 
unclear. 

There appears to be no clear consensus on the 
best way to attach statistical significance to ob
served changes in correlation. A formal statisti
cal test with clearly defined hypotheses could be 
useful. Parametric methods for detecting change 
points in a variety of contexts can be found in 
Chen and Gupta (2000). Their parametric likeli
hood ratio test for detecting change points will be 
presented with applications to the covariance re
lationship between IMR and ENSO, and for com
parison, that between the Northeast Brazilian 
Rainfall and ENSO (see Chiang et aI. 2000) for 
a discussion of this relationship.) In contrast to 
previous approaches, we will use the covariance 
matrix :E rather than the correlation coefficient 
pxy = O'xyjO'xO'y as the parameter of interest. A 
change in p can reflect changes in the covariance 
of the two processes, a change in the variance 
of one or both of the processes, or both. To detect 
a shift in variance rather than covariance, a 
univariate version of Chen and Gupta's test will 
be used. 

In the applications presented the climate pro
cesses are slightly auto-correlated. However, the 
results of our analysis are virtually unchanged 
after removing the autoregressive components 
of the time series. The methods presented are 
intended for use on independent sequences of 
observations, but are also appropriate for the resid
uals of an ARIMA model. Local change point 
detection, a variation of the change point detec
tion algorithm (Mercurio and Spokoiny 2004; 
Giacomini et al. 2006) is also presented, with 
the intent to increase power under multiple 
change point alternatives, for example in situa
tions where a shift is followed by a reversal to the 
original state, a situation that is important in the 
long term study of ENSO and IMR. 
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2. Methodology 

Likelihood ratio tests are a fundamental part of 
classical statistical hypothesis testing, and the lit
erature on their general properties is extensive. 
Lehmann (1997) is a good resource for many 
aspects of hypothesis testing. 

Given n independent observations Xl'" xn 

observed in order, the general null hypothesis 
for a change point problem is that the probabil
ity distribution of the observations remains con
stant. If Fi is the distribution of Xi, the null 
hypothesis is 

Ho: Fl = F2 = .. ·F(n-I) = Fn (1) 

and the alternative is 

Hi: Fl = . . . FkJ =/:: F(kl+l) = ... = Fk2 =/:: Fk2+1 

= ... = Fkq =/:: F(kq+l) = ... = F n , (2) 

where q is the unknown number of change points 
and 1<ki < ... kp <n are the unknown positions 
of the change points. If Xl .•• Xn come from a 
common parametric family of distributions, then 
the problem is one of detecting changes in the 
parameters of Fl . " Fn, and the relevant hypo
theses become Ho: 01 On and Ht: OJ = 
"'(hl =/::0{k1+1) = ···(Jk2 =/::fh2+1 = .. . (Jkq =/::O(kq+l) = 
... = (In where (Ji is the vector of parameters 
for Fi. 

The basic test procedure is to formulate the 
likelihood ratio (LR) based on maximum likeli
hood estimates of the parameters under the null 
and alternative hypotheses, as wen as the m.l.e. 
of the change points, 

LR = 	Likelihood of data under alternative (3) 
Likelihood of data under null 

and compute a p-value by comparing the ob
served LR to its distribution under the null 
hypothesis .. In practice A = 10g(LR) is used in- . 
stead of LR. The global procedure outlined by 
Chen and ;Gupta (2000) for finding multiple 
change poi~ts is to look for the most significant 
change point k by testing Xl ••• Xn using an alter
native hypothesis of one change point, and then 
apply the ~ame test on XI .•. Xk and Xk+1 ..• Xn 

iteratively until the null hypothesis is no longer 
rejected. !1Pwever, under some multiple change 
point alte~natives the global procedure may 
lack power, and local change point detection 

. maybe mote appropriate. Chen and Gupta have 
derived the asymptotic distribution of A for 

several distributions. including univariate and 
multivariate normal, gamma, exponential, Pois
son and binomial, making the method widely 
applicable. 

In the examples to be presented the data are 
yearly observations of vector-valued climate in
dices, and the parameter of interest is the co
variance matrix. Specifically, we will test for 
significant changes in the covariance structure 
of the ENSO-precipitation relationship in India 
and Brazil in the last 130/150 years. The 
ENSO/IMR and ENSO/Brazilian rainfall series 
are modeled as multivariate normal. One can test 
for changes in the mean vector of their distri
butions, in the covariance matrix, or for a simul
taneous change in both parameters. When the 
mean is known. it can be removed from the series 
which can then be modeled as mean zero. In 
this case. the null and alternative hypotheses 
are Ho: El = ... En and HI: El = ... = Ek =/:: 
Ek+1 = ... = En where k is the position of the 
single change point at each iteration. The obser
vations are Xl ... Xn • each a vector of length m. 
In this case m = 2. Under Ho, the joint likelihood 
function of Xl'" xn is 

so the log-likelihood is 

mn 
log(Lo(E» = -2 log21T - nloglEI 

n 
I 1--lI.: X· E- X· (5)2 . /"I 

1=1 

E is unknown so the maximum likelihood esti
mate E= *L:7:1 X/Xi is used, making the maxi
mum log likelihood function 

~ mn 
log Lo(E) - - log 27r 

2 In 	 ll~ I n (6)log ~Xi Xi --. 
2 n i=l 2 

Under HI> XI'" Xk are iid Nm(O, E l ) and 
Xk+1 ... Xn are iid Nm(O, ~). The MLE's for EJ 
and E2 are 

k 
~ I ~ I~ 	 1"'" IEI = 	- ~ Xi Xi and E2 =-- ~ Xi Xi 

k i=1 n -kj=k+1 

(7) 
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respectively, making the maximum log likeli
hood function under HI 

~ ~ mn k 11~ f IlogLI (Eb E2)=-2"10g21f Zlog k{;;}XiXi 

--log 11~'ln- 
2 n-ki=k+l 2 

nk L..t XjXi --, 

(8) 
where lEi is the determinant of E. The position 
of the change point k must also be estimated, and 
the MLE k is the value which maximizes 10g(Ld. 
The MLE's can only be obtained for m ~ k ~ n - m, 
so the maximum log likelihood ratio is 

An max (IOgll'tX/Xiln
m<k<n-m n i=1 

1 k Ik 
- log k ?=X/Xi 


1
 1=1 

l In In-k)!
- log -:::- LX/Xi . (9) 

n k i=k+l 

Chen and Gupta (2000) have calculated the 
limiting distribution of An under Ho: 

2elim P{anAn - bmn ~x) = e- -
x 

for all xE R, 
n-oo 

with 

an = (2log log n)2
! 

and 
m 

bmn = 2 log logn +2 log log log(n) 

- 10g(r(;)). (10) 

where m is the dimension of the multivariate nor
mal distribution. 

This distribution is used to calculate the ap
proximate p-value of an observed A. 

Perhaps a more common case is one in which 
the mean is unknown but the same under the null 
and alternative hypotheses. In this case, the max
imum likelihood estimates for p., El and Ell can 
be found numerically by maximizing the log
likelihood function under the alternative, 

mn k n-k 
- 2" 10g(21f) z10glEII . -2- logiEnl 

- ~ [t(Xi - p.)'E, I (x; - p.) 

n ]+ L (Xi p.)'E;I(Xi - p.) , (II ) 
i=k+1 

for a specific k. Estimates for all possible change 
points must be computed to find the maximum 
of all likelihood ratios. In practice, this can be 
tedious and may present difficulty for large m. 
Simulation studies indicate that this numerical 
optimization may not be necessary, however. 
For n as small as 25 no substantive difference 
in the distribution of the test statistic was found 
between the case where a process was truly 
mean-zero and the one in the sample average 
was removed from a process with non-zero 
mean. Asymptotically, removing the sample 
mean is justified by the law of large numbers, 
which states that as the sample size increases 
(Xi x) -4 (Xi - p.) almost surely. This is the 
approach taken in the examples below. Indepen
dence between observations is preserved after 
removing the sample mean under the assumption 
of Li.d. normality, thus it is important to con
firm that this assumption is reasonable before 
proceeding. 

The logic behind the univariate test for homo
geneity of variance in the case of known mean is 
the same. The likelihood ratio test statistic is 

An = max (n log a-r - k log a-r 
I <k<n-l 

(n-k)IOgc7~-~). (12) 

where 

fl- = 2:7=1 (Xi - ji)2 (13) 
n 

and 

(14) 

The asymptotic distribution under Ho is 

Zlog log log(n) + 2 log log(n) 

lim P{anAn - bll ~x) e- 2e x 
for all xE R, 

Il~X 

(15) 

with 

an = (210g log (n»)"i
I 

and 

1 
bn = 

- IOg(r(~)). (16) 

In practice, if there is doubt as to whether the 
large sample distribution of the test statistic is 
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appropriate, critical values can be computed via 
simulation. 

The above test procedures all assume that the 
mean of the process does not change. If one 
wishes to test the hypothesis 

Ho: L-1 ... = L-n, fLJ ... = fLn (17) 

against 

HI: L-\ ... = L-k =1= L-k+1 = '" L-n, fLl 

= ... = fLk =1= fLk+I ... = J.Ln , (18) 

the relevant test statistic as proposed by Chen 
and Gupta (2000) is 

~ 1. 
max (n log lEI - k log IEII (n k) log L-n)2,

m<k<n-m 

(19) 
where 

~ 1 n 
L- = - 2.:)Xi - X)(Xi x)', (20) 

n i=! 

1 kIn 

Xk = -k LXi, Xn-k = -- L Xi (22) 
i=\ n ki=k+l 

It is important to note that the individual log
likelihood ratios are unreliable near the ends of 
the time series and typically produce very high 
values at near k = m and k = n m. We sug
gest including only the values roughly between 
k = m + 3 and k = n m - 3 in the maximum 
above. 

The limiting distribution is 
x2elim P{anAn b2m5:X) e- - for all XER, 

n-oc 

(23) 
with 

an = (2 log 10gn)2 
1 

and 

b2m = 2 log logn + m log log 10g(n) - logf{m}. 

(24) 

The above procedures are valid in the case 
where observations are independent between time 
points. In· the presence of autocorrelation, the 

same analysis can be applied to the process after 
the autoregressive components are removed (pre
whitening). In practice, the components removed 
will be based on sample estimates of the autore
gressive parameters, and the sensitivity of the test 
to this extra source of variability may need to be 
explored. 

Local change point detection is a stepwise pro
cedure which begins by testing an interval subset 
of the data for homogeneity and increases the 
size of the interval until a change point is de
tected or the interval being tested reaches the 
length of the entire series. At each stage of the 
testing procedure, the test statistic is the one out
lined above. To begin, a family of intervals 
1 = {/j,j = 0, 1 ...} is defined. Each interval is 
of the form Ij = [n - mj, n], with m: mo < 
ml < ... n where n is the length of the series. 
Beginning with I = 10, the procedure is to test I 
for homogeneity against the alternative of one 
change point as above. If the hypothesis of ho
mogeneity is not rejected, the next larger interval 
is tested until a change point is detected or the 
largest possible interval is tested. If, for some 
interval, a change point is detected at some point 
k, the procedure begins again using intervals of 
the form Ij = [k mh kJ. Because multiple tests 
are being performed, the critical values at each 
stage are adjusted using the Bonferonni method, 
which is to replace the significcance level a 
with ajJ where J is the number of tests being 
performed. 

Following Giacomini et al. (2006), we set 
mj = mod, where c = 1.5 and mo = 10. For a 
time series of a given length n, this will yield J 
intervals contained in [1, n], which lead to J dif
ferent tests of homogeneity. To control the prob
ability of Ho being rejected falsely (type I error) 
for at least one interval at a, we set the rejection 
level for each interval at ajJ. 

The goal of this adjustment procedure is to 
increase power under some multiple change 
point alternatives. Imagine a ISO-year time series 
in which there is a change in a parameter () at 
years 50 and 100, and that 0 has value ()I in the 
intervals [1, 50] and [10 I, ISO] and ()2 in the 
interval [51, 100] as shown in Fig. 2. The global 
approach is to begin by testing the entire series 
for homogeneity using the test statistic 

An = max Ak. (25)
m<k<n-m 
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[I, 50], respectively. A greater difference be
tween 01 and O2 should be expected, increasing 

o 50 100 150 
Year 

Fig. 2. Local change point detection maybe more powerful 
than a global test when a shift in any parameter, here des
ignated as theta, is followed by a reversal 

The maximum should occur at either year 50 
or year 100. Supposing it is at year 50, the test 
statistic depends on two maximum likelihood es
timates, {h computed from the years [1, 50], and 
{h based on the years [51, 150]. The size of the 
test statistic (and thus the probability of rejecting 
Ho) increases with the difference between 01 and 
O2• 01 should be close to 01, but O2 will be a 
compromise between 02 and Ol. If the test for 
homogeneity were to be performed locally on the 
interval [1, 100] or [51, 150], the MLEs would 
not be distorted by the intervals [101, 150] or 

India/ENSO 
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5 - 5 

en 4  en 4a:: 
..J a: 

3 
.2 
OJ 3 - ..J 

~ 
2 

o 
! I I 

1880 1920 1960 2000 1860 
Changepoint year 

the probability of rejection. 
Disadvantages of the local procedure as com

pared to the global method include decreased 
power under single change point alternatives due 
to the adjusted significance levels, and the some
what arbitrary nature of the interval selection 
process, which may influence results. This modi
fied procedure is potentially important in long
term studies of climate variability, where several 
changes and reversals may be present. 

3. Application 

Two relationships were examined for a signifi
cant change in covariance structure, the ENSO / 
IMR series and an ENSO /Brazil rainfall series. 
The latter was studied by Chiang et. a1. (2000), 
who found that the generally weak negative cor
relation peaked in the mid 20th century and, more 
significantly, after 1980 or so. For the ENSO/ 
IMR series, monthly rainfall totals and Pacific 
SST observations from 1871 to 2003 were both 
averaged over the months July to September. For 
the ENSO /Brazil series, monthly rainfall totals 
and SST were averaged over the months April 
to June, from 1856 to 2001. Each of the three 
individual series was tested for normality and ho
mogeneous mean, and each assumption appears 
reasonable. 

The ENSO series were slightly autocorre
lated. The best fitting ARMA model, as chosen 

Brazil/ENSO 

o 
o 
o 

1900 1940 1980 
Changepoint year 

Fig. 3. The likelihood ratio test statistics at each possible change point year. 95% significance is indicated by the dotted line 
The test statistic for the Brazil series is at a maximum in 1982, with a p-value of less than I %. The test statistic for the India 
sereis is maximized in 1980, with a p-value of 0.12. Although the significance of the change point for the India series is less 
clear than in the Brazilian series case, the similarity between the two series is suggestive 
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using the Akaike information criterion (AIC) was 
AR(2). The raw data were tested for change
points, as was a pre-whitened series from which 
the AR component had been removed. The re
sults were virtually identical for both the raw 
and pre-whitened data. 

The global analysis for the ENS 0 /IMR series 
may suggest an event in 1980 with a correspond
ing p-value of 0.12. Figure 3 shows the graph of 
the log-likelihood functions versus change point 
year k. Peaks indicate years where a change point 
is relatively likely (although not necessarily 
statistically significant). The dashed line is the 
critical value at the 5% level of significance. 
Approximate critical values obtained via simula
tion rather than the asymptotic distribution of the 
test statistic give a p-value of 0.14. 

The sample covariance matrix in the time pe
riod from 1871 to 1980 was 

~ (4.4 -0.659) (26)1:1 = -0.659 0.27 . 

From 1980 to 2003 it was 

~ (3.76 -0.207) (27)1:2 = -0.207 0.404 . 

The local and global analysis yielded the same 
conclusions, although in the next section it will 
be shown that in some situations the results can 
differ. 

The univariate version of the test designed to 
detect changes in variance was performed on the 
ENSO series, finding no significant changes in 
variance. For the ENSO /Brazil series, a signifi
cant change (p = 0.005) in the covariance matrix 
was detected in 1982. A test for equality of vari
ance on the Northeast Brazil Rainfall series re
veals that there is a shift in the variance of the 
univariate process which is significant at the 1% 
level. Thus, there is a significant change in the 
covariance structure in the ENSO /Brazil rela
tionship, all or part of which can be explained 
by an increase in the variance of the Brazilian 
rainfall. The observed covariance matrices were 

~ (0.59 -0.075) (28)1:1 = -0.075 0.27 

pre-1982, and 

~ = ( 2.43 -0.27) (29)-0.27 0.46 

from 1982 to 2001. It should be noted that an 
increase in the variance of the Brazilian rainfall 
process results in decreased predictability using 
ENSO, since pxy = uxy/uxuy- This is consistent 
with the findings of Chiang et al. (2000), al
though not with the reasons proposed in that 
paper. 

As can be seen in Fig. 3, the first time the 
likelihood ratio crosses the 5% threshold is 
around 1960, and it continues to increase until 
the peak in 1982. Unlike under a sequential anal
ysis framework, the estimated change point is not 
at the point of first crossing the significance 
threshold, but rather the point, at which the test 
statistic is maximized, i.e. the MLE for the 
change point. 

4. Power 

Simulations were run to assess the power (the 
probability of rejection when the null hypotheses 
is false) of the global and local methods under 
specific alternatives. The power of the global test 
under one-change point alternatives is assessed 
using series of 150 simulated bivariate normal 
observations, the first 75 of which are generated 
using one covariance matrix, and the last 75 using 
a different covariance matrix. Thousand series of 
length ISO are generated and tested for homoge
neity. The percentage of simulations in which the 
null hypothesis is rejected is an estimate of the 
power of the test. The results from these simula
tions are shown in Table 1 for a 0.05. 

Some findings based on simulations can be 
stated in a general manner. In a situation of con
stant variance and changing covariance, the mag
nitude of the change in covariance must be rather 
large to achieve reasonable power. If both vari
ance and covariance are changing, power in
creases with the magnitude of the absolute 
difference in the determinants of the covariance 
matrices. The power of the test decreases steadily 
as the change point approaches the beginning or 
end of the time series. The power of the global 
test appears to be greater for I change point than 
for 2 or more. 

Because the local test comprises multiple in
dividual hypothesis tests, the interpretation of the 
p-va]ues is somewhat more difficult. To compare 
the power of the local test, using the intervals 
defined in Sect. 2, in comparison to the global 
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Table 1. The results of simulations to study the power of the change point detection method are above. For each combination of 
pre and post-change covariance matrices, 1000 simulations oflength 150 were created with a change point after 75 observations. 
The percentage of the 1000 simulations in which the p-value fell below 5% is the observed power of the test 
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test in a multiple change point situation, 100 se
ries were generated using 

(~ ~) (30) 

as the covariance matrix for observations 1··· 
50, and 101 ... 150, and 

1 0.6) (31)( 0.6 1 

for observations 51 ... 100. The observed power 
in detecting at least one change at a significance 
level of 5% for the local and global tests were 
68% and 55%, respectively, suggesting that the 
local test is more powerful, 26% more powerful 
in this case, under some alternatives. 

S. Summary and discussion 

We have presented a parametric test for retro
spective detection of change points in covariance 
. matrices which we have not previously seen in 
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analysis of climate data. The test assumes the ob
servations are multivariate normal and inde
pendent in time. A hypothesis of homogeneous 
covariance is compared to one of at least one 
change point using a likelihood ratio. If a change 
point is detected, the data is split at the estimated 
change point and the two segments are tested for 
additional change points. The procedure is re
peated until no more change points are found. 
In situations where a shift is foUowed by a re
versal, a more powerful test maybe created by 
segmenting the data and testing segments of in
creasing size. 

Two series were tested for changes in co
variance: ENSO jIndian Monsoon Rainfall and 
ENSOjNortheast Brazil RainfalL In the former, 
the resulting p-value was 0.12. This finding does 
not lend strong support to the claim that the 
ENSOjMonsoon relationship has recently chan
ged. If one exists,the most likely year for a 
change point is 1980. For the ENSOjNortheast 
Brazil series, a significant change (p-value <0.01) 
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was detected in 1982. All or part of the latter 
change can be attributed to a change in the vari
ance of the Brazil series. This finding differs 
from the conclusion reached by Chiang et al. 
(2000), who argued that a change in the frequen
cy of strong EI Nino is an explanation for a 
change in the correlation between the two pro
cesses. Additional research is necessary to sort 
out this inconsistency. 

The proposed method is designed to detect 
abrupt shifts in the probability distributions of 
the observed processes, but obviously in some 
situations inhomogeneities would be better mod
eled by continuous trends. Sveinsson and Salas 
(2003) explore probability models for climate 
processes in the presence of shifts, trends and 
oscillatory behavior. Regression methods can be 
used to detect and model trends in the mean of a 
process, and the evolution of variance can be 
modeled using ARCH (autoregressive condition
al heteroskedastic) or GARCH (generalized autor
egressive conditional heteroskedasticity, see 
Bellerslev 1986) methodology. When trends are 
not constant over the entire observed record, a 
change point framework may still be needed to 
detect the beginnings, ends or reversals of trends. 
Likelihood ratios could be constructed in the 
above manner, with regression or ARCH param
eters as the quantities of interest. 

The interconnection between changes in the 
mean and variance of the distribution makes in
ference more difficult when both types of inho
mogeneity exist. Changes in mean can disguise 
changes in variance and vice versa. The proce
dure outlined above is constrained to detect only 
simultaneous shifts in mean and variance, and 
may not perform well in other situations. A 
Bayesian approach in which uncertainties in both 
location and variance are addressed separately 
would be useful in creating a more flexible, real
istic model. 

The test used in this analysis is designed for a 
fixed sample size and does not assume a priori 
that any period in the observed record is without 
changes. Alternatively, when a stable reference 
period is available and the aim is to detect 
changes as new data is accumulated, methods 
from statistical quality control, such as sequential 
probability ratio test (SPRT) or cumulative sum 

(CUSUM), procedures, can be employed. A re
view of recent developments in using control 
charts for monitoring covariance matrices can 
be found in Yeh et al. (2006). If the assumption 
of known starting values for the parameters of 
interest is added to the analysis, a more powerful 
test maybe available. 
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