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Introductions

15 September 2011

Nested Interval Theorem: If A1 “ ra1, b1s , A2 “ ra2, b2s , ¨ ¨ ¨ , An “ ran, bns , ¨ ¨ ¨ and
A1 Ě A2 Ě ¨ ¨ ¨ Ě An Ě ¨ ¨ ¨

ñ

8
č

i“1

Ai ‰ Ø

Proof : The set of left-hand endpoints A “ ra1, a2, ¨ ¨ ¨ s has an upper bound, say b1.

Because A has an upper bound, it has a least upper bound, say L.

It turns out that L P
8
č

i“1

Ai. i.e., Larger than every ai and smaller than every bi.

L is in every ran, bns because it is a least upper bound for A, so L ě ai @ i. The bi’s
are all upper bounds for A and since L is the least upper bound, L ď bi @ i. ñ L is in
every interval. ♣

Proof of Uncountability of R via the Nested Interval Theorem:
Suppose R is countable such that x1, x2, x3, ¨ ¨ ¨ where xi P R. Let ra1, b1s be some interval
containing x1. Divide ra1, b1s into two disjoint closed intervals. One of those ror neithers

will not contain x2, call the interval ra2, b2s, continue ¨ ¨ ¨
8
č

i“1

rai, bis must be empty. ñð

This is impossible since we already know the Nested Interval Theorem holds. Thus, our
assumption of R being countable is false. 6 R is uncountable. ♣

Example: The Q numbers between zero and one are each holding an umbrella.

Date: Fall 2011.
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2 NOTES COMPILED BY KATO LA

22 September 2011

Definitions: Given a function f : A ÞÝÑ B. f is onto if for every point b P B there is an
a P A such that fpaq “ b. f is said to maps into B if every fpaq is in B. f is one-to-one if
fpa1q “ fpa2q ñ a1 “ a2.

Example 1.5.1 : fpxq “
1

π
arctanpxq `

1

2

Suppose Liz claims to have a one-to-one correspondence between N and (0, 1).

1 ÐÑ 0.515151 ¨ ¨ ¨

2 ÐÑ 0.333333 ¨ ¨ ¨

3 ÐÑ 0.146810 ¨ ¨ ¨

...
...

However, the matching above is flawed, as we can find a decimal expansion guaranteed not
to be on our list. We can create this unique decimal expansion by going down the diagonal
by the following rule: Put a “5” as the nth digit unless the nth digit of the nth number in
the list is a “5”, then put a “6”. We will get the decimal expansion:

0. ¨ ¨ ¨ ÐÑ 0.655 ¨ ¨ ¨

ñ The unique decimal expansion differs in the nth digit corresponding to the nth decimal
expansion in our supposed one-to-one correspondence list. Thus, we have constructed a
decimal expansion between (0, 1) that is indeed not in our list because it differs in every
digit compared to every number! ñð Therefore, (0, 1) is uncountable. ♣

Game Theory Approach to Show (0, 1) is Uncountable:
Let A “ ta0, a1, a2, ¨ ¨ ¨ u. Let supA = L by the axiom of completeness. A subset S Ď p0, 1q
is chosen at the start of the game. Player A wins if L P S. Player B wins if L R S. This
game is a sure-win for Player B if S is countable. S “ tx1, x2, x3, ¨ ¨ ¨ u. Let bn “ xn.

29 September 2011

A special case of an argument that mirrors the proof of Cantor’s Theorem on page 32:

Claim: There are more subsets of N than elements of N.
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Proof :

N Subsets of N
1 ÐÑ Ø

2 ÐÑ t2, 4, 6, 8, ¨ ¨ ¨ u

3 ÐÑ t1, 2, 3, ¨ ¨ ¨ u

4 ÐÑ t10, 100, 1000, ¨ ¨ ¨ u

...
...

We display a subset of N that cannot be in the one-to-one mapping:

Let W = tall the elements of N that are not in the set they are pairedu

In our one-to-one mapping, W “ t1, 4, ¨ ¨ ¨ u

ñ W is not in our one-to-one mapping; however, can W be in our mapping?
i.e., Eventually, In our mapping we have nÐÑ t1, 4, ¨ ¨ ¨ u

If n R t1, 4, ¨ ¨ ¨ u, then n is placed in W , so n P t1, 4, ¨ ¨ ¨ u, but this is impossible.
If n P t1, 4, ¨ ¨ ¨ u, then n RW , so n R t1, 4, ¨ ¨ ¨ u, but this is impossible as well.

In both cases, we have a contradiction. Regardless of our one-to-one mapping we se-
lect, we can construct the set W such that it does not appear on our list.
6 There are indeed more subsets of N than elements of N. ♣

Definition: A sequence is a function whose domain is N. i.e., It is a fancy way of saying
something is countable.

Definition: A sequence panq converges to a real number L if @ ε ą 0 D N P N such
that whenever n ě N it follows that |an ´ L| ă ε.

Examples:
(i) lim

nÑ8
an “ t

By definition, the expression means: @ ε ą 0, D N P N such that @ n ě N ñ |an ´ t| ă ε.

(ii) lim
nÑ8

1

n
“ 0

By definition, expression means: @ ε ą 0, D N P N such that @ n ě N ñ

ˇ

ˇ

ˇ

ˇ

1

n
´ 0

ˇ

ˇ

ˇ

ˇ

ă ε.
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6 October 2011

Definition: If a1 ď a2 ď ¨ ¨ ¨ ď an ď an`1 ď ¨ ¨ ¨ , then panq is an increasing sequence.

Definition: If a1 ě a2 ě ¨ ¨ ¨ ě an ě an`1 ě ¨ ¨ ¨ , then panq is a decreasing sequence.

There are no sequences that are properly described as “increasing and decreasing [ex-
cept constant sequences].

Definition: A monotone sequence is a sequence that is either increasing or decreasing.

Monotone sequences do not imply convergence.

Examples:
(i) 1, 2, 3, 4,¨ ¨ ¨ does not converge

(ii)
1

2
,
1

3
,
1

4
, ¨ ¨ ¨ does converge (to zero).

Monotone Convergence Theorem: A monotone, bounded sequence converges.

Proof : Is L a limit?
Given any ε ą 0, is there a point in the sequence after which all terms are in pL´ε, L`εq?

Because L is the least upper bound there must be elements in the sequence between L´ ε
and L or maybe L is the sequence [otherwise L´ε would be an upper bound of the sequence
less than the least upper bound].

Since the sequence is monotone, all terms after the nth term are between an and L. ♣

Definition: Given a sequence an, an infinite series is a formal expression:

8
ÿ

n“1

an “ a1 ` a2 ` ¨ ¨ ¨ ` an ` ¨ ¨ ¨ .

Every infinite series has a corresponding sequence of partial sums

s1 “ a1

s2 “ a1 ` a2

s3 “ a1 ` a2 ` a3

...

sn “ a1 ` a2 ` a3 ` ¨ ¨ ¨ ` an
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The series
8
ÿ

n“1

an is said to converge to A if and only if the sequence of partial sums

converges to A denoted as:
8
ÿ

n“1

an “ A

What about 1 - 1 + 1 - 1 + 1 - 1 + ¨ ¨ ¨ ?

s1 “ 1

s2 “ 0

s3 “ 1

s4 “ 0

...

This series does not converge. Why? If we pair the one’s p1´1q`¨ ¨ ¨ , we get zero as our sum.
If we pair the one’s 1´p1`1q´¨ ¨ ¨ , we get one as our sum. This series is not well-defined !

Two classic examples:

(i) Consider
8
ÿ

n“1

1

n2

s1 “ 1

s2 “ 1`
1

2 ¨ 2

s3 “ 1`
1

2 ¨ 2
`

1

3 ¨ 3

s4 “ 1`
1

2 ¨ 2
`

1

3 ¨ 3
`

1

4 ¨ 4
...

sn “ 1`
1

2 ¨ 2
`

1

3 ¨ 3
`

1

4 ¨ 4
` ¨ ¨ ¨ `

1

n ¨ n

ă 1`
1

1 ¨ 2
`

1

2 ¨ 3
`

1

3 ¨ 4
` ¨ ¨ ¨ `

1

pn´ 1qn

“ 1`

ˆ

1

1
´

1

2

˙

`

ˆ

1

2
´

1

3

˙

`

ˆ

1

3
´

1

4

˙

` ¨ ¨ ¨ `

ˆ

1

n´ 1
´

1

n

˙

“ 1` 1´
1

n

Thus, sn ă 2´
1

n
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The sn’s are bounded by two and increasing so they have a limit and thus converge to an
unknown limit, but is bounded by two.

(ii) Consider
8
ÿ

n“1

1

n
ÝÑ this actually diverges!

s1 “ 1

s2 “ 1`
1

2

s3 “ 1`
1

2
`

1

3

s4 “ 1`
1

2
`

1

3
`

1

4
Look at powers of two!

s1 “ 1

s2 “ 1`
1

2

s4 “ 1`
1

2
`

1

3
`

1

4
ą 1`

1

2
`

1

4
`

1

4
“ 1`

1

2
`

1

2
“ 2

s8 “ 1`
1

2
`

1

3
`

1

4
`

1

5
`

1

6
`

1

7
`

1

8
ą 1`

1

2
`

1

2
`

1

4
`

1

4
`

1

8
`

1

8
`

1

8
`

1

8
“ 2

1

2

S2n ą 1` n

ˆ

1

2

˙

looooomooooon

divergers!

Here, sn is increasing and unbounded. Thus, it does not converge.

13 October 2011

Examples of good subsequence use:
(i) 0 ă b ă 1
b ą b2 ą b3 ą ¨ ¨ ¨ ą 0

bn Ñ L
bn ¨ bn
loomoon

Ñ L2

b2n Ñ L2

,

/

/

.

/

/

-

ñ L “ 0

(ii) 1,´
1

2
,
1

3
,´

1

4
,
1

5
,´

1

5
,
1

5
,´

1

5
, ¨ ¨ ¨

The above sequence does not converge.
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Bolzano-Weierstrass Theorem: Every bounded sequence contains a convergent subse-
quence.

Note: The bounded condition is necessary. Consider t1, 2, 3, 4, ¨ ¨ ¨ u The sequence is un-
bounded and E a convergent subsequence.

Proof : Let all terms of the sequence lie in r´M,M s. Divide r´M,M s into two inter-
vals: r´M, 0s , r0,M s. One of these intervals contain infinitely many sequence terms, say
r0,M s. Continue letting each new interval have half the length of the preceding interval
and contain infinitely many sequence terms. Choose in each interval a point of the sequence
[not equal to any point chosen earlier]. This defines a subsequence. ♣

Claim: The subsequence converges to L where L is in the intersection of the intervals
r´M,M s X r0,M s X ¨ ¨ ¨

Given any ε ą 0, D N P N such that all terms in the subsequence after aN are in
pL ´ ε, L ` εq. Why? The interval length is ÝÑ zero, so at some point, all intervals
will be contained in pL´ ε, L` εq. ♣

20 October 2011

Midterm

27 October 2011

A little trick to show x`
1

x
ě 2:

First, recall the arithmetic mean is greater than or equal to the geometric mean.

a` b

2
ě
?
ab

x` 1
x

2
ě

c

x ¨
1

x

x`
1

x
ě 2 ¨ 1

Definition: A Cauchy sequence panq is one satisfying the following property:
@ ε ą 0, D N P N such that whenever m,n ě N , it follows |am ´ an| ă ε.
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Fact 1: If panq converges, then it is Cauchy.

Picture:

´́(
L´ ε

2

´́ ´́ ‚aŃ́́ ´́ ´́|
L´́ ´́)

L` ε
2

´́

Any two of these can be at most, ε units apart.

a1, a2, ¨ ¨ ¨ , aN
loomoon

ë

,

é
hkkikkj

aN`1 , ¨ ¨ ¨

After aN , all points are in
´

L´
ε

2
, L`

ε

2

¯

Fact 2: Every Cauchy sequence converges.

Picture:

´́(
aN´1

´́ ´́ ´́ |́aŃ́́ ´́ ´́)
aN`1

´́

Note: The “tail” is in the above neighborhood. aN is the point after which |am ´ an| ă ε

Notice 1: Every Cauchy sequence is bounded.
Examine |a1|, |a2|, ¨ ¨ ¨ , |aN´1|, |aN | ` 1. Note the largest value produced here is an upper
bound. Likewise, the same could be constructed for a lower bound.
Let ε “ 1. |am ´ an| ă 1 @ m,n ě N . ♣

Notice 2: Every bounded sequence has a convergent subsequence. Suppose our Cauchy
sequence panq has a subsequence that converges to L.

Picture:

´́(
L´ ε

2

´́ ´́ ´́ |́L´́ ´́ ´́ )́
L` ε

2

´́

Note: After some term in the subsequence, all terms are in the above interval.

There is a term aN P panq after which any two terms differ by
ε

2
. Choose the larger of

[the two] N and term K - after that point all subsequent terms will be in
´

L´
ε

2
, L`

ε

2

¯

and all sequence terms will be written
ε

2
of any subsequence term.

Conclusion: All terms will be in
´

L´
ε

2
, L`

ε

2

¯

after that point.
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Theorem 2.7.3: If
8
ÿ

n“1

an converges, then panq ÝÑ 0.

Example:
1

2
`

1

4
`

1

8
` ¨ ¨ ¨ “ 1

Partial sums:
1

2
,

3

4
,

7

8
,

15

16
,

31

32
, ¨ ¨ ¨

looooooooooooomooooooooooooon

Each of these partial sum values is approaching 1

Thus,
ÿ 1

2n
“ 1

Chapter 3

Section 1: The Cantor Set

0 |́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ |́1

‚ Divide the above interval into thirds and delete the middle third [considered as an open
interval, the deleted one].

‚ Now we have two closed intervals

„

0,
1

3



,

„

2

3
, 1



. Repeat the process for each new set of

intervals. We get

„

0,
1

9



,

„

2

9
,
1

3



,

„

2

3
,
7

9



,

„

8

9
, 1



.

‚ Repeat ¨ ¨ ¨ ñ What remains is the Cantor Set denoted C.

Questions:

(i) Is anything in C? - Yes. Namely 0, 1,
1

3
,
2

3
, ¨ ¨ ¨ all the endpoints.

(ii) Are all the points in C rational numbers? - No!
(iii) Does C contain any intervals? - No! [intuitively].

Amazing Fact : C is uncountable!

Every infinite string of zero’s and one’s determine a point in C.
10011010111¨ ¨ ¨ Can be considered directions to determine the progression of divisions.
i.e., Point is in right of first division, point is in left half at the next one-third. We can
also view the Cantor set process as leading us with all numbers between zero and one that
have no one’s in their base three representation. This is uncountable as well.
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3 November 2011

Open and Closed Sets

Remember: Vεpaq “ tx P R | |x´ a| ă εu

Picture:

(́
a´ε

´́ ´́ ´́ |́a´́ ´́ ´́ )́
a`ε

´́

Definition: A subset S of R is called open if every point of S has a neighborhood that lies
completely in S. Or If @ x P S , there is an ε ą 0 such that Vεpxq Ď S. [Set theory notation].

Are the following sets open?

(i) R - Yes, in fact any neighborhood of R will lie in R.
(ii) (0, 1) - Yes, if not, then our notation for “open” would be incorrect.

(iii)

"

1

2
,
1

3
,
1

4
, ¨ ¨ ¨

*

- No, because the elements of the neighborhood of any point in the

sequence will not be in the sequence.
(iv) t0u - No, any neighborhood around zero will contain points not in zero.
(v) tx P R |x ě 10u - No, because looking at the point 10, no matter how small of a neigh-
borhood we create, it will contain points not in the set.
(vi) Q - No, the same idea as part (iii). No matter how big or small the neighborhood we
create around any rational number, there will be elements in the neighborhood that are
not rational.
(vii) (0, 1)Y(9, 10) - Yes, union of open sets is open.

So if S is not open, it means that D an x P S such that every neighborhood of x contains
points not in S.

ñ No x’s exist in Ø. So the empty set cannot be said to be not open. So Ø is open.

Theorem: (a) The union of any number of open sets is open.
(b) The intersection of a finite number of open sets is open.
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Note: Why is finite necessary in part (b)? - To circumvent if the following happens:

Let sn “

ˆ

´
1

n
,

1

n

˙

8
č

n“1

sn “ t0u

The above intersection is not open!

Proof : (a) Suppose Sα is a collection of open sets. [By placing an n as a subscript,
the usual implication is countability, which is not necessary when talking about open sets.]

Let x P
ď

Sα.

Then x P St where St is one of many sets in the union.

But St is open, so there is a Vεpxq Ď St Ď
ď

Sα.

So x has a neighborhood that lies completely in the union. Hence, the union is open.
♣

(b) Suppose S1, ¨ ¨ ¨ , Sn is a collection of open sets.

Let x P
n
č

n“1

Si.

Thus, x P S1, x P S2, ¨ ¨ ¨ , x P Sn. But the S’s are open.

There are neighborhoods of x such that Vε1 Ď S1, Vε2 Ď S2, ¨ ¨ ¨ , Vεn Ď Sn.

Find the smallest ε, say ε˚. [We can find a “smallest” ε because there is a finite num-
ber of subsets]. Then Vε˚pxq will be contained in all the others and will

be a subset of
n
č

n“1

Si. ♣

i.e., Of all the ε-neighborhoods, the ε˚-neighborhood will be contained in each of the
ε-neighborhoods. ñ Vε˚pxq will be in each S1, ¨ ¨ ¨ , Sn. ñ Vε˚pxq will be contained in
n
č

n“1

Si.
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Definition: x is a limit point [or cluster point or accumulation point] of a set A if every
neighborhood of x contains points of A other than x. Note that x may or may not be in
A.

Set Set of Limit Points

R R
p0, 1q r0, 1s

t0u Ø
"

1

2
,
1

3
,
1

4
, ¨ ¨ ¨

*

t0u

Z Ø

p0, 1s r0, 1s

Q R

One can see x is a limit point of a set A if there is a sequence of points in A that have x
as a limit. i.e., A limit of a sequence panq is a limit point of ta1, a2, ¨ ¨ ¨ u.

Definition: A point of A that is not a limit point of A is called an isolation point of
A. i.e., p0, 1q Y t6u “ A. In classic cases, isolated points are points “outside” the set.

Definition: A set is closed if it contains all its limit points. i.e., (0, 1) is not closed
because the set of limit points is [0, 1] and 0, 1 R p0, 1q.

Are the following sets closed?

(i) R - Yes, it is the fact R will contain all of its limit points.
(ii) Ø - Yes.
(iii) (0, 1) - No, because zero is a limit point, but 0 R p0, 1q.
(iv) [0, 1] - Yes.
(v) [0, 1) - No, because one is a limit point, but 1 R r0, 1q.
(vi) r0,8q - Yes.
(vii) Q - No.
(viii) Z - Yes.
(ix) t0u - Yes. In fact, any set with a single thing in it will be closed.

Generalization: Every finite set is closed.

(x)

"

1

2
,
1

3
,
1

4
, ¨ ¨ ¨

*

- No, because zero is not in the set.
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10 November 2011

Definition: The closure of a set A of real number is the union of A with the set of limit
points of A. Notation: cl(A) or A.

Theorem: If A Ď R, then A is the smallest closed set containing A.

Proof : (a) Show A is closed. (b) Show A is the smallest closed set.

Let A “ AY L where L is the set of all limit points of A.

Let x be a limit point of A. Every neighborhood of x contains points of A. Even more,
every neighborhood of x contains either infinitely many points of A or infinitely many
points of L. i.e., x P A or x P L. In the first case, x would be a limit point of A, so x P A.

Picture:

´́ (́´́ ´́ ´́ ´́ x́|´́ ´́p ‚́
L´́q́ ´́)́´

Note: Given point L, the neighborhood of L must contain points of A. The outer
neighborhood is the neighborhood of x.

In the second case, every neighborhood of x contains points of L, but each of those points
of L have neighborhoods, within the neighborhood of x, that contains points of A. So
every neighborhood of x contains points of A and x is a limit point of A.

Thus, x P A since A is the set A together with all its limit points.

So A contains its limit points and A is closed.

We assume that B is a closed set containing A. Then we prove that A Ă B.

AY L “ A Ď B
x P L means every neighborhood of x contains points of A.
ñ Every neighborhood of x contains point of B.
ñ x is a limit point of B.
ñ x P B because B is closed. So it contains all its limit points.
6 A is the smallest closed set. ♣

Corollary: A “ A
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Definition: The complement of a set A of real numbers is the set of all real numbers not
in A. Notation: AA. Notice: pAAqA “ A.

Theorem: Let A Ď R. A is open if and only if AA is closed. A is closed if and only
if AA is open.

Theorem: The intersection of any number of closed sets is closed. The union of a
finite number of closed sets is closed.

Wild Idea: Given the above definition and theorems, consider the following: Given sets
such as all transcendentals, [0, 1), or t0u - How many sets can be created using closures
and complements?

A Few Words on Point-Set Topology

Definition: A topology is a set [or universe] together with certain subsets are called open
sets. The open sets must have the following properties:

(a) Ø and the universe set must be open.
(b) The union of any number of open sets must be another open set.
(c) The intersection of a finite number of open sets must be open.

Example: Let the universal set U be the following: U “ ta, b, c, du
The following are topologies:

Topology #1: Ø, U, ta, bu , tc, du
Topology #2: Ø, U, ta, bu , tc, du , ta, b, cu
Topology #3: Ø, U
Topology #4: Ø, U , every possible subset

What are the limit points of ta, bu?

Limit Points: ta, bu , tb, c, du , ta, b, c, du ,Ø

Definition: A subset K of R is compact if and only if every sequence of points in K
has a subsequence that converges to a point in K.
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Example: Are the following sets compact?
(i) [0, 1] - Yes.
(ii) r0,8q - No, consider N.
(iii) t1u - Yes, construct a sequence out of the elements of the set.
(iv) (0, 1) - No, even though a harmonic series is present within the set, as well as a

convergent subsequence, what the subsequence converges to is not in the set.
(v) Z - No, look at (ii).
(vi) t1, 2u - Yes, drop the number needed to create a sequence.

Generalization: Any finite set will be compact.

17 November 2011

Theorem: (a) The intersection of an arbitrary number of closed sets is closed.
(b) The union of a finite number of closed sets is closed.

Proof : To prove (a), use the generalization of pAYBqA “ AA YBA.

˜

č

αP∆

Gα

¸A

“
ď

αP∆

GAα.

The complement of
č

Gα is open and thus,
č

Gα is closed.

To prove (b), use the definition of closed.

č

αP∆

Gα is closed.

Question: Let x be a limit point of
č

Gα. Is x P
č

Gα?

If so, then
č

Gα is closed. If x is a limit point of
č

Gα, then every neighborhood of

x contains points of
č

Gα.

x is in every Gα! Why? Every neighborhood of x contains points from each one of
the Gα’s.

So x is a limit point of every Gα. The Gα’s are closed and thus, contain all their limit points.

Thus, x is in every Gα, and thus in
č

Gα. ♣
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Recall: A set K Ď R is compact if and only if every sequence of points in K has a subse-
quence that converges to a point in K.

Heine-Borel Theorem: A subset of R is compact if and only if it is closed and bounded.

Definition: An open cover of a set A Ď R is a collection of open sets whose union
contains A. If an open cover contains a finite collection of ope sets whose union contains
A, then that is called a finite subcover.

Examples: Open covers of (0, 1): (i) tp0, 1qu, (ii)
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ñ A finite subcover:
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Theorem: The following are equivalent:
(a) K is compact.
(b) K is closed and bounded.
(c) Every open covering of K contains a finite subcover.

Proof : (a) ñ (b)
Suppose K is not bounded. Let K1 ą 10,K2 ą 102,K3 ą 103, ¨ ¨ ¨ .
ñ pKnq diverges to infinity. E a convergent subsequence.
Contra-positive: Not bounded ñ Not compact.
6 Compact ñ Bounded.

Compact ñ? Closed

Let L be a limit point of K. Is L P K?
ñ D a sequence of points in K Ñ L. Thus, every subsequence converges to L. By definition
of compact, L P K.
6 K is closed.
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Theorem: The only subsets of R that are open and closed are R and Ø.

Proof : Suppose A Ă R, A ‰ Ø, and A is open and closed. [We want to show A “ R].
Since A ‰ Ø ñ x P A.

Idea: Show @ y ą x such that y P A. [Then show @ z ă x such that z P A].

“Big” suppose D real numbers greater than x such that the real numbers are in AA.
ñ txu is bounded above by elements in AA.

Picture:
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x` 1
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´́ ´́ ´́ |́bRA´́ ´́

ñ D an element s “ inf AA such that x ă S.

Picture:

´́ |x´́ ´́ ´́ ´́ ´́(́́́ ´́ |s´́´́ )́́´
Note: s “ inf AA such that s ą x. All points left of s, but within the neighborhood of s
are elements of A.

Where is s? s P A? s P AA?

s is a limit point of A.
ñ s P A because A is closed.
s is a limit point of AA as well.
ñ s P AA.

How? There are two interpretations:

The left side of s, D points of AA. The points are not necessarily all of AA. But, we
can find telescoping intervals where we can find a point of AA.
ñ A sequence of points from AA that approach s.
ñ s is a limit point of AA.

OR Ñ A is open.
ñ D a neighborhood around s where it is completely contained in A.
If s “ inf AA, then D a lower bound greater than our supposed greatest lower bound.
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Functions

Examples: (i) If fpxq “ x2, find lim
xÑ3

fpxq. [9]

(ii) If fpxq “

"

1 if x “ 1
0 otherwise

find lim
xÑ1

fpxq. [0]

ε´ δ Definition: Let f : A ÝÑ R and c be a limit point of A. We write lim
xÑc

fpxq “ L if

and only if @ ε ą 0, D δ ą 0 such that 0 ă |x ´ c| ă δ, then |fpxq ´ L| ă ε. rfor x P As.
Note: For every L-neighborhood, we can find a c-neighborhood.

Definition: A function f : A ÝÑ R is continuous at a point c P A if and only if
@ ε ą 0, D δ ą 0 such that 0 ă |x´ c| ă δ, then |fpxq ´ fpcq| ă ε. [for x P A].

Alternative Continuity Definition: A function is continuous if and only if the in-
verse image of an open set of B, is an open set of A.

Weird Function

fpxq “
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0 if x is irrational

1

n
if x “

m

n
, in lowest terms

1 if x “ 0

What is lim
xÑ5

fpxq? - It does not exists.

Is fpxq continuous at π? - Yes!
Is fpxq continuous at 5? - No!
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Theorem 4.4.2: Let f : A ÝÑ R be continuous. If K Ď A is compact, then fpKq is
compact.

y1, y2, ¨ ¨ ¨ Ñ a sequence in fpKq, call it pynq
f maps Ò Ò

x1, x2, ¨ ¨ ¨ Ñ Points in K that map to fpKq. This is a sequence in K, call it pxnq.
Since K is compact, this sequence has a subsequence that converges to a point in K. Let
the following be our subsequence:

u1, u2, u3, ¨ ¨ ¨ Ñ u P K
f maps Ó Ó Ó

v1, v2, v3, ¨ ¨ ¨ Ñ fpuq P fpKq, subsequence of pynq above.

Does pynq have a subsequence that converges to a point in fpKq? - Yes, because f is
continuous. ♣

Extreme Value Theorem: If f : A ÝÑ R is continuous, then f has a maximum and
minimum value on any compact subset of A. i.e., This means if K is compact subset of A,
then D x1 P K such that fpx1q ě fptq @ t P K and D x2 P K such that fpx2q ď fptq @ t P K.

Think of continuous functions on non-compact sets. Why does this theorem not hold?

Two examples to introduce the notion of uniform continuity :
The examples are in the book:
(i) fpxq “ x` 3 Ñ uniformly continuous.
(ii) fpxq “ x2 Ñ not uniformly continuous.

Minor Points

(i) We noted last time that f : A ÝÑ R is continuous if and only if the inverse image of
every open set in B is open in A. But, simply because a set S is open in A, it does not
necessarily follow that its image, fpSq is open in B.

Example: fpxq “ 1 @ x P p0, 1q Ñ Finite sets are closed. ñ Not open.

(ii) Why is the condition of non-empty necessary in the Axiom of Choice?
Does Ø have an upper bound? - Simple answer: Yes, six is an upper bound.
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(iii) Why is the Cantor Set uncountable? A different argument:
Fact: The real numbers in the Cantor set are exactly those numbers in [0, 1] that can be
expressed in base three without using any one’s.

ñ E one’s in base 3. ô D zero’s or two’s ô D zero’s or one’s [since we can re-assign
all numbers in base 2]. ñ Base is irrelevant. 6 All numbers in [0, 1] are uncountable,
regardless of the base.
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Definition: Let f : A ÝÑ R. If c P A, then f is called continuous at c if @ ε ą 0, D δ ą 0
such that |x´ c| ă δ [assumed x P A], then |fpxq ´ fpcq| ă ε.

Exercise 4.4.2 : fpxq “
1

x2
p:q

For example, suppose ε “ 0.01 for our above function. Then at
1

16
, we have an

ε-neighborhood of (0.0525, 0.0725) which corresponds to c “ 4 [in other words, at four

on the x-axis] with a neighborhood of (3.97, 4.03). Note: Because the function is

inverted, 3.97 ÞÑ 0.0725 and 4.03 ÞÑ 0.0525.

We can show that if c ą 1, then an δ “
ε

3
will always work. Since c ą 1, the value

of δ is not dependent on c, the function is uniformly continuous on r1,8s.

With the same function above, consider the same ε and look at two with an

ε-neighborhood of (1.99, 2.01). The correspondence will be to c “

?
2

2
with a

neighborhood of (0.705, 0.709). This is a case of not uniformly continuous. The value of

δ depends on c.

Exercise 4.3.3 : Let y “ ax` b be continuous on R.
The “steps” to prove continuity are more or less the following:
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(1) Given ε ą 0, is there a δ ą 0 such that |x´ c| ă δ ñ |fpxq ´ fpcq| ă ε?

(2) |fpxq ´ fpcq| “ |pax` bq ´ pac` bq| “ |ax´ ac| “ |a||x´ c|

(3) Proof : Assume |x´ c| ă δ “
ε

|a|
.

|fpxq ´ fpcq| “ ¨ ¨ ¨ “ |a||x´ c| ă |a|δ “ |a|
ε

|a|
“ ε.

p:q Assume c ą 1.

(1) Given ε ą 0, does D a δ ą 0 such that |x´ c| ă δ ñ |fpxq ´ fpcq| ă ε?

(2)

|fpxq ´ fpcq| “

ˇ

ˇ

ˇ

ˇ

1

x2
´

1

c2

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

c2 ´ x2

c2x2

ˇ

ˇ

ˇ

ˇ

since c2x2 ą 1
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ă |x´ c||x` c| ă |x´ c||c` c` 1| “ |x´ c||2c` 1|

So let δ “ min

ˆ

1,
ε

2c` 1

˙

. Notice: We do not need absolute value since c ą 1.

(3) |fpxq ´ fpcq| “ ¨ ¨ ¨ “ |x´ c||2c` 1| ă 2c` 1
ε

2c` 1
“ ε

Notice: c ě 1. So δ “
ε

2p1q ` 1
“
ε

3
will always work.

Exercise 4.3.7 : K contains the roots of fpxq.

Show KA is open? If a P KA, then fpaq ‰ 0. Let ε “
1

2
|fpaq|. So the ε-neighborhood

of fpaq excludes zero. Since f is continuous, there is a δ-neighborhood of a such that all
points map into the ε-neighborhood of fpaq. Thus, all those points are in KA [since they
do not map to zero]. Thus, a has a neighborhood contained in KA. This means that KA is
open. ñ K is closed.


