Neuropsychologia 48 (2010) 1886-1894

journal homepage: www.elsevier.com/locate/neuropsychologia

Contents lists available at ScienceDirect

Neuropsychologia

UROPSYCHOLOGIA

Effects of heartbeat and respiration on macaque fMRI:

Implications for functional connectivity

Tobias Teichert®*, Jack Grinband P, Joy Hirsch?, Vincent P. Ferrera?

a Columbia University, Department of Psychiatry and Neuroscience, David Mahoney Centre for Brain and Behavior Research, New York, USA
b Columbia University, Neurological Institute, Program for Imaging & Cognitive Sciences (PICS), New York, USA

ARTICLE INFO ABSTRACT

Article history:

Received 3 July 2009

Received in revised form 26 October 2009
Accepted 27 November 2009

Available online 5 December 2009

The use of functional magnetic resonance imaging (fMRI) in non-human primates is on the increase.
It is known that the blood-oxygen-level-dependent (BOLD) signal varies not only as a function of local
neuronal energy consumption but also as a function of cardiac and respiratory activity. We mapped
these cyclic cardiac and respiratory artifacts in anesthetized macaque monkeys and present an objective

analysis of their impact on estimates of functional connectivity (fcMRI). Voxels with significant cardiac
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and respiratory artifacts were found in much the same regions as previously reported for awake humans.
We show two example seeds where removing the artifacts clearly decreased the number of false positive
and false negative correlations. In particular, removing the artifacts reduced correlations in the so-called
resting state network. Temporal bandpass filtering or spatial smoothing may help to reduce the effects
of artifacts in some cases but are not an adequate replacement for an algorithm that explicitly models

and removes cyclic cardiac and respiratory artifacts.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Recent years have seen an increase in the number of fMRI
studies using anesthetized as well as awake macaque monkeys
(e.g., Brewer, Press, Logothetis, & Wandell, 2002; Essen et al.,
2001; Hadj-Bouziane, Bell, Knutsen, Ungerleider, & Tootell, 2008;
Logothetis, Guggenberger, Peled, & Pauls, 1999; Pinsk, DeSimone,
Moore, Gross, & Kastner, 2005; Tsao, Freiwald, Knutsen, Mandeville,
& Tootell, 2003; Vincent et al., 2007). Such studies provide a unique
opportunity to bridge the gap between invasive single cell electro-
physiology in monkeys and non-invasive fMRI methods in humans.
Vincent et al. (2007) were recently able to show that measures
of functional connectivity yield meaningful results even in anes-
thetized monkeys. This finding amplifies the potential range of
applications of monkey imaging.

The BOLD signal is modulated by several physiological artifacts
such as fluctuations in breathing rate and amplitude as well as pul-
satile and respiratory motion. It is still a mater of debate to what
extent measures of functional connectivity represent such artificial
processes (for reviews see Auer, 2008; Rogers, Morgan, Newton, &
Gore, 2007). The current study focuses exclusively on blood vol-
ume, blood oxygenation, and motion artifacts with a fixed phase
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relation to the cardiac and respiratory cycle. These artifacts will be
referred to as cyclic physiological artifacts or simply cyclic artifacts.
Cyclic artifacts have long been known to affect human BOLD signals
(e.g., Biswal, DeYoe, & Hyde, 1996; Dagli, Ingeholm, & Haxby, 1999;
Glover, & Lee, 1995; Glover, Li, & Ress, 2000; Harvey et al., 2008; Hu,
Le, Parrish, & Erhard, 1995; Lowe, Mock, & Sorenson, 1998; Lund,
2001a; Lund, Madsen, Sidaros, Luo, & Nichols, 2006; Mitra, Ogawa,
Hu, & Ugurbil, 1997; Raj, Anderson, & Gore, 2001). Despite the cur-
rent interest in monkey fMRI, cyclic artifacts of this species have
not been quantified.

The detection and removal of cyclic artifacts may be of great
importance for fcMRI, especially when using long TRs (Auer, 2008;
Cordes et al., 2001; Lowe et al., 1998; Lund, 2001a; Maldjian, 2001;
Mitra et al., 1997; Rogers et al., 2007). Lund (2001a) has argued
that with long TRs cyclic artifacts may be aliased into lower fre-
quency bands which are typically used for fcMRI. Further, Lowe et
al. (1998) have shown that the spatial specificity of fcMRI is reduced
when using long TRs, the most likely cause being aliased cyclic arti-
facts. However, despite the potential impact of cyclic artifacts on
fcMRI and the availability of tools to remove them (e.g., RETROICOR,
Glover et al., 2000), a large number of studies do not make use of
this possibility (for a review of clinical studies see Auer, 2008).

One reason for this might be that so far, no study has actu-
ally compared standard whole-brain connectivity maps before and
after removal of cyclic artifacts. Previous studies which have ana-
lyzed cyclic artifacts (e.g., Glover et al., 2000; Harvey et al., 2008;
Lund et al., 2006), only show maps of the affected regions (suscep-
tibility maps). However, the fact that two voxels are both affected



T. Teichert et al. / Neuropsychologia 48 (2010) 1886-1894 1887

by cardiac artifacts, does not automatically imply that they will
have correlated artifacts. For example, if the artifact a; follows the
sine of the cardiac cycle in one voxel, a; = sin(¢), and the cosine of
the cardiac cycle in another region, a, = cos(¢), they are effectively
uncorrelated. Also, it is important to consider differences in slice-
time acquisition which will cause different voxels to be sampled at
different phases of the cardiac and respiratory cycle. Depending on
the average phase shift introduced by the difference in slice-timing,
two voxels with identical dependence on cardiac and respiratory
activity may show significant positive, negative or no correlation.

Further, standard fcMRI preprocessing steps typically involve
explicit as well as implicit spatial low-pass filtering. Artifacts in
adjacent slices are not necessarily sampled in a similar phase of
the artifact, thus introducing high spatial frequencies perpendicu-
lar to the slice orientation. Thus, spatial smoothing may reduce the
amplitude of the cyclic artifacts to a larger degree than other sig-
nals. In summary, the relation between susceptibility maps on the
one hand, and fcMRI maps on the other is not immediately obvious
and merits empirical investigation.

The present study has two primary goals. First, it provides a
quantitative assessment of cyclic artifacts in macaque monkeys,
analogous to previous studies in humans (Cordes et al.,2001; Glover
etal.,, 2000; Harvey et al., 2008; Lund et al., 2006). Second, it analy-
ses the effects of removing cyclic artifacts on standard whole-brain
functional connectivity maps of anesthetized macaques. We find
that, indeed, cyclic artifacts quantitatively affect estimates of func-
tional connectivity and may lessen our ability to detect and quantify
functional networks.

2. Materials and methods
2.1. Imaging

Three adult male macaque monkeys (macaca mulatta, 7-10kg) were scanned
under light isoflurane anesthesia (0.8-1.1%, spontaneous ventilation) on a 3T
Philips scanner. The monkeys were scanned in the supine position while
head motion was restrained by padding placed between the head and the
headcoil. In the initial phase of the anesthesia, resting state T2*-weighted
functional images were acquired (TR=2000ms, TE=25ms, flip-angle=72°, FOV:
192 mm x 160 mm x 50 mm, 96 x 96 x 25 2 mm? isotropic voxels, 400 volumes per
series). Slices were acquired with the standard Philips ventral to dorsal interleaved
sequence. Subsequently, under deeper anesthesia, T1-weighted structural images
were taken (256x 256x 100 1 mm? isotropic voxels).

2.2. Physiological measures

During functional scans, cardiac activity was derived from peripheral blood
oxygenation measured with a pulse-oximeter placed on one of the monkey’s toes.
The spontaneous respiratory activity was monitored by measuring end-tidal CO,-
concentration. These signals, i.e., the cardiac signal C(t) and the respiratory signal
R(t) were sampled and digitized at a rate of 200 Hz and saved alongside the slice
triggers from the scanner.

Following Hu et al. (1995) and Glover et al. (2000) we defined the phase of the
cardiac signal ¢¢ by the following equation:

() = L tore)

tpost — tpre

Here tyre and tp are the two local maxima in peripheral blood oxygenation
preceding and following t. Hence, ¢¢ advances at a steady pace within each cardiac
cycle. The rate of change of ¢ differs between cycles of different duration. In contrast
to Glover et al. (2000) we used the same method to derive an estimate of phase of
the respiratory cycle, ¢ (see Section 2.3 for details).

To detect the local maxima of C(t) and R(t), we first filtered out high frequen-
cies using Gaussian kernels with a standard deviation of 25 and 200 ms for C and
R, respectively. Subsequently, we calculated time derivatives of the signals by sub-
tracting a lagged version of the same signal:

dx
e [n] = V8¢ (x [n] —x[t —])

Here § corresponds to the temporal resolution, in our case 1/200 and v to the lag
which was chosen as 1 and 2 for C and R, respectively. Local maxima were detected
when the sign of the derivative switched from positive to negative.

2.3. Artifact removal

In the present study we used harmonic or trigonometric regression (e.g., Mardia,
1972) to detect and remove cyclic cardiac and respiratory artifacts. Briefly, the
method assumes that the raw BOLD signal is the result of neuronally driven changes
in BOLD and artificial changes in BOLD related to cardiac and respiratory activity,
respectively:

Bmw(t) = BN(t)"’BC(t) +BR(t)

Further, itis assumed that both B¢ and Bg are functions of the phase of the cardiac
and respiratory cycle, respectively:

Bc(t) = ac[¢c(t)]

Br(t) = ag[¢r(t)]

Here ac and ag describe the effect of an average cardiac or respiratory cycle on
BOLD as a function of phase. In order to visualize ac and ag we plot the raw BOLD
activity Brqw not as a function of time, but as function of the current phase ¢¢(t) and
@r(t), respectively (see supplementary Figs. S1b&c and S2b&c, respectively). The
functions ac and ag can be estimated in several ways. In the present paper we used
harmonic regression to fit a subset of orthogonal basis functions to the data. The
functions we fit consist of a constant offset plus the first N Fourier components:

N

acl@l =0 + Y _atsinlodese] + B coslodc]

w=1

Thus, for each of the two artifacts the entire model is determined by 1+ 2N
parameters. In the present paper we used N = 6, unless stated otherwise. To remove
the artifact we subtracted the estimated artifact from the raw data.

Betean(t) = Braw(t) — ac[dc(t)] — ar[¢r(t)]

The standard harmonic regression which we used here is highly similar to the
RETROICOR method described by Glover et al. (2000). RETROICOR differs from stan-
dard harmonic regressioninits treatment of the respiratory artifacts. The respiratory
artifact is thought to arise from apparent motion caused by changes in bulk suscep-
tibility in the lungs (Raj et al., 2001). Hence, the artifact is supposed to depend not
only on the phase of the respiratory cycle, but also on the amplitude. RETROICOR
treats this dependency by introducing a different estimate of phase (see Glover et
al., 2000 for details). We decided not to use this alternative estimate of phase for
two reasons. First, we observed very little variability in the amplitude of the respira-
tory cycles. Thus, our method and RETROICOR, produce virtually identical estimates
of phase with correlation coefficients on the order of .975. Second, if amplitudes
do vary, the RETROICOR phase estimate will have discontinuities in phase space
(Supplementary Fig. 3, top panel). This will cause the sine-regressors to have dis-
continuities in the time domain (Supplementary Fig. 3, bottom panel) which do not
match the continuous nature of the respiratory artifact.

It is important to note that harmonic regression does not assume constant fre-
quency of the cardiac and respiratory signals. However, it does implicitly assume
that the functions ac and ag are constant over the time and frequency range of the
cardiac and respiratory signals during data acquisition. Deviations from this assump-
tion will cause the model to underestimate the amount of variance caused by cardiac
and respiratory artifacts.

We used standard statistical methods to describe the model fit. F-values were
calculated as the fraction of the sums of squares of the model S5Q,,o4 and the sums of
squares of the residuals SSQ,.s normalized with the respective degrees of freedom,
F = (55Qinod/ Afmod )(dfres /SSQres ). The model was considered to provide a significant
fit to the data if the F-value exceeded the 0.95-quantile of an F distribution with
the corresponding degrees of freedom. The percent variance explained (%Var) was
calculated as 1 minus the fraction of the sums of squares of the residuals and the
sums of squares of the original data, %Var = 1 — (55Qyes /SSQraw ). For fixed degrees
of freedom (as was the case here) there is a simple relation between the F-values
and the percent variance explained: the percent variance explained corresponds
to the fraction of the F-value and the sum of the F-value and the fraction of the
degrees of freedom, %Var = F/(F + (dfres/dfmoq))- In the current case, with 13 -1 =
12 numerator and 394 — 12 — 1 = 381 denominator degrees of freedom the critical
F-value (see above) corresponds to 1.78. This F-value, in turn, corresponds to 5.3%
variance explained.

2.4. Preprocessing

For all runs we used two different preprocessing protocols, one of which used
the harmonic regression method. The leading six volumes were removed to avoid
onset non-stationarities. A functional reference volume was drawn halfway through
the scan ((400 — 6)/2 = 197). All the voxels with intensity values in the lower 5-
percentile in any of the 394 volumes were masked out.

The following steps were executed only if the harmonic regression method was
applied. Using FSL's math routine (fslmaths, Smith et al., 2004) the shortened and
masked series was highpass-filtered with a cutoff wavelength of 400s. From the
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highpassed data we estimated and removed cardiac and respiratory artifacts with
the phase-regression method described above. The removed artifacts were stored
for further analysis. The previously removed low frequency components were added
to the artifact-free data to make the two data sets with and without the artifacts
identical in every other aspect.

From here on the two preprocessing pipelines were identical. FSL's motion cor-
rection algorithm (mcflirt, Jenkinson, Bannister, Brady, & Smith, 2002) was used
to register all volumes to the reference functional volume. Typically, the motion
was small, well below the dimensions of a single voxel (2mm?3). FSL's slice-
time-correction algorithm (slicetimer, Smith et al., 2004) was used to correct for
differences of slice-time acquisition between different slices of a volume. Finally,
using FSL'’s linear registration tool (flirt, Jenkinson et al., 2002 this data set was reg-
istered to a global reference volume which corresponded to the first high-contrast
functional volume of the fourth run of the session.

Functional images and statistical maps from different animals were registered
into acommon space by a two-step procedure. First, the brain-extracted global func-
tional reference volume was registered to the brain-extracted structural volume.
Second, the structural images of all animals were registered in a standardized space.
The standardized space was created by co-registering and averaging structural vol-
umes of four previously scanned macaque monkeys and aligning the resulting mean
structural image along the anterior to posterior commissure line.

Brain voxels were determined from the high-resolution structural images using
FSL's brain extraction tool (bet, Smith et al., 2004). Output of the brain extraction
tool was corrected by hand in some difficult cases. These maps were registered to
the low-resolution functional imaging space and served as masks for the detection
of brain voxels (see below).

2.5. Functional connectivity

Functional connectivity was calculated for anatomically defined seed regions in
several temporal waveband bands and with different amounts of spatial smooth-
ing. The preprocessed time-series were demeaned and normalized by their standard
deviation. Mean BOLD activity of all previously determined brain voxels was
regressed out using FSL's linear regression tool (fsl_glm, Smith et al., 2004). These
data were filtered with two Gaussian kernels with a standard deviation of 1 or 2 mm,
respectively (fslmaths, Smith et al., 2004). The resulting 4D-volumes, including the
original one without spatial smoothing, were filtered with a 400 s temporal high-
pass (fslmaths, Smith et al., 2004) in order to remove low-frequency drift. In addition,
we created a bandpassed version of the data by filtering with a 20s low-pass. The
proprocessing gave rise to 3 (spatial filters) x 2 (temporal filters) x 2 (cyclic artifact
removal) =12 4D-volumes for each original run.

To calculate functional connectivity of a seed region to the rest of the brain we
averaged activity in this region and correlated it separately to the activity of all brain
voxels. This procedure was repeated for all runs of the animal in question. For each
voxel this rendered a set of six to eight correlation values, depending on the number
of functional runs acquired for this animal. These values were transformed using
Fischer’s z-transformation and fed into a one-sample t-test. The resulting t-maps
were corrected for multiple comparisons using a two-sided cluster criterion with a
t-value cutoff of 2.3 and a critical cluster value of 0.05 (cluster, Smith et al., 2004).

3. Results
3.1. Heart and breathing rate

Before describing the cardiac and respiratory artifacts in detail
we briefly report the properties of the cardiac and respiratory sig-
nals. For all monkeys, the average cardiac cycle was around 550 ms,
slightly larger than a quarter of the TR. (monkey C: 565ms + 7;
monkey L: 537 ms + 3; monkey P: 598 ms + 12). An average res-
piratory cycle was around 2 s, on the order of magnitude of the TR
(monkey C: 1935ms + 75; monkey L: 2025 ms + 67; monkey P:
2675 ms + 88). In addition, we analyzed the variability of heart and
breathing rate over the course of an individual run. For individ-
ual runs, the range of cardiac cycle durations, i.e., the longest cycle
minus the shortest cycle, was 32 ms (monkey C: 32 ms + 3; monkey
L: 34 ms + 10; monkey P: 31 ms + 4). The range of respiratory cycle
durations, i.e., the duration of the longest cycle minus the duration
of the shortest cycle, was 344 ms on average (monkey C: 241 ms +
107; monkey L: 360 ms + 155; monkey L: 432 ms + 35).

3.2. Cardiac artifacts

For all three monkeys a large number of voxels had significant
cardiac artifacts (see Figs. 1a and 2a). Supplementary Fig. S1 shows

the cardiac artifact for an example voxel in the anterior cingulate.
The bulk of voxels with cardiac artifacts was found close to the
major arteries, such as the basilar artery and Circle of Willis, as
well as the anterior, middle, and posterior cerebral arteries. Vox-
els around major veins seemed to be less affected. However, voxels
around the superior sagittal sinus did show significant cardiac arti-
facts.

The most affected brain regions are (1) the ventral base of the
cerebrum including the frontal pole of the temporal lobe, hypotha-
lamus, parahippocampal cortex, and the entire brain stem, (2) the
entire medial wall of the two hemispheres including anterior and
posterior cingulate, and (3) regions in the fold of the sylvian fissure
including the insula and auditory cortex (see Figs. 1a and 2c). This
is likely to be due to the proximity of these regions to major vessels.
Note that apart from the fourth ventricle, the other ventricles are
not affected by the cardiac artifact.

3.3. Respiratory artifacts

For all three monkeys a large number of voxels had significant
respiratory artifacts (see Figs. 1b and 2b). Supplementary Fig. S2
shows the respiratory artifact for an example voxel in the fourth
ventricle. Voxels with significant respiratory artifacts were more
common than voxels with significant cardiac artifacts. Part of the
respiratory artifacts seemed to arise from breathing-related motion
as opposed to breathing-related changes in blood oxygenation. To
test this hypothesis we performed FSL’s motion correction (mcflirt,
Jenkinson et al., 2002) on the estimated artifact. For all three
monkeys we found small but highly consistent breathing-related
motion in the anterior-posterior and, with smaller amplitude, the
ventro-dorsal direction. A study by Raj et al. (2001) concludes
that analogous effects in humans are apparent motion caused by
changes in bulk susceptibility in the lungs.

3.4. Spectral analysis of cardiac and respiratory artifacts

To determine the temporal properties of the artifacts we com-
pared power spectra of the uncorrected and corrected data sets. We
selected voxels with significant artifacts and calculated the mean
power spectra of these voxels for the uncorrected and the corrected
time-series. Fig. 3 shows the fraction of the corrected and uncor-
rected power spectra which corresponds to 1 minus the percent
variance explained for the temporal waveband in question.

Cardiac artifacts were mainly found in wavelengths below 10s
(see Fig. 3a). In contrast, respiratory artifacts were observed also
with longer wavelengths (see Fig. 3b). It is important to note that
these differences are not an intrinsic property of the two signals,
because the observed wavelength depends on the aliasing of the
artifacts. The aliased frequency is determined by the difference
between TR and the average duration and variability of the cardiac
or respiratory cycle (e.g., Glover et al., 2000; Kiviniemi, Ruohonen,
& Tervonen, 2005; Lund, 2001a). Aliasing into low frequency bands
is especially likely to occur if the TR and duration of the artifactual
cycle are similar. In line with this, we find an aliasing of the res-
piratory artifact into long wavelengths for monkeys C and L who
have respiratory cycles of 1935 and 2025 ms, respectively, but not
for monkey P with a respiratory cycle of 2675 ms (see Fig. 3b).

We simulated the effect of different TRs on the aliasing of the
cardiac and respiratory artifacts. To do so, we used the estimated
artifact ac(¢.) of a strongly affected voxel, and determined the
phase of the cardiac artifact ¢(n) = ¢.(n x TR) for a variety of dif-
ferent TRs. Then, we calculated the power spectra of the simulated
artifacts ac[¢c(n x TR)] for all choices of TR. The results in Fig. 4a
show that fora TR of 2 s (dotted line), the cardiac artifacts are aliased
mainly into very short wavebands. In contrast, the respiratory arti-
facts are aliased to a wavelength of roughly 100s. Furthermore,
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Fig. 1. Cardiac (a) and respiratory artifact (b) from one macaque monkey. Data were averaged over 8 runs of 400 volumes each. Regions with significant cyclic artifacts are
overlaid on the individual T1-weighted structural image. The colors correspond to the percent variance explained by the harmonic regression. Note the different scales of
the color bar for the cardiac and respiratory artifacts. (a) Regions with significant artifacts can be found around major vessels. The basilar artery (ba), anterior (aca), medial
(mca) and posterior (pca) cerebral arteries can clearly be distinguished. Veins seem to cause less artifacts but the superior sagital sinus (sss) is clearly visible. Arteries outside
the brain such as the opthalmic artery are also visible. (b) Part of the respiratory artifacts are caused by breathing-related apparent motion.

the simulation shows that for some choices of TR the cardiac arti-
facts can be expected in wavelengths well above 10 s. In such cases,
low-pass filtering the data will not remove the cardiac artifacts.

3.5. Functional connectivity

The previous results have shown that a large fraction of voxels
have significant cardiac and respiratory artifacts. In the following
we will test how these artifacts affect functional connectivity maps.
The impact of the cyclic artifacts was assessed by comparing results
from three conditions. As a baseline we use the highpassed data set
from which merely slow linear drifts had been removed. Results
form this data set were compared to two artifact removal methods,
the harmonic regression algorithm as well as the standard low-pass
method.

Example 1. Basilar artery seed

To test whether cyclic artifacts may affect fcMRI maps we
selected a region which is highly affected by cyclic artifacts. The
susceptibility maps suggest that the basilar artery can be consid-
ered such a worst case scenario. Selecting the basilar artery as a
seed region has several advantages. First, under the assumption
that there are no residual gray-matter voxels in the seed, we can
assume that all observed correlations are not neuronally driven and
hence artificial. Thus, to a first approximation, the improvement of
the fcMRI maps can be quantified as the reduction in the number of
voxels with a significant correlation. Second, in the event that we
do find voxels with artificial correlations, it will serve as a bench-
mark test for the effectivity of the artifact removal method. If the
method works, we would expect at least some of those correlations
to disappear.
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Fig. 5. Functional connectivity of the basilar artery seed. The different columns correspond to different amounts of spatial smoothing. The color code displays the number
of animals with significant positive (red to yellow) and negative (dark to light blue) correlations to the seed region. A large fraction of the artificial correlations (top row) is
removed by both the harmonic regression technique and the low-pass filter. It is important to note that the low-pass filter method works only if the cyclic artifacts are aliased
into the corresponding waveband as happened to be the case here. The alternating horizontal stripes of positive and negative correlation are most likely due to differences

in slice-time acquisition.

Fig. 5 shows the results of the fcMRI analysis for the basilar artery
seed. For the data with the artifacts (top row) we find a large num-
ber of voxels with significant positive or negative correlations to
the seed region. These artificial correlations are most pronounced
for moderate spatial filtering, but can also be observed for no or
strong spatial filtering. A closer inspection reveals a very promi-
nent spatial pattern which consists of alternating stripes of positive
and negative correlations. The orientation of the stripes is parallel
to the slice orientation. We suggest that the pattern is due to dif-
ferences in slice-time acquisition §; which amount to an average
phase shift §4 of the cardiac cycle between two voxels in different
slices. Because the artifact as a function of phase is similar for most
voxels a,(¢) >~ ax(¢), this shift determines the sign and magnitude
of correlation p(a;, a;) between observed artifacts of two voxels in
different slices, p(ay, az) ~ p(ay(¢), a1(d + 54))-

The bulk of these artificial correlations disappears after remov-
ing the cyclic artifacts (middle row, see Table 1 for details). This
is a clear indication that (1) cyclic artifacts may affect fcMRI maps
and (2) that the harmonic regression algorithm clearly reduces the
impact of the artifacts. The alternating stripes of positive and neg-
ative correlations which can be observed in the data set with the
artifacts disappear almost completely. These findings suggest that
after removal of the artifacts the fcMRI maps reflect random spuri-
ous correlations as would be expected from any statistical method.

In the current case, the artifacts are removed just as effectively
by standard low-pass filtering (third row). It is important to note
that the low-pass filtering works if and only if the artifacts happen
to be aliased into the high frequency range. While this happened to
be the case for the cardiac artifacts in the present case (see Fig. 3),
this is not the rule. As we show above, the cyclic artifacts may be
aliased into any waveband (see Fig. 4). In such a case, the low-

Table 1
Percent voxels with significant positive and negative correlation to the basilar artery
seed region in the condition with moderate spatial filtering (c=1mm).

Monkey L Monkey P Monkey C
With artifacts 6.3/7.7% 9.2/10.6% 5.3/6.3%
Without artifacts 1.7/1.9% 2.8/3.7% 3.9/5.5%
Low-passed 1.9/2.2% 13.2/14.2% 2.2/3.7%

pass method will be ineffective and render the same artificial fcMRI
maps as the highpassed data (top row).

Example 2. Resting state network

A recent study has reported a network of correlated brain areas
in anesthetized macaques (Vincent et al., 2007). The described
network consisted of four regions which showed strong similar-
ity to the so-called ‘resting state’ or ‘default’ network previously
described for awake human subjects (Damoiseaux et al., 2006; Fox
et al.,, 2005; Raichle et al., 2001): the posterior cingulate/precuneal
cortex (pC/PCC), the dorsal medial prefrontal cortex (dmPFC), lat-
eral temporo-parietal cortex (ITPC) and posterior parahippocampal
cortex (pPHip). It is noteworthy that all of these regions are close
to major vessels (pC/PCC and dmPFC are near the anterior cere-
bral artery; ITPC is near the middle cerebral artery; pPHip near
the posterior cerebral artery, see also Fig. 6). Thus, the resting
state network is optimally suited to test whether correlated car-
diac artifacts can affect fcMRI of a realistic seed region, i.e., the
pC/PCC.

Using moderate spatial filtering (c = 1 mm) we found correla-
tions in brain areas which partially resemble the ones described by
Vincent et al. (2007). Significant positive correlations were found
mainly in the ITPC (see Fig. 6 top row). Significant positive cor-
relations were less consistent in pPHip and completely absent in
the dmPFC. Despite the differences, these results were sufficient to
test whether the observed correlations in the ITPC were affected
by cyclic artifacts. Indeed, after removal of the artifacts the number
of voxels with positive correlations in ITPC and pPHip was clearly
reduced (Fig. 6 middle row). This suggests that even for realistic
seed regions like the pC/PCC, fcRMI maps may be affected by cyclic
artifacts.

As for the basilar artery seed, we expected the low-pass method
to be just as effective in the current case. However, the low-
passed data revealed the same pattern of positive correlations
in ITPC as the highpassed data (Fig. 6 bottom vs. top row). This
seems to suggest that in this case the low-pass method was
less effective at removing the cyclic artifacts. There is an alter-
native explanation for this finding: assume that there are two
independent sources which give rise to the positive correla-
tions in ITPC, one artificial source linked to the cyclic artifacts,
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Fig. 6. ‘Resting state’ network. fcMRI maps for a seed in the posterior cingulate/precuneal cortex (leftmost panel). Conventions as in Fig. 5. Regions with significant correlations
were found in the lateral temporo-parietal cortex and posterior parahippocampal cortex (top row). In contrast to previous fcMRI studies, no correlations were found in the
dorso-medial prefrontal cortex. The number of voxels with significant correlations in the lateral temporo-parietal cortex and the posterior parahippocampal cortex was
reduced by the harmonic regression method (middle row) and to a lesser degree by the low-pass filtering (bottom row).

and another source which probably reflects correlated neuronal
activity. Removing the cyclic artifacts reduced the number of
positive voxels by removing the artifacial source of correlation.
The residual correlations of neuronal origin were lost because
of uncorrelated noise. The low-pass filter removed not only the
cyclic artifacts (which happened to be aliased to this wave-
band) but also a big amount of the uncorrelated noise. Hence,
by removing both correlated and uncorrelated artifacts the cor-
relations of putatively neuronal origin are now able to reach
significance.

4. Discussion

Cardiac and respiratory artifacts were mapped in lightly anes-
thetized macaque monkeys. The artifacts were found to have a
spatially and temporally non-uniform effect on BOLD signals. The
spatial distribution of the artifacts was similar to that previously
described for awake humans (Cordes etal.,2001; Glover et al., 2000;
Harvey et al., 2008; Lund et al., 2006). The bulk of the cardiac arti-
facts were found close to major vessels. Respiratory artifacts were
mainly found in regions with a high spatial derivative as found,
for example, at the fringes of the brain, and could be explained
by breathing-related (apparent) motion. Depending on the rate as
well as the variability of the respiratory and cardiac cycle, the cor-
responding artifacts were aliased into a wide range of temporal
wavebands (Biswal et al., 1996; Glover et al., 2000; Lund, 2001a;
Lund et al., 2006). In cases where the artifacts are aliased to wave-
bands typically used for fcMRI (~10/20-400s), they will have a
profound impact on fcMRI maps if the seed region is affected by
the artifacts. These findings complement studies showing that the
removal of cyclic artifacts improves the quality of statistical infer-
ences for standard fMRI GLM analyses (Harvey et al., 2008; Lund et
al., 2006).

4.1. Necessary, sufficient and modulating conditions

Our results show that under certain conditions the removal of
the cyclic cardiac and respiratory artifacts may have a profound
impact on fcMRI In the following we describe the factors that
determine whether cyclic artifacts will cause artificial correlations.

Spatial restrictions. Two voxels may show artificial correlations
only if both of them are affected by the artifact. Thus, if the seed

region itself is not affected then the entire fcMRI map will not be
affected. If the seed region is affected, there is a chance that other
affected voxels may show artificial positive or negative correlations
(see Fig. 5 and 6).

Temporal restrictions. Our results and our simulations show that
cardiac and respiratory artifacts can be aliased into a variety of dif-
ferent wavebands (see Figs. 3 and 4; also refer to citations Biswal
et al., 1996; Glover et al., 2000; Lund, 2001a; Lund et al., 2006).
The aliased wavelength is determined by the TR and the car-
diac/respiratory frequency. The artifacts will affect fcMRI only if
they are aliased into the waveband used for fcMRI. Typical choices
of TR and values of cardiac/respiratory frequency can easily lead to
an aliasing into wavelengths from 10/20 to 400 s which are typically
used for fcMRI. Thus, adequate temporal filtering may reduce the
effects of artifacts in some cases, but it is not a reliable substitute
for more sophisticated artifact removal algorithms.

Spatial smoothing. Due to differences in slice-time acquisition,
the artifacts in different slices of a volume are sampled during dif-
ferent phases of the artifact. Such differences in acquisition time
may introduce high spatial frequencies in the direction perpen-
dicular to the slices. The presence of high spatial frequencies is
determined by the mean difference in the phase of the artifacts
for adjacent slices. If the difference is large, i.e., close to m, the
artifacts will have high spatial frequency content perpendicular to
the slices. In such a case any kind of spatial smoothing will atten-
uate the artifacts. Spatial smoothing may occur explicitly as part
of the standard preprocessing routine or implicitly during motion
correction and registration. Another source of spatial smoothing
comes from the averaging of activity of all voxels in the seed region.
Thus, if the seed region spans several slices, averaging the activity
may cancel out a considerable fraction of the artifact. However,
even with explicit spatial smoothing, motion correction and a seed
region spanning several slices, cardiac and respiratory artifacts still
had a significant effect on our fcMRI maps (see Fig. 5 and 6). Thus,
spatial smoothing may reduce the effects of the artifacts some-
times, but they are no substitute for an actual artifact removal
algorithm.

Slice acquisition time and slice orientation. If spatial and temporal
restrictions for the presence of artifacts are met, fcMRI maps will
be affected by the artifacts. The precise pattern of artificial corre-
lations is determined by seemingly unrelated parameters such as
slice-timing and slice orientation. The average difference in slice
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acquisition time between voxels in the seed region and the voxel
in question will determine the sign and magnitude of the artificial
correlations. The slice orientation will determine the difference in
slice acquisition time between a voxel and the average voxel in the
seed region. Taken together the two parameters determine the spa-
tial pattern of the artificial correlation in affected brain regions (see
top row in Fig. 5)

4.2. Resting state network

We investigated the effects of cyclic artifacts on fcMRI of the
PC/PCC, a well-studied brain region which has been implicated
to play an important role in the so-called resting state network.
We found significant positive correlations in the ITPC as previously
described for anesthetized macaque monkeys (Vincent et al., 2007).
However, correlations in the pPHip and dmPFC were less reliable or
completely absent. Comparing the results before and after removal
of the artifacts we conclude that correlations in the ITPC and the
pPHip may be overestimated if cyclic artifacts are not removed.
However, our results are in line with the assumption that a sig-
nificant part of the correlations between PC/PCC and ITPC were not
caused by cyclic artifacts. This is in line with a previous study which
showed that the correlations in the resting state network are not
due to changes in blood oxygenation caused by slow fluctuations in
breathing rate or depth (Birn, Diamond, Smith, & Bandettini, 2006).
In summary, our findings clearly outline the necessity to include
sophisticated artifact removal algorithms such as RETROICOR into
the standard fcMRI preprocessing pipeline even when using real-
istic seed regions which are only moderately affected by cyclic
artifacts.

4.3. Comparison of artifact removal methods

Our data show that, as predicted by Lund (2001a), standard low-
pass filtering does not adequately remove artificial correlations
from fcMRI data. In the present paper we used harmonic regression
to remove the cyclic cardiac and respiratory artifacts. A number of
alternative methods with different advantages and requirements
have been suggested in the literature (e.g., Biswal et al., 1996; Frank,
Buxton, & Wong, 2001; Glover et al., 2000; Hu et al., 1995; Josephs,
Howseman, Friston, & Turner, 2001; Lund, 2001b; Lund et al., 2006;
Mitra et al., 1997; Thomas, Harshman, & Menon, 2002). A review
of most of these methods is provided in Lund et al. (2006). It was
beyond the scope of our study to systematically compare the effec-
tivity of these methods. All of these methods have been shown to
remove significant fractions of the artifacts. Our results suggest that
either one of them will help reduce the number of false positive
correlations.

5. Conclusions

Our results show that standard preprocessing steps which
include spatial and temporal low-pass filtering are not sufficient
to exclude artificial correlations in studies of functional connectiv-
ity, unless the TR is short enough to prevent aliasing. The precise
spatial pattern of artificial correlations depends on the interaction
of a number of factors such as TR, cardiac frequency, respiratory
frequency, slice-timing and slice orientation. These intricate inter-
actions may give rise to spatial patterns of artificial correlations
which are hard to distinguish from patterns of neuronally driven
correlations.
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Supplementary Fig. S1. Cardiac artifact of an example voxel in the anterior cingulate. (a) Raw fMRI time-series.
The color corresponds to the phase of the cardiac cycle at the time of the acquisition of the slice. (b) Plotting the
same time-series as a function of the phase of the cardiac cycle reveals a strong dependency. (c) The same data as
in (b) in the form of a phase-plot. (d) Time-series before (red) and after (black) removal of the cardiac artifact. (e)
Power spectra of the same time-series before (red) and after (black) removal of the artifact.
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Supplementary Fig. S2. Respiratory artifact from an example voxel in the fourth ventricle. The color code in
A,B and C) denotes to the phase of the respiratory cycle at the time of slice acquisition. Otherwise, conventions as
in supplementary Fig S1. Note how slowly cardiac cycle changes as a function of volume. This is due to similar
breathing and slice acquisition rates which leads to aliasing of the breathing artifacts into long wavebands. _______
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Supplementary Fig. S3. RETROICOR’s handling of variable breathing amplitude. (A) Simulated respiratory
activity is plotted in blue, the corresponding phase in gray and RETROICOR’s corrected phase estimate in green.
RETROICOR’s phase estimate ¢(f) corresponds to a monotonic function of the respiratory activity R(t) whose
sign is set equal to the sign of its derivative: ¢g(t) = f(R(t)) X sign(R’(t)) [for details of the function f see 12].
In the present case we simplified matters by choosing f as the identity function. The dependence on the sign of
the derivative is thought to model differences between periods of in- and expiration. For respirations with smaller
amplitudes, at around 4 to 8 seconds, ¢¢(t) has discontinuities in the phase domain, i.e., modulo 2rr. In (B) we plot
two of the resulting predictors in the time domain. The sine-predictors of any harmonic will be discontinuous. To
ensure that the predicted artifact agr(¢¢(t)) is continuous, the weights of all sine regressors «,, need to be set to zero.
For the remaining cosine regressors the sign of ¢ is irrelevant as cos(-p)=cos(p). Hence, ¢(t) might just as well be
defined as ¢g(t) = f(R(t)) . In this case, the theory of Taylor expansion suggests that the number of regressors may
be minimized by using set of polynomial instead of trigonometric basis functions. In summary, at best, the artifact
predicted by RETROICOR will be a function of the respiratory activity itself, and not of its phase. At worst, the
predicted artifact will have discontinuities which are difficult to interpret.




