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The United States operates a large number of social programs offering support 
to those in need. This includes cash assistance to the poor, food stamps, health 

insurance, housing programs, child care support, and social security to the aged, 
blind and disabled. We observe several differences in the design and outcomes of 
these programs. One difference lies in the degree of targeting to selected groups of 
individuals viewed as “deserving.” Although the US welfare state in general relies 
on a much higher degree of targeting than most other countries, there is substantial 
variation in targeting across different programs within the US. At one end of the 
spectrum, the Medicare program is almost universal, while at the other end of the 
spectrum, disability insurance programs serve a relatively small population satisfy-
ing very stringent eligibility criteria. A second difference lies in the way social pro-
grams are administered and in their degree of complexity. Targeted programs tend to 
be characterized by a substantial amount of complexity and administrative hassle, 
whereas universal programs are simpler and more transparent. A third difference 
lies in the take-up of social benefits. Incomplete take-up among intended recipients 
is an important issue in all means-tested programs in the US, but there is huge varia-
tion in participation across different programs.1

1 See the survey of literature on take-up by Janet Currie (2006) and papers on specific means-tested programs 
in Robert A. Moffitt (2003).
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Transfer Program Complexity and the  
Take-Up of Social Benefits†

By Henrik Jacobsen Kleven and Wojciech Kopczuk*

We model complexity in social programs as a by-product of the 
screening process. While a more rigorous screening process may 
improve targeting efficiency, the associated complexity is costly to 
applicants and induces incomplete take-up. We integrate the study 
of take-up with the study of rejection (Type I) and award (Type II) 
errors, and characterize optimal programs when policy makers 
choose screening intensity (and complexity), an eligibility rule, and 
a benefit level. Consistent with many real-world programs, optimal 
programs feature high complexity, incomplete take-up, classification 
errors of both Type I and II and, in some cases, “excessive” benefits. 
(JEL D04, D82, H23, I18, I38)
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This paper sets out a theoretical framework that facilitates an analysis of tar-
geting, complexity and take-up in social programs. We contribute to the existing 
literature along three dimensions. First, we take an initial step towards modeling 
and analyzing complexity in public programs. We go beyond viewing complexity 
as a negative side-effect of targeted programs, and treat it instead as a policy instru-
ment that is chosen alongside benefit levels and eligibility rules in the design of a 
program. Second, we explain why governments may want to design a program with 
high complexity and incomplete take-up by eligibles even though they have access 
to policy instruments which could increase take-up. Third, we integrate the study of 
take-up with the study of classification errors of Type I (false rejections) and Type II 
(false awards) in benefit award processes. In fact, we argue that non-enrollment in 
social programs can be seen as a form of Type I error, and that it has to be under-
stood by considering the trade-off with the usual Type I and II errors.

Empirical economists have long been concerned with the issue of incomplete 
take-up rates in public programs. The empirical literature hypothesizes three possible 
explanations for incomplete take-up: welfare stigma, transaction costs, and imperfect 
information. The seminal work in this area is the Moffitt (1983) model of welfare 
stigma, suggesting that eligibles may find non-participation in a welfare program opti-
mal because it is viewed as demeaning and shameful. But the stigma hypothesis is 
consistent with other more concrete costs associated with taking up social benefits. 
Indeed, a substantial amount of evidence have documented that applying for welfare 
benefits involves large transaction costs arising from application processes being com-
plex, tedious and time-consuming (Moffitt 2003; Currie 2006).

The complexity of welfare programs may arise from detailed eligibility criteria, 
rigorous documentation requirements, difficult and time-consuming forms, or requir-
ing multiple trips to the program office for interviewing and testing. Moreover, some 
programs involve frequent re-certification to continue to receive the benefit, and appli-
cants are frequently rejected because they fail to fulfill the administrative requirements 
within the required time. Notice that these forms of complexity reflect, at least in part, 
an attempt of program administrators to monitor true eligibility accurately, and hence 
complexity may have some desirable effects on the magnitude of classification errors. 
At the same time, these monitoring activities introduce hassle and possibly cognitive 
costs into the application process, which may hurt take-up. Indeed, empirical research 
has shown that complexity and administrative hassle do reduce program enrollment 
(Currie and Jeffrey Grogger 2001; Marianne P. Bitler, Currie, and John Karl Scholz 
2003; Mary C. Daly and Richard V. Burkhauser 2003; Anna Aizer 2007), and that 
such effects may be more important than stigma (Currie 2006).

Despite the fact that complexity and administration seem to be very important 
for the effects of public policies in general, and for the take-up of social benefits in 
particular, we are not aware of theoretical work modeling the complexity of public 
policy. Instead, the literature on mechanism design has focused on the generosity 
and structure of benefits and the incentives for ineligibles to reveal themselves truth-
fully. The key assumption in this literature is that innate ability is unobservable at 
any cost, whereas earnings are perfectly observable at no cost. The government has 
no access to a monitoring technology to assess true eligibility and therefore has to 
rely on limitations in earnings-based benefits to induce self-revelation. Our paper 
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goes beyond this extreme assumption about information by modeling the informa-
tion collection process—the monitoring technology—used to elicit true eligibility 
for social benefits. The empirical work by Hugo Benítez-Silva, Moshe Buchinsky, 
and John Rust (2004) on disability insurance programs in the US demonstrates that 
the monitoring technology can be a very important aspect of program design.

The way we model the complexity of a monitoring technology is consistent with 
the evidence discussed above. It is an instrument used by program administrators to 
increase the rigor of screening in order to extract a better signal of true eligibility, 
but which makes the application process more costly and therefore may induce non-
participation by eligibles. The cost of complexity can be interpreted as a cognitive 
cost of having a lot of testing, or it can be interpreted as a more concrete cost from 
the time and money spent applying. Modeling complexity as a cost to the individ-
ual is not the only possible approach to complexity that one may consider—issues 
related to bounded rationality and bounded willpower may be important and at best 
our framework fits them only as a “reduced form” representation.

Our model also accounts for imperfect information about eligibility on part of 
the potential welfare applicants. The role of imperfect information for non-enroll-
ment into social programs is well-documented (e.g., Beth Osborne Daponte, Seth 
Sanders, and Lowell Taylor 1999; James J. Heckman and Jeffrey A. Smith 2004), 
and it serves to reinforce the importance of complexity in the decision to apply 
for welfare. It is exactly because of imperfect information about eligibility that an 
individual may be reluctant to incur the transaction costs associated with applying.

The paper characterizes program parameters in equilibrium when policy makers 
can choose standard policy instruments—a benefit level and an eligibility rule—along 
with the additional instrument capturing program complexity. The model assumes that 
the government is interested in income maintenance, i.e., ensuring a minimum income 
level for as many truly poor (“deserving”) individuals as possible, being constrained 
by a limited budget. Income maintenance is chosen as the policy objective instead 
of social welfare maximization, because it simplifies the analysis and sharpens the 
theoretical results. Furthermore, it is often argued that income maintenance is more 
consonant with real-world policy problems and therefore adds positive content to the 
analysis (Ravi Kanbur 1987; Timothy Besley and Stephen Coate 1992; Besley and 
Coate 1995; Kanbur, Michael Keen, and Matti Tuomala 1994).2 The implications of 
adopting a welfarist approach are discussed in Appendix B, which argues that our 
main qualitative findings are consistent with such an extension.

We show that optimal program parameters reflect a trade-off at the margin between 
Type I errors (including non-takeup) and Type II errors. Optimal programs that are 
not universal always feature a high degree of complexity. Although it is generally pos-
sible to eliminate take-up by the undeserving (Type II errors), policies usually involve 
eligibility criteria that make them eligible and rely on complexity to restrict their par-
ticipation. These policies feature incomplete take-up by the deserving along with clas-
sification errors of both Type I and II in the benefit award process. Even though the 
government is interested only in ensuring a minimum benefit level, the optimal policy 

2 A case in point is the current discussion of health insurance reform in the United States, which stresses the 
importance of expanding health coverage as one of the main objectives of the reform.
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may feature benefits that are higher than this target minimum. This is because benefits 
generically screen better than either eligibility criteria or complexity.

The rest of the paper is organized as follows. Section I defines the different clas-
sification errors in public programs and discusses how they have been studied in 
the literature. Section II presents our model of transfer program complexity, and 
derives a number of results on program design, complexity and take-up. Section III 
discusses the conceptual differences and similarities between productive complex-
ity and “pure ordeals” (including a particular notion of stigma). Finally, Section IV 
offers some concluding remarks.

I.  Classification Errors in Social Programs: The Existing Literature

We view non-participation by eligibles in social programs as a result of program 
parameters chosen by policy makers. Viewed in this way, it is natural to think of 
incomplete take-up as a form of classification error of Type I—a false negative. We 
introduce the following terminology:

DEFINITION 1 (classification errors):

	 (i)	 �Type Ia errors (incomplete take-up) occur if a program design results in 
some truly eligible individuals not applying for benefits.

	 (ii)	 �Type Ib errors (rejection errors) occur if a program design results in some 
truly eligible individuals applying for benefits and being rejected.

	 (iii)	 �Type II errors (award errors) occur if a program design results in some truly 
ineligible individuals applying for benefits and being accepted.

For a government wanting to alleviate poverty among those who are truly eli-
gible, being constrained by a limited budget, it is desirable to avoid all types of error. 
The occurrence of Type Ia and Type Ib errors undermine the goal of poverty allevia-
tion, whereas the occurrence of Type II errors make the program more expensive 
and divert government revenues away from other productive uses. Hence, the choice 
of parameters in a welfare program—benefits, eligibility rules and the complexity 
of the screening process—reflects the effect of each parameter on the different kinds 
of error. Indeed, a central message in this paper is that public programs have to be 
understood by integrating the treatment of all three types of classification error and 
considering the trade-off between them.

While a large empirical literature has analyzed incomplete take-up and hence the 
occurrence of Type Ia error, much fewer papers have estimated the occurrence of 
Type Ib and Type II errors. A small literature looking at classification error rates in 
US Social Security disability award processes suggests that both award and rejection 
errors are very common. For example, the recent paper by Benítez-Silva, Buchinsky, 
and Rust (2004) estimates the award error rate to about 20 percent and the rejection 
error rate to about 60 percent.3 For the United Kingdom, Jean-Yves Duclos (1995) 

3 An early study by Saad Zaghloul Nagi (1969) reached broadly similar conclusions.
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studies classification errors in the Supplementary Benefits scheme, the main welfare 
program until 1988 providing means-tested cash benefits to the poor, and estimates 
an award error rate of 18.8 percent an a rejection error rate of 18.1 percent.

Opposite the empirical literature, a theoretical literature analyzes optimal transfer 
program design. Several strands of theoretical work are related to this paper. First, 
following on the seminal work of James A. Mirrlees (1971), a large body of work 
studies the relationship between tax-transfer structures and the incentives for self-
revelation. While much of this literature focuses on income taxation, a number of 
papers explicitly deals with the design of the social benefits (e.g., Peter A. Diamond 
and Mirrlees 1978; Albert L. Nichols and Richard Zeckhauser 1982; Charles 
Blackorby and David Donaldson 1988; Besley and Coate 1992, 1995; Kanbur, 
Keen, and Tuomala 1994). Assuming that there exists no monitoring technology to 
assess true eligibility, this literature deals exclusively with Type II errors and how to 
avoid them by restricting benefits in different ways. Some of this work focuses spe-
cifically on the role of ordeals in improving self-revelation. The notion of ordeals is 
related to the modeling of complexity in this paper, and we discuss the relationship 
between the two in Section 4.

Second, starting with the contribution by George A. Akerlof (1978), a smaller strand 
of literature introduces a simplified monitoring technology into the mechanism design 
problem. This monitoring technology—labelled “tagging” by Akerlof—can identify 
perfectly a given subset of eligibles. The screening process is imperfect because some 
eligibles are not tagged (a Type Ib error) and it is exogenous to policy makers. While 
Akerlof did not allow for Type II errors, subsequent work has incorporated two-sided 
classification error into the tagging framework, including papers by Nicholas Stern 
(1982), Keen (1992), Diamond and Eytan Sheshinski (1995), Donald O. Parsons 
(1996) and Bernard Salanie (2002). This literature assumes fixed award and rejection 
error rates (exogenous monitoring technology), and it ignores incomplete take-up. A 
recent paper by Laurence Jacquet and Bruno Van der Linden (2006) introduces stigma 
and imperfect take-up into the tagging model, keeping the assumption of an exog-
enous monitoring technology and ignoring the presence of Type II errors.

Third, a much smaller literature considers monitoring in public sector programs, 
focusing on aspects such as agency problems among public sector workers (Robin 
Boadway, Nicolas Marceau, and Motohiro Sato 1999; Canice Prendergast 2007) 
and the monitoring of job search in unemployment insurance programs (Boadway 
and Katherine Cuff 1999). The paper by Boadway, Marceau, and Sato (1999) devel-
ops a tagging model in which the imperfectly observable effort of social workers 
affects the magnitude of Type I and Type II errors, and where costly monitoring is 
required to induce optimal effort among social workers. The paper characterizes 
the structure of the optimal tax-transfer system along with the optimal payment and 
monitoring of social workers.

Finally, overlapping with these different strands of literature, there is a large 
amount of work focusing on targeting transfers in the context of poverty-reduction 
programs in developing countries (see David Coady, Margaret Grosh, and John 
Hoddinott 2004, for a recent survey). In particular, this literature recognizes that 
eliminating Type II errors (better targeting of benefits) can adversely impact poverty 
reduction and cautions against use of indirect measures of transfer program targeting 
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in assessing the performance of a program (see e.g., Martin Ravallion 2009, for a 
recent discussion).

Our paper contributes to the literature in two ways. First, we model and charac-
terize the choice of complexity in social programs, accounting for the presence of 
imperfect take-up in response to complexity. Second, we integrate the treatment 
of all three types of classification error, allowing for the magnitude of errors to be 
endogenous to program parameters chosen by policy makers. We show that optimal 
programs are typically characterized by all three types of error, consistent with the 
empirical evidence described above.

II.  A Model of Social Program Complexity

A. Individuals

We assume that each individual is characterized by two parameters: an innate 
characteristic a and the precision by which this characteristic can be observed by 
outsiders σ. The characteristic a may reflect market productivity, or it may reflect 
other types of characteristics—say health or disability—depending on the program 
being considered. In the following, we refer to a simply as “ability” or “skill.” These 
skills are private information and cannot be ascertained directly by anyone else. 
Instead, if the individual attempts to claim welfare benefits, the government can test 
the individual and obtain a signal of true ability, ​   a​ = a + ε/α. The noise term ε 
reflects that program testing is imperfect, whereas the parameter α is a policy choice 
capturing the rigor of the test. We will come back to the interpretation and implica-
tions of α below.

Based on empirical analyses of benefit award processes (see Benítez-Silva, 
Buchinsky, and Rust 2004), we assume that ​   a​ is a noisy but unbiased indicator of 
true ability so that ε is distributed with mean zero and variance ​σ​ 2​. We assume 
that the normalized distribution of ε/σ (which has mean zero and variance one) is 
characterized by a c.d.f. P(·), which is identical for everyone. We allow for the fact 
that the precision of measured skill, σ, may vary across individuals even if they have 
identical abilities. The heterogeneity in σ reflects that equally eligible individuals 
may test with more or less uncertainty in the welfare program. For example, aspects 
such as language barriers and unfamiliarity with the administrative procedures 
would create more uncertainty in the test and are heterogeneous across individuals. 
Moreover, the observability of true eligibility undoubtedly depends on occupation 
and opportunities to manipulate eligibility more generally, which creates additional 
heterogeneity in the noisiness of the eligibility indicator for individuals at the same 
earnings capacity. In other words, among otherwise equally eligible individuals 
(say, the low income population eligible for welfare benefits), there is heterogeneity 
in how they interact with the application process. We believe that this is a critical 
element for modeling imperfect take-up in a realistic way that matches the finding 
from the empirical literature that imperfect take-up cannot be easily explained by 
benefit structure and eligibility criteria.

As for the α-parameter, one possible interpretation is to view it as the number of 
tests. Under this interpretation, the government can subject an applicant to different 
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tests in order to obtain indicators of skill. Each test leads to an indicator given 
by ​a​i​ = a + εi where εi ∼ N(0, ​σ​ 2​)—i.e., each indicator is a normally distributed 
unbiased indicator of the true skill level with variance ​σ​ 2​. Examples of tests are 
interviews with case workers, a requirement to provide supporting documents, an 
opinion of a medical commission regarding disability, etc. Under this interpretation, 
the government estimates the skill of an individual using the arithmetic mean of ​α​2​ 
tests, the distributional properties of which is exactly identical to ​   a​ = a + ε/α with 
ε ∼ N(0, ​σ​ 2​).4

More generally, the policy parameter α captures screening intensity and deter-
mines the extent of randomness in the application process. While increased screen-
ing intensity reduces randomness, it also creates complexity and imposes a burden 
on individuals. The cost of complexity can be interpreted as a cognitive cost of 
having a lot of testing, or it can be interpreted as a more concrete cost from the 
time and money spent applying. We represent the complexity cost of screening 
intensity α by a function f (α). It is important in the model that screening intensity 
α and complexity costs f (α) go hand in hand, so that program complexity is not 
fully unproductive (a so-called ordeal). In section 4, we discuss the desirability 
of unproductive complexity and its effect on the optimal amount of “productive” 
complexity.5

We assume that the government sets an eligibility criterion for receiving benefits 
denoted by ​

_
 a ​. When the government relies on complexity α, benefits are granted to 

applicants who satisfy

(1)	​    a​  =  a  +  ε/α  < ​ _ a ​.

The probability that an applicant with skill level a and precision σ receives ben-
efits is therefore given by P(α(a − a)/σ). We come back to the properties of P​(·)​ 
below.6

When making the participation decision, an individual knows the probability of 
being granted the benefit and trades off the potential utility gain from welfare pay-
ments against the cost of applying. We assume that utility depends on consump-
tion C—equal to the sum of ability a and the (potential) welfare benefit B—and on 
application costs f (α). The utility level is given by u(C − Af(α)), where A is an 
indicator variable for having applied. We make the standard assumption that u(·) is 
increasing and weakly concave (allowing for the possibility of risk neutrality). We 

4 Alternatively, if we had specified ​   a​ = a + ε/​√ 
_

 α ​, then α (rather than ​α​2​) would be the number of tests. We 
use the specification above because it is notationally simpler.

5 The model implicitly allows for pure ordeal as a fixed cost component of f (α). One particular notion of stigma 
as representing exogenous psychic cost to an individual is consistent with this specification.

6 Under the interpretation that the outcome of screening is based on a number of tests, this simple form of aggre-
gating test results is potentially restrictive as it does not attempt to elicit information about the value of σ from the 
outcomes of the tests. However, while this is one possible interpretation of our model, we allow for more general 
interpretations. For example, it may be the case that, as the intensity of screening varies, the results still correspond 
to a single value of ​

_
 a ​ and hence provide no additional information about σ. This could be the case if we interpret α 

as the amount of time an examiner devotes to the file of a program applicant.
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also assume that  ​lim​C→∞​ u(C) = ∞ and  ​lim​α→∞​ f(α) = ∞. An individual chooses 
to apply when 

(2)  	 P​(​ 
α(​_ a ​  −  a) _ σ ​ )​u(a  +  B  −  f  (α))

    	 + ​ (1  −  P​(​ 
α(​_ a ​  −  a) _ σ ​ )​)​u(a  −  f (α))  >  u(a),

and, conditional on applying, will receive benefits with the probability of  
P​(α(​_ a ​ − a)/σ)​.

Ceteris paribus, a higher probability of receiving benefits increases the expected 
utility from applying. The probability of receiving benefits conditional on applying 
depends on the complexity parameter α, eligibility criterion ​

_
 a ​, ability level a, and 

personal precision of ability signals σ. A higher ​
_
 a ​ unambiguously increases the 

probability, whereas a higher a unambiguously decreases it. The effect of complex-
ity α and precision σ depends on the sign of ​

_
 a ​ − a. When ​

_
 a ​ > a, higher complexity 

and better precision both increase the probability of receiving benefits. This is intui-
tive: when the individual is eligible under perfect information, reducing the noise in 
the eligibility metric is helpful. When ​

_
 a ​ < a, we have the opposite situation. While 

greater complexity may increase or decrease the likelihood of receiving benefits 
depending on the sign of ​

_
 a ​ − a, its effect on the ex post utility level is unambigu-

ously negative regardless of whether benefits are received or not.
Using the participation constraint (2), we may solve for the minimum probabil-

ity, ​   P​, consistent with applying for benefits:

(3) 	​​     P​​a​(α, B)  ≡ ​   u(a)  −  u(a  −  f  (α))   ___    
u(a  +  B  −  f  (α))  −  u(a  −  f  (α)) ​ .

Individuals with a probability of receiving benefits above this critical value choose 
to apply for benefits, while the rest choose not to apply. In general, the threshold 
probability depends on the skill level a.7 We will simplify the analysis by restricting 
attention to the class of preferences that eliminates the dependence of ​​   P​​a​ on a:

Assumption 1: The utility function has the constant absolute risk aversion 
(CARA) form, u(C) = ​(1 − ​e​− βC​ )​/β, where β ≥ 0 (this specification reduces to 
risk-neutrality u(C) = C for β = 0).

7 In particular, ​   P​ may be shown to be decreasing or increasing in ability depending on whether the utility func-
tion features decreasing or increasing absolute risk aversion. We do not have a strong prior as to whether higher 
ability individuals are willing to accept lower odds when applying for benefits, but the realistic case of decreasing 
absolute risk aversion would imply that this is the case. There are a number of other factors not modeled here that 
would have implications for this issue. For example, we restrict attention to a flat benefit although in practice the 
size of the benefit could depend on the realization of the indicator ​   a​. Letting the benefit depend negatively on ​   a​ 
would increase the minimum odds acceptable to the higher-ability individuals. Application costs may also vary 
with the ability level. On the one hand, if it is easier for high-ability applicants to file an application, their minimum 
acceptable probability would be lower. On the other hand, high-ability applicants tend to face higher opportunity 
cost of time spent applying, which would make their threshold probability higher.
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Under this assumption, the threshold probability level for applying is given by 

	 ​ 1  − ​ e​− β f (α)​  _ 
1  − ​ e​− βB​

 ​ ,	 when β  =  0

(4)  	 ​   P​(α, B)  = {				       ,

	  ​ 
f (α) _ 

B
 ​ 	 when β  =  0

which is no longer a function of the ability level.8 It is straightforward to show that 
∂​   P​/∂α > 0 and ∂​   P​/∂B < 0: a higher level of complexity increases the minimum 
acceptable probability of receiving benefits, whereas higher benefits decrease it.

Expressing the participation constraint as 

(5)	 P​(​ 
α(​_ a ​  −  a) _ σ ​ )​  > ​    P​(α, B),

it can be solved for the precision level corresponding to indifference between apply-
ing and not applying: 

(6)	 ​​_ σ ​​a​(α, ​
_
 a ​, B)  ≡ ​   α(​_ a ​  −  a)  _  

​P​− 1​​(​   P​(α, B))​
 ​ .

When ​
_
 a ​ > a, individuals with σ lower than ​​

_
 σ ​​a​ (high precision) apply for benefits. 

When ​
_
 a ​ < a, only individuals with σ greater than ​​

_
 σ ​​a​ (low precision) choose to 

apply.

B. Population

We assume that there are two levels of ability: a low level ​a​L​ and a high level ​a​H​.
At each ability level, individuals are heterogeneous with respect to σ: for some, their 
ability level may be easily observable while for others it may be very difficult to 
ascertain without extensive testing. We note the following:

REMARK 1: At each ability level, let the precision of measured skill σ be distrib-
uted on [0, ∞). There are three qualitative cases for the distribution of the probabil-
ity of receiving benefits in the population:

	 (i)	 �​_ a ​ ≤ ​a​L​ < ​a​H​ . Probabilities are in (0, P(0)] and increasing in σ (always 
strictly increasing for high-ability individuals, strictly increasing for low-
ability individuals only if ​

_
 a ​ < ​a​L​ ).

8 Although the CARA-assumption is not trivial, the only reason for making the assumption is that it eliminates 
the dependence of ​​   P​​a​ on a. We believe that this central implication of constant absolute risk aversion in the context 
of the model has an intuitive and realistic economic content: it implies that, given odds at which some low-ability 
individuals apply, we can always find a high-ability individuals who would also apply given the same odds. In our 
view, this is a realistic description of the real world, although it may reflect dimensions of heterogeneity not incor-
porated in our model. Hence, we would argue that a generalization of the model to non-CARA preferences should 
preserve this central property by adding additional dimensions of heterogeneity.
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	 (ii)	 � ​a​L​ < ​_ a ​ ≤ ​a​H​. Probabilities for low-ability individuals are in ​(P(0),1)​ and 
strictly decreasing in σ; probabilities for high-ability individuals are in ​
( 0,  P(0) ]​ and increasing in σ (strictly increasing if ​

_
 a ​ < ​a​H​).

	 (iii)	�​ a​L​ < ​a​H​ < ​_ a ​. Probabilities are in ​(P(0),1)​ for both types and are strictly 
decreasing in σ.

Whenever a ≠ ​_ a ​, any probability in the appropriate open interval, ​(0, P​(0)​)​ or ​
(P​(0)​, 1)​, can be attained for some σ ∈ [0, ∞).

This remark implies a “non-monotonicity” in committing Type II errors: they 
have to be committed when either ​

_
 a ​ < ​a​L​ or ​

_
 a ​ > ​a​H​, but not for intermediate val-

ues of ​
_
 a ​. In the former cases, because the intervals of probabilities of receiving 

benefits are identical for the low- and high-ability populations, it will be impos-
sible to avoid Type II errors altogether. Note that P(0) reflects a property of the 
normalized distribution of ε and therefore it is a constant independent of policy 
parameters or individual characteristics. In the natural case where the likelihoods 
of over- and understating true ability are identical such that median ​(ε)​ is zero, we 
have P(0) = 1/2. Recall that the threshold probability for applying, ​   P​, depends on 
the policy parameters α and B and, if these parameters are not constrained, ​   P​ can 
take any value. As a result,

Remark 2: There exist policy parameters that result in no Type II errors (“full 
separation”); only low ability individuals apply. Such policies are characterized by ​
a​L​ < ​_ a ​ ≤ ​a​H​ and ​   P​(α, B) ≥ P(0). 

Moreover, there also exist policy parameters that additionally result in no Type Ia 
errors. They are characterized by ​a​L​ < ​_ a ​ ≤ ​a​H​ and ​   P​(α, B) = P(0).

One of the objectives of our analysis will be to determine whether policies with 
no Type Ia and Type II errors are optimal and, despite their apparent attractiveness, 
we will show that in the most interesting cases they are not. In particular, note that 
a government implementing a policy of full separation where ​   P​​(α, B)​ = P​(0)​—i.e., 
no Type II or Type Ia errors—will continue to make Type Ib errors. That is, despite 
that only low-ability individuals are applying, some of them will be rejected. In fact, 
in the case of a symmetric distribution for ε where P(0) = 1/2, some low-ability 
applicants will face probabilities of receiving benefits as low as 1/2. Reducing the 
number of Type Ib errors can be accomplished by increasing the rigor of screening 
α, but in order to avoid Type Ia errors, the government must increase benefits cor-
respondingly. Such increases are costly and, at the same time, constrained in their 
size when one wants to simultaneously discourage high-ability individuals from 
applying. As a result, the government faces serious constraints in pursuing policies 
that reduce the number of Type Ib errors without introducing other types of clas-
sification error. As we will demonstrate, these constraints may be severe enough to 
justify committing all three types of error.

To complete the characterization of the assumptions about the population, we need 
to specify the distribution of σ. We will denote the c.d.f. of the distribution of σ for 
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ability-type a by ​G​a​ and the corresponding density function by ​g​a​. The support of both 
distributions is assumed to be [0, ∞). We assume that ​g​a​(0) = 0, the density of indi-
viduals with perfectly observable skill is zero. The number of individuals of type a is 
given by ​​ 

_
 N​​a​ ≡ ​∫

0
​ ∞​ d​​G​a​(σ), with both ​​ 

_
 N​​L​ and ​​ 

_
 N​​H​ assumed to be positive and finite.

Some of our results will depend on the following regularity assumptions:

Assumption 2 (thin tail for low ability): ​ 
 
 
 

 lim    
σ→∞

​​σ​ 2​​g​L​(σ) = 0.

Assumption 3 (finite slope of density at zero for high ability): ​ 
 
 
 

 lim    
σ→0

 ​​g​ H​ ′ ​(σ) < ∞.

The first assumption states that the distribution of σ has no thick tail. In particular, 
it rules out the Pareto distribution, but it allows for distributions that have thinner 
tails such as the log-normal distribution. Intuitively, it will allow for the number of 
low-ability applicants to respond smoothly to policy changes that just discourage 
applying by everyone. The second assumption will guarantee that small changes in 
policy that make it beneficial for the high ability individuals to apply will result in 
only a small influx of them.

To summarize the model so far, Figure 1 illustrates the distribution of P(·) and clas-
sification errors for a particular program based on a numerical simulation.9 Although 
the specific shapes are not general, the figure illustrates the basic logic of the model. 
Both panels show the density of the P-distribution for low-and high-ability individu-
als, with panel A highlighting the results for the low-types and panel B highlighing 
the results for the high-types. The figure illustrates a program with ​

_
 a ​ > ​a​H​, implying 

that P(·) is distributed on the interval ​(P(0), 1)​ for both types and is strictly decreas-
ing in σ. We focus on this type of program, because it turns out to be interesting later 
on. The distribution of P(·) is determined by the distribution of the noise term ε/σ 
(which is assumed to be normal so that P​(0)​ = 1/2) along with the distribution of the 
precision of measured skill σ (which is assumed to be log-normal). Given ​

_
 a ​ > ​a​H​,

densities of P(·) are positive everywhere in the open interval ​(1/2, 1)​ for both types, 
because any probability in this interval can be attained for some σ ∈ [0, ∞). At a 
given σ, low-ability applicants have a higher probability of being awarded benefits, 
and hence the P-distribution for low-ability individuals is shifted to the right compared 
to the distribution for high-ability individuals. The two types have the same threshold 
probability ​   P​ (= 0.736 in the simulation), and individuals with higher Ps than this 
(corresponding to those with low σs) apply for benefits. The program is associated 
with all three types of classification error. In the low-ability distribution, Type Ia 
(take-up) errors are committed in the region to the left of ​   P​, while Type Ib errors occur 
in the region to the right because probabilities of acceptance are lower than 1. In the 
high-ability distribution, Type II errors occur in the region to the right of ​   P​ because 
probabilities of acceptance are greater than zero (in fact, greater than 0.736). An 
interesting question is whether a program outcome of this kind can be an equilib-
rium outcome. To study this question, we turn to the final piece of the model: the 
specification of the government’s objective.

9 See the note under the figure for the parameter values. The working paper version (Kleven and Kopczuk 2008) 
contains extensive simulations.
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C. Government

We consider a problem of income maintenance extending the specification of 
Besley and Coate (1992, 1995). They considered the design of income mainte-
nance programs ensuring that each individual obtains a target minimum benefit at 
a minimum fiscal cost. In our model (as in reality), we do not necessarily have full 
participation, because eligible individuals may choose not to apply for the benefit 

P(0)
= 0.5

1

Type Ia errors

1

Low ability

High ability

Type Ib errors
occur in this region

Type II errors
occur in region

Panel A. Low-ability individuals highlighted

Panel B. High-ability individuals highlighted

High ability

Low ability

High-σ individuals Low-σ individuals

High-σ individuals Low-σ individuals

P
~(α, B)
= 0.736

P(0)
= 0.5

P
~(α, B)
= 0.736

Figure 1. Densities of P(⋅) and Classification Errors

Notes: Parameters are as follows:  ​a​L​ = 1, ​a​H​ = 2, ​​ 
_
 N​​L​ = 1000, ​​ 

_
 N​​H​ = 1000, ​ 

_
 B​ = 1, β = 2, ε/σ is normal (so that P​

(0)​ = 1/2), σ is assumed to be log-normal with a mean and variance equal to 1, f​(α)​ = 0.5α. The parameters of the 
program are selected optimally at the level of revenue equal to ​R​*​ + 500 ≈ 1310, where ​R​*​ is the maximum budget 
allowing for the first-best allocation (see Section IID). The working paper version contains extensive discussion of 
simulation exercises that vary parameters of the model. 
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and because eligible applicants may be rejected by program administrators due to 
imperfect testing. Hence, the objective becomes to provide a minimum benefit for 
as many low-ability (truly deserving) individuals as possible, being constrained by 
a limited budget.10

Denoting by ​ 
_
 B​ the target minimum benefit and by R the exogenously given bud-

get size, the government’s problem may be written as

(7)	 ​   
 
  max    
α,​

_
 a ​,B

 ​ ​ N​L​​(α, ​
_
 a ​, B)​

subject to

(8)	​ [​N​L​​(α, ​
_
 a ​, B)​  + ​ N​H​​(α, ​

_
 a ​, B)​]​B  ≤  R

and

(9)	 B  ≥ ​ 
_
 B​,

where 

(10)	​ N​a​(​
_
 a ​, α, B)  = ​∫​ 

0

 ​ 
​​_ σ ​​a​(α,​

_
 a ​,B)

​P​(​ 
α(​_ a ​  −  a) _ σ ​ )​d​G​a​(σ)

is the number of successful applicants of type a as a function of policy parameters.
There are several aspects of our policy objective that deserve mentioning. First, 

the income maintenance goal implies that policy makers are not directly concerned 
with the utility cost that program complexity imposes on individuals (i.e., apart from 
its effect on benefit take-up). As mentioned in the beginning, we consider income 
maintenance instead of a social welfare maximization in order to simplify the proofs 
and results. In addition, the income maintenance approach arguably fits better with 
actual political debates than social welfare maximization. If politicians care about 
utility instead of income, it may seem obvious that complexity is a less effective 
instrument. However, it is important to note that complexity in our model is not just 
an ordeal (a pure deadweight cost on applicants), but a byproduct of efforts to screen 
between deserving and undeserving applicants. Indeed, because the ordeal-part of 
complexity imposes a higher utility cost on low-ability applicants than on high-
ability applicants (due to concave utility), the screening benefits of complexity are 
driven entirely by the second effect in our model.11 This sets our paper apart from 
the large literature on ordeals (e.g., Nichols and Zeckhauser 1982; Besley and Coate 
1992, 1995; Cuff 2000; Claus Thustrup Kreiner and Torben Tranæs 2005). While it 
is often difficult to justify pure ordeals without resorting to non-Paretian objectives 
(see Kreiner and Tranæs 2005, for a discussion), complexity in our model continues 

10 Interestingly, as noted by Besley and Coate (1992), this policy objective fits John Stuart Mill’s (1848) charac-
terization of the poverty-alleviation problem as “how to give the greatest amount of needful help, with the smallest 
encouragement to undue reliance on it.”

11 In Section III, we argue that pure ordeals are not desirable in our model.
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to be associated with desirable screening effects in the context of social welfare 
maximization. In Appendix B, we outline a welfarist approach to complexity and 
discuss how this extension would affect our findings.

Second, we assume that benefits cannot fall below some minimum value despite 
that, in general, not all of the low-ability individuals are going to receive benefits 
(note though that the government can increase benefits above ​ 

_
 B​ ). Reducing benefits 

to a small enough value would allow for providing benefits to everyone, and there-
fore allowing for unrestricted benefits is incompatible with a nontrivial problem of 
maximizing the number of deserving recipients. Absent a direct welfarist objective, 
providing a target minimum income to successful recipients is a natural way of 
modeling the goal of poverty alleviation.

Third, we do not model the revenue side of the system. While the distortions intro-
duced are undoubtedly important, our model does not necessarily describe the full 
society. Rather, our “high-ability” individuals should be viewed as still relatively poor 
but not poor enough to be in need of social welfare. Under this interpretation, ben-
efits are financed by a wealthier (and not modeled) segment of the society. While the 
exogeneity of budget size R with respect to program design and outcomes may be 
questioned, there is a wide class of models in which, at any given budget size, policy 
parameters should be selected optimally conditional on that budget. Hence, an alter-
native way of interpreting our approach is as a solution to a subproblem of this kind.

Fourth, our model ignores the administrative costs of various policy instruments. 
It is natural to expect, for example, that higher values of α are costlier to imple-
ment and that the administrative cost of the program may vary with the number of 
applicants and recipients. While these are undeniably important factors in practice 
(which should be analyzed in follow-up work), ignoring them makes the model 
more tractable and allows us to focus on the trade-offs between different instruments 
that result from their effects on the different types of classification error.

Fifth, the government pursues policies that are horizontally inequitable as some 
low-ability individuals are going to receive benefits while others will not. It is not 
possible to pursue a horizontally equitable policy unless one is able to provide ben-
efits to everyone—rich and poor. This is a property of this model and, likely, of the 
real world: in order to reach every poor individual we would have to accept a very 
large number of Type II errors.12

In the following section, we characterize social programs that solve the problem 
specified above. We show that the solution depends, among other things, on the size 
of the program budget R. We restrict attention to program budgets satisfying R < 
​ 
_
 B​​(​​ 
_
 N​​L​ + ​​ 

_
 N​​H​)​. If the budget were larger than this, the government’s problem has a 

simple solution: the number of low-ability applicants reaches its theoretical maxi-
mum ​​ 

_
 N​​L​ by giving a universal benefit B ≥ ​ 

_
 B​ to everybody, which is an affordable 

policy when R ≥ ​ 
_
 B​​(​​ 
_
 N​​L​ + ​​ 

_
 N​​H​)​. A universal benefit would be implemented by letting 

the eligibility criterion ​
_
 a ​ tend to infinity, in which case the probability of receiving 

benefits tends to 1 for everybody.

12  Policies that are horizontally inequitable also arise naturally in the work on imperfect tagging (for example, 
Akerlof 1978; Parsons 1996).
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D. Results

We begin our analysis of the model by specifying the first-best allocation that the 
government would pursue under full information.

Definition 2 (first best): Suppose that it is possible to observe both a and σ. Then 
the optimal policy provides benefits of at least ​ 

_
 B​ to ​(R/​ 

_
 B​, ​​ 
_
 N​​L​)​ individuals with ability ​

a​L​ (and B = ​ 
_
 B​ when R/​ 

_
 B​ ≤ ​N​L​ ). The choice of these individuals is undetermined 

(there may be many first-best policies).

The requirement that a first-best program must reach min ​(R/​ 
_
 B​, ​​ 
_
 N​​L​)​ recipients 

amounts to saying that the program either spends the entire budget R or, if there 
are unused funds, this is because there are no low-ability individuals left who 
have not received benefits. Notice that this definition of a first-best policy is con-
ditional on the exogenous funds R allocated to the program, and therefore does not 
account for the fact that the amount of revenue allocated to a program may in itself 
depend on the information available to policy makers. In particular, if information 
were perfect, it would not make sense to allocate funds to a program such that  
R > ​ 

_
 B​ ​​ 
_
 N​​L​ given the problem specified in (7)–(9). The purpose of the above defi-

nition is not to specify a “global” first best, but to specify the best possible out-
come at any given budget size R in order to create a benchmark against which to 
compare the actual outcome for a program designed under imperfect information. 
In the presence of imperfect information, even if a program has a large budget, 
R > ​ 

_
 B​ ​​ 
_
 N​​L​, it will not be able to reach all low-ability individuals, and this is there-

fore a relevant case to consider. We come back to this point below.
As noted in Remark 2, there exist policies that result in providing benefits only to 

low-ability individuals. In certain cases, it is possible to achieve one of the first-best 
allocations despite the lack of perfect information.

Proposition 1 (first best): First-best programs always involve full separation.13 
For R small enough, first-best is feasible and the optimal program is characterized 
by B = ​ 

_
 B​, ​a​L​ < ​_ a ​ ≤ ​a​H​, and ​   P​(α,​ 

_
  B​) ≥ P(0). The optimum is not necessarily unique. 

PROOF: 
Setting policy instruments such that ​a​L​ < ​_ a ​ ≤ ​a​H​ , B = ​ 

_
 B​, and ​   P​(α, ​ 

_
  B​) ≥ P(0) 

ensures that (i) benefits are provided only to low-ability individuals and (ii) each 
recipient receives only the target minimum. The final requirement for a program 
to be first best is that ​N​L​ = min ​(R/​ 

_
 B​, ​​ 
_
 N​​L​)​. To see that this is only possible if the 

budget is “small,” notice that the class of programs specified above can never reach 
all low-ability individuals. The number of low-ability recipients within this class 
of programs is maximized by setting ​

_
 a ​ = ​a​H​ . Given ​

_
 a ​ = ​a​H​ and B = ​ 

_
 B​, it is not 

possible to set α such that ​N​L​ = ​​ 
_
 N​​L​. This is because, at any finite α, the probability of 

13 Here and everywhere else in the analysis, we of course limit attention to the case when universal programs 
are not feasible, R < (​​ 

_
 N​​L​ + ​​ 

_
 N​​H​)​ 

_
 B​.
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rejection for each low-ability applicant, 1 − P​(α(​a​H​ − ​a​L​)/σ)​, is greater than zero, 
and α cannot be increased without bound because the associated increase in ​   P​(α, ​ 

_
 B​)

would ultimately discourage all applications. Hence, there is a maximum number 
of low-ability individuals ​N​ L​ * ​ < ​​ 

_
 N​​L​ that can be reached within the class of programs 

we have specified. Define ​R​*​ = ​ 
_
 B​ ​N​ L​ * ​ < ​ 

_
 B​ ​​ 
_
 N​​L​ as the largest budget that can be spent 

on this type of program, and denote by ​α​*​ the level of α that achieves ​N​ L​ * ​. Now, for 
R > ​R​*​, we always have ​N​L​ < min ​(R/​ 

_
 B​, ​​ 
_
 N​​L​)​ and therefore not first 

best. Conversely, for any R < ​R​*​, we can always ensure = ​N​L​ min ​
(R/​ 

_
 B​,  ​​ 
_
 N​​L​)​ by increasing α beyond ​α​*​ (because a higher α increases ​   P​ and low-

ability recipients fall to zero for high enough α because complexity costs 
outweigh benefits). Finally, because first-best programs are always associated 
with R/​ 

_
 B​ < ​​ 

_
 N​​L​, and because programs that provide benefits to any high-ability 

individual imply ​N​L​ < R/​ 
_
 B​, first-best policies always involve full separation. 

The proposition shows that, if the budget is small enough, we can spend all 
of the money providing the target minimum ​ 

_
 B​ to low-ability individuals only, 

which is the first-best outcome at the given budget. In particular, this is the case 
for R ≤ ​R​*​ where ​R​*​ < ​ 

_
 B​ ​​ 
_
 N​​L​. At the other extreme, if the budget is very large,

R ≥ ​ 
_
 B​​(​​ 
_
 N​​L​ + ​​ 

_
 N​​H​)​ ≡ ​

_
 R ​, we pointed out above that the optimal program offers a uni-

versal benefit B ≥ ​ 
_
 B​ to everybody. The most interesting case is the one in between 

the small-budget case R ∈ ​( 0, ​R​*​ ]​ and the very-large-budget case R ∈ (​ 
_
 R​, ∞],

i.e. where R ∈ ​(​R​*​,​ 
_
  R​ )​, in which case first best is not feasible. The rest of this

section is devoted to characterizing optimal social programs in this intermediate 
range.

We have to consider both full separation (but non-first best) programs and non-
full separation programs. We start by noting that, at any budget size, full separation 
policies are always feasible:

Lemma 1 (Type II errors can be avoided): At any budget size, there exists a policy 
that satisfies the budget constraint and involves full separation.

PROOF:
We just need to consider the situations where the first-best policy is not feasible. 

Let us consider policies involving ​   P​(α, B) = P(0) and ​
_
 a ​ = ​a​H​. For such policies, 

no high-ability individuals apply, whereas all of the low-ability individuals apply. 
Consider increasing α while simultaneously increasing B to keep ​   P​(α, B) = P(0). 
By construction, this policy will retain full separation. As α → ∞, P​(α(​_ a ​ − ​a​L​)/σ)​ 
increases and tends to one for any σ and therefore, because all of the low-ability 
individuals apply, the number of low-ability individuals receiving benefits increases 
and tends to ​​ 

_
 N​​L​. Simultaneously, α → ∞ and ​   P​(α, B) = P(0), implies that B → ∞ 

and therefore spending will be tending to ∞. Hence, at some point the full budget 
will be spent. 

Notice that, when the budget is large, full-separation policies that exhaust the 
entire budget feature benefits that are higher than ​ 

_
 B​. Higher benefits attract high-

ability individuals, but they can be discouraged from applying by having a high 
degree of complexity.
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To characterize the optimal policy under full separation, we will need the follow-
ing lemma:

Lemma 2: Consider a < ​_ a ​ and ​   P​(α,       B) = P(0). Under Assumption 2,

	 (i)	 a small increase in α increases the number of individuals receiving benefits ​
N​a​(α, ​

_
 a ​, B) (even though it reduces the number of applicants)

	 (ii)	 a small decrease in B has no effect on the number of individuals receiving 
benefits ​N​a​(α, ​

_
 a ​, B) 

	 (iii)	 ​N​a​(α, ​
_
 a ​, B) is continuously differentiable in α and B (despite switching from 

everyone applying to non-full take-up).

PROOF: 
See the Appendix. 

Assumption 2 guarantees smoothness of the number of beneficiaries when α and B 
change so as to just stop some people from applying: these are the people with the high-
est variances and the thin-tail assumption implies that there are not “many” of them. 
We can then characterize the optimal full-separation, non-first best program as follows:

Proposition 2 (best policy avoiding Type II errors): Under Assumption 2, the 
best policy implementing full separation when the first-best allocation is not feasible 
is characterized by B > ​ 

_
 B​, ​
_
 a ​ = ​a​H​ , ​   P​(α, B) > P(0) , and ∂NL/∂α = 0 . 

PROOF:
First, since the first-best allocation is not feasible, a full separation policy that 

spends all of the budget must have B > ​ 
_
 B​. By Lemma 1, there exist full separation 

policies that satisfy the budget constraint. 
Second, the best full separation policy involves ​

_
 a ​ = ​a​H​ . To see this, suppose instead 

that ​
_
 a ​ < ​a​H​ in the optimum. Then we can increase ​

_
 a ​ to ​a​H​ , which would imply more 

low-ability people receiving benefits. Now, we are spending too much money, but 
we can reduce B until the budget is satisfied (this is possible because initially B > ​ 

_
 B​ 

and at ​ 
_
 B​ not everything is spent). In the new equilibrium, we have ​N​L​ B = R and a 

lower B , so that ​N​L​ must be higher, contradicting that ​
_
 a ​ < ​a​H​ was optimal. 

Third, the optimal policy involves ​   P​(α, B) > P(0). Conversely, suppose that 
​   P​(α, B) = P(0). Consider increasing α slightly so that ​   P​(α, B) > P(0). By Lemma 
2, the number of low-ability recipients increases and spending increases over R. 
Therefore, we may now reduce B until spending falls to R (we may do so because 
B > ​ 

_
 B​ to begin with). We end up with all of the budget spent, lower benefits and 

therefore more low-ability individuals receiving benefits—a contradiction. 
Finally, having established that B > ​ 

_
 B​, a = ​a​H​ , and ​   P​(α, B) > P(0), the prob-

lem is to maximize ​N​L​(α, ​a​H​, B) with respect to α and B, subject to ​N​L​(α, ​a​H​, B)B 
= R. The latter equation can be solved for B = B(α) where ∂B/∂α 
= − B​(∂​N​L​/∂α)​/(​N​L​ + B​(∂​N​L​/∂B)​). The problem we solve is now equivalent to 
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maximizing ​N​L​(α, ​a​H​, B(α)) with respect to α. The first-order condition is ∂​N​L​/∂α 
+ ​(∂​N​L​/∂B)​​(∂B/∂α)​ = 0. Substituting for ∂B/∂α and rearranging and simplifying 
yields (∂​N​L​/∂α)​N​L​ = 0 so that ∂​N​L​/∂α = 0 (note that we have to have ​N​L​ > 0 to 
satisfy B​N​L​ = R). We are guaranteed that ∂​N​L​/∂α = 0 has a solution, because ​N​L​ 
is positive and increasing in α at ​   P​(α, B) = P(0) (by Lemma 2), ​N​L​ is equal to zero 
when ​   P​(α, B) = 1, and ​   P​(α, B) itself increases with α (and attains the value of one 
for a sufficiently high α). 

This proposition has several implications. First, because ​   P​(α, B) > P(0) both 
kinds of Type I error are made:

Corollary 1: The best policy that avoids Type II errors involves both Type Ia 
and Ib errors.

Although the objective is to maximize the number of low-ability recipients and 
the government is able to discourage high-ability individuals from applying, the 
best full-separation policy is associated with incomplete take-up. The reason is that 
discouraging high-ability individuals from applying makes it impossible to provide 
benefits to all of the low-ability individuals who do apply. Given that some Type Ib 
errors are being made, it is always optimal to reduce their number somewhat at the 
cost of introducing some Type Ia errors.

Second, the optimal full-separation policy features benefits that are higher than 
the minimum required level ​ 

_
 B​. This is a mechanical result. Given that full separation 

imposes a restriction on ​
_
 a ​ and given that a sufficiently high α discourages applications, 

the only way to spend all of the budget while retaining full separation is by increasing B.
Third, the optimal full separation policy involves setting complexity α such that it 

has no effect at the margin on the number of low-ability recipients. This implies that 
the additional discouragement of low-ability applicants from a higher complexity 
cost (operating through ​   P​(α, B)) is exactly offset by a higher probability of receiv-
ing benefits conditional on applying, P(α(​_ a ​ − aL)/σ). As we shall see below, this 
result does not carry over to optimal non-separation policies.

Finally, observe that full-separation policies (whether first-best is feasible 
or not) may be very costly in terms of the complexity burden that they impose 
on welfare recipients. As an example, consider the case of risk-neutrality where  
​   P​(α, B) = f(α)/B. At the optimum, we have ​   P​(α, B) ≥ P(0), and therefore 
f  (α) ≥ P(0)B. Hence, the cost of complexity consumes at least a fraction P(0) of 
welfare transfers. Recall that P(0) is the probability that an individual will test 
below his true ability level. Under the natural assumption that the distribution of 
tests is symmetric, i.e., P(0) = 1/2, complexity consumes at least one-half of the 
income surplus for those who get the benefit. Since some applicants are rejected 
in the process, aggregate complexity costs may then constitute more than half of 
the surplus to all welfare applicants.

So far, we have imposed the rigid restriction that the policy maker attempts to 
keep high-ability individuals from applying. This must be the best policy if one can 
simultaneously set B = ​ 

_
 B​, because the number of the low-ability recipients then 

reaches its theoretical maximum. However, as we have shown, this is possible only 
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if the budget is small enough (Proposition 1). For greater budgets, the best full sepa-
ration policy requires overpaying benefits (Proposition 2), which suggests that it 
may be optimal to let some high-ability individuals into the program, while simulta-
neously reducing benefits to allow for more recipients in total. Indeed, we can show

Lemma 3: Under Assumption 3, we can improve upon the policy characterized in 
Proposition 2 by increasing ​

_
 a ​ slightly.

PROOF: 
In the Appendix. 

This result follows because a small increase in the eligibility threshold above ​a​H​ 
has only a second-order effect on the number of high-ability recipients who are just 
becoming eligible, while having a first-order effect on the number of low-ability 
recipients. This allows for reducing the benefit below the level prevailing under 
the optimal full-separation policy (where B > ​ 

_
 B​), and therefore financing a higher 

number of low-ability recipients. Hence,

Corollary 2: When the first-best allocation cannot be implemented, the second-
best policy always involves non-separation.

This is an important result. Even though it is possible to discourage high-ability 
individuals from applying, it is not optimal. The optimal policy will therefore involve 
both Type I and Type II errors.

The rest of this section will be devoted to characterizing the optimal policy under 
non-full separation. While Lemma 3 establishes that there exists non-separation 
programs with ​

_
 a ​ > ​a​H​ that dominate the best full separation program, we have to 

consider the possibility that the optimal non-separation program is associated with 
a “stringent” eligibility criterion, i.e., ​

_
 a ​ ≤ ​a​H​ . All else equal, a stringent eligibility 

criterion will of course discourage high-ability applicants from applying, but we can 
bring them back in by having a low complexity so that ​   P​​(α, B)​ < P​(0)​. However, 
we can show that non-separation policies combining a stringent eligibility criterion 
with low complexity (​_ a ​ ≤ ​a​H​ and ​   P​​(α, B)​ < P​(0)​) are always dominated by non-
separation policies that combine a lenient eligibility criterion with high complexity 
(​_ a ​ > ​a​H​ and ​   P​​(α, B)​ ≥ P​(0)​):

Proposition 3 (eligibility criterion is “lenient”): When the first-best allocation 
is not feasible, setting ​

_
 a ​ ≤ ​a​H​ is never optimal. 

PROOF:
Lemma 3 implies that, if the first best is not feasible, the full separation policy 

is not optimal. Therefore, we want to consider non-full separation policies where  
​
_
 a ​ ≤ ​a​H​ and ​   P​ < P(0). Suppose a policy of this kind, denoted by (​α​*​, ​​_ a ​​*​, ​B​*​), is 

optimal. Consider then an alternative policy that keeps B = ​B​*​, sets ​
_
 a ​ to satisfy

max{​​_ a ​​*​, ​a​L​}, and increases α to obtain ​   P​ = P(0). The number of high-ability appli-
cants drops to zero, whereas all of the low-ability applicants will apply with the 
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probability of receiving benefits increasing for each of them.14 This change there-
fore increases the value of the objective function. If this policy results in a reduction 
in the total number of beneficiaries (note that all of the previous high-ability recipi-
ents drop out), it is affordable and therefore it is an improvement—contradiction. 
Otherwise, if the policy increases the total number of recipients, it is not affordable. 
If ​B​*​ > ​ 

_
 B​ , we can then reduce benefits. Such an adjustment will maintain full sepa-

ration and if it yields an affordable policy it must be an improvement because full 
budget will be spent on lower benefits paid to low-ability individuals only. This 
again contradicts the optimality of the original policy. When reducing benefits to ​ 

_
 B​ 

results in a policy that is still unaffordable, that implies that it is possible to spend 
more than the full budget on a first-best allocation and therefore the first-best alloca-
tion can be implemented as in the proof of Proposition 1, thereby contradicting the 
assumption that first-best allocation is not feasible. 

The intuition for the result in Proposition 3 is that stringent programs with low 
complexity are associated with a lot of Type Ib errors. In this case, a combined 
increase in the eligibility criterion ​

_
 a ​ and screening intensity α is very effective, 

because it allows full separation between the two types along with higher prob-
abilities of receiving benefits for all low-ability applicants. If this policy change 
maintains affordability, we have a welfare improvement; if it does not maintain 
affordability, we would be in the first-best case where all the funds can be spent 
providing the target minimum benefit to low-ability individuals only.

The following lemma demonstrates that the optimal policy changes smoothly 
from the first-best region to the non-full separation region.

Lemma 4: Denote by ​R​*​ the maximum budget that allows for implementing the 
first-best allocation and let ​(α, ​

_
 a ​, B)​ = ​(​α​*​, ​a​H​, ​ 

_
 B​)​ be the corresponding optimal 

policy. Denote by x(R) = (α(R), ​_ a ​(R), B(R)) the optimal policies as a function of R , 
R ≥ ​R​*​. The function x(R) is right-continuous at ​R​*​.

PROOF:
In the Appendix. 

Recall the structure of our problem: we maximize the number of low-ability recipi-
ents ​N​L​ subject to the constraints (​N​L​ + ​N​H​)B = R and B ≥ ​ 

_
 B​. Lemma 2 guarantees 

that ​N​L​ and ​N​H​ are both continuously differentiable at ​   P​(α, B) = P(0) which is the 
only point where it is not immediately obvious. Therefore, the maximum satisfies 
the following first-order conditions (where λ is the Lagrange multiplier associated 
with the government budget): 

(11)	 ​ ∂​N​L​
 _ ∂α ​  −  λ​[ ​ ∂​N​L​

 _ ∂α ​  + ​  ∂​N​H​
 _ ∂α ​ ]​B  =  0,

14 For the case where max{​​_ a ​​*​, ​a​L​} = ​a​L​, there is a technical qualification due to the fact that the participation 
constraint (5) is written with strict inequality. Because of this, if ​

_
 a ​ = ​a​L​ and ​   P​ = P​(0)​, the low-ability individuals 

would not apply. To be precise, the government would instead have to set ​
_
 a ​ = ​a​L​ + δ where δ can be arbitrarily 

small, in which case all low-ability individuals would apply.
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(12)	 ​ ∂​N​L​
 _ ∂​_ a ​
 ​   −  λ​[ ​ ∂​N​L​

 _ ∂ ​_ a ​
 ​  + ​  ∂​N​H​

 _ ∂ ​_ a ​
 ​  ]​B  =  0,

(13)	 ​[ ​ ∂​N​L​
 _ ∂B
 ​  −  λ​(​ ∂​N​L​

 _ ∂B
 ​  + ​  ∂​N​H​

 _ ∂B
 ​ )​B  −  λ​(​N​L​  + ​ N​H​)​]​(B  − ​ 

_
 B ​)  =  0,

where the first bracketed term in equation (13) is non-positive and the second is 
non-negative. When one considers a restricted problem of selecting α and ​

_
 a ​ holding 

B constant, condition (13) need not hold but equations (11) and (12) remain valid. 
Consequently, as long as α and ​

_
 a ​ are selected optimally given B, we must have: 

(14)	  ​ ∂​N​L​/∂ ​_ a ​
 _ ∂​N​H​/∂ ​_ a ​
 ​  = ​  ∂​N​L​/∂α _ ∂​N​H​/∂α ​  = ​   λB _ 

1  −  λB
 ​ .

Neither eligibility criterion ​
_
 a ​ nor the intensity of screening/complexity α have 

a direct revenue cost. Therefore, intuitively, what matters in comparing them is 
how well each of them screens low- from high-ability individuals. This is sum-
marized by the marginal change in the number of low-ability recipients relative to 
the marginal change in the number of high-ability recipients. At the optimum, the 
two instruments screen equally well. It is also straightforward to show that when  
​(∂​N​L​/∂ ​_ a ​ )​/​(∂​N​H​/∂ ​_ a ​)​ > ​(∂​N​L​/∂α)​/​(∂​N​H​ ∂α)​, ​

_
 a ​ should be increased and/or α 

reduced, with the opposite implication when the sign of this inequality is reversed.
In general, the effect of α on the number of recipients of each type, ∂​N​L​/∂α and 

∂​N​H​/∂α, may be either positive or negative. But because ​(∂​N​L​/∂ ​_ a ​)​/​(∂​N​H​ /∂ ​_ a ​)​ is 
always positive, any program satisfying eq. (14) must be associated with complexity 
such that ∂​N​L​/∂α and ∂​N​H​/∂α have the same sign.15

Before continuing, we state the following very useful identity that links deriva-
tives of the number of recipients with respect to the three instruments (the proof is 
in the appendix): 

(15)  	 ​ ∂​N​ a​ _ ∂α ​  = ​  ​
_
 a ​  −  a _ α ​ ​  ∂​N​a​ _ ∂ ​_ a ​

 ​  + ​  ∂​   P​/∂α _ 
∂​   P​/∂B

 ​ ​ 
∂​N​a​ _ ∂B

 ​ , 

where

	​ 
∂​   P​/∂α _ 
∂​   P​/∂B

 ​  =  − ​  ​e​
βB​  −  1 _ 

​e​β f (α)​  −  1
 ​   ​f ′​(α).

This result follows from the fact that all three instruments operate through two mar-
gins. First, instruments can affect ​   P​(α, B), the minimum acceptable probability of 
receiving benefits consistent with applying. Second, instruments can affect the actual 
probability of receiving benefits for those who apply, P(α(​_ a ​ − a)/σ). Complexity 

15 In numerical simulations that we performed, the optimal solution was associated with ∂​N​L​/∂α and ∂​N​H​/∂α 
being negative.
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works through both margins, whereas benefits work only through the first one and 
the eligibility criterion works only through the second one.

We can now show that the government pursues social policies associated with 
incomplete take-up:

Proposition 4 (Type Ia errors are optimal): Under Assumption 2, when the first-
best allocation is not feasible, for any value of B, the optimal choice of ​

_
 a ​ and α 

implies ​   P​(α, B) > P(0). 

Proof:
Conversely, suppose that ​   P​(α, B) ≤ P(0). Then, we have ∂​N​L​/∂B = 0 and 

∂​N​H​/∂B = 0 (Lemma 2 shows that this holds at ​   P​(α, B) = P(0), while it obvi-
ously holds at ​   P​(α, B) < P(0)). As a consequence, identity (15) becomes ∂​N​a​/∂α 
= ​((​_ a ​ − a)/α)​​(∂​N​a​/∂​_ a ​)​, which implies 

	 ​ ∂​N​L​/∂α _ ∂​N​H​/∂α ​  = ​  ​
_
 a ​  − ​ a​L​

 _ ​_ a ​  − ​ a​H​ ​ ​ 
∂​N​L​/∂​_ a ​

 _ ∂​N​H​/∂​_ a ​
 ​  > ​  ∂​N​L​/∂​_ a ​

 _ ∂​N​H​/∂​_ a ​
 ​ .

That, however, implies that the original policy could not have been optimal because 
it violates the optimality condition (14) (and, in fact, α should be increased). 

Corollary 2 and Proposition 4 together imply that, when the budget is not small, 
social programs feature both Type Ia and Type II errors. Optimal programs of course 
also feature Type Ib errors because, given that α and ​

_
 a ​ > ​a​H​ are finite, low-ability 

applicants face probabilities of receiving benefits P(α(​_ a ​ − ​a​L​)/σ) distributed on ​
(​   P​, 1)​, and hence face non-zero probabilities of rejection.16 We have therefore shown 
that large-budget programs are associated with all three types of classification error 
as illustrated in Figure 1 discussed earlier.

An interesting issue regarding the optimal setting of instruments is the choice 
of the optimal level of benefits. Given that the government cares only about the 
number of recipients, it may seem obvious that benefits should be set at the lowest 
possible level. But recall that the best full-separation policy did not have this prop-
erty: according to Proposition 2, benefits should be increased above their minimum 
level. In that context, this was a mechanical result driven by the inability to other-
wise spend all of the budget on eligibles. However, notice that benefits also play a 
screening role by potentially attracting high- and low-ability applicants at different 
rates. Intuitively, if benefits are sufficiently good at screening, this may warrant 
increasing them despite their budgetary cost. This possibility is reinforced by the 
next proposition.

16 Notice that α cannot increase without bound because in that case, to prevent everybody from dropping out 
of the program due to prohibitive application costs, B would also have to increase without limit, which requires an 
unlimited budget, R = ∞. The eligibility criterion ​

_
 a ​ also cannot increase without bound unless the budget is large 

enough to give benefits to everyone, i.e. R ≥ ​[​​ 
_
 N​​L​ + ​​ 

_
 N​​H​]​​ 

_
 B​, in which case a universal program would be optimal.
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Proposition 5 (B screens better than α and ​
_
 a ​): Suppose that α and ​

_
 a ​ are set 

optimally given B. Then,

(16)  	 ​ ∂​N​L​/∂B
 _ ∂​N​H​/∂B
 ​  > ​  ∂​N​L​/∂ ​_ a ​

 _ ∂​N​H​/∂ ​_ a ​
 ​  = ​  ∂​N​L​/∂α _ ∂​N​H​/∂α ​  = ​   λB _ 

1 − λB
 ​ .  

Proof: 
Equalities in the statement of the proposition repeat equation (14). To show that 

the inequality is valid, recall identity (15) and note that ​   P​(α, B) does not depend on 
the type. Therefore,

​ 
​ 
∂​N​L​

 _ ∂B
 ​
 _ ​ ∂​N​H​
 _ ∂B
  ​
 ​  = ​ 

​ ​
_
 a ​  − ​ a​L​

 _ α  ​ ​ ∂​N​L​
 _ ∂​_ a ​
 ​  − ​  ∂​N​L​

 _ ∂α ​
  __  

​ ​
_
 a ​  − ​ a​H​

 _ α  ​ ​ ∂​N​H​
 _ ∂​_ a ​
  ​  − ​  ∂​N​H​

 _ ∂α ​
 ​  = ​ 

​ ​a​H​  − ​ a​L​
 _ α  ​ ​ ∂​N​L​

 _ ∂ ​_ a ​
 ​
  __  

​ ​
_
 a ​  − ​ a​H​

 _ α  ​ ​ ∂​N​H​
 _ ∂ ​_ a ​
 ​  − ​  ∂​N​H​

 _ ∂α ​
 ​  + ​ 

​ ​
_
 a ​  − ​ a​H​

 _ α  ​ ​ ∂​N​L​
 _ ∂ ​_ a ​
 ​  − ​  ∂​N​L​

 _ ∂α ​
  __  

​ ​
_
 a ​  − ​ a​H​

 _ α  ​ ​ ∂​N​H​
 _ ∂ ​_ a ​
 ​  − ​  ∂​N​H​

 _ ∂α ​
 ​.

The denominator of the first term is equal to − ​(∂​   P​/∂α)​/​(∂​   P​/∂B)​ times ∂​N​H​/∂B 
and it is positive because ∂​   P​/∂α > 0 while ∂​   P​/∂B < 0. Therefore, the first term 
of the expression is unambiguously positive. When α and ​

_
 a ​ are set optimally given 

B, we have ​(∂​N​L​/∂​_ a ​)​/​(∂​N​H​/∂​_ a ​)​ = ​(∂​N​L​/∂α)​/​(∂​N​H​/∂α)​ = λB/​(1 − λB)​ and it is 
straightforward to show that in this case the second term is equal to λB/​(1 − λB)​. 
Therefore, we have

(17)  	 ​ 
​ ∂​N​L​

 _ ∂B
 ​
 _ 

​ ∂​N​H​
 _ ∂B
  ​
 ​  = ​ 

​ ​a​H​  − ​ a​L​
 _ α  ​ ​ ∂​N​L​

 _ ∂ ​_ a ​
 ​
 _ 

​ ∂​   P​/∂α
 _ 

∂​   P​/∂B
 ​ ​ ∂​N​H​

 _ ∂B
  ​
 ​   + ​   λB _ 

1 − λB
 ​  > ​   λB _ 

1 − λB
 ​ .

This is an important result: on the margin, benefits are better at screening low- 
from high-ability individuals than the other two instruments (complexity and eli-
gibility). This is a global result that holds for any value of B as long as the other 
instruments are set optimally—it does not assume that B itself has been optimized 
and it holds regardless of how B is financed. Therefore, the only reason not to 
increase benefits beyond ​ 

_
 B​ is the revenue cost. In other words, the question is whether 

the advantage from using benefits to screen is big enough to compensate for the extra 
revenue cost. From the screening point of view, increasing benefits is preferred to the 
other two instruments.

What is the intuition for the strong screening power of benefits? Technically, the 
result follows from identity (15) that links the screening effects of benefits, eligibil-
ity criteria and complexity. To understand the logic here, observe that the number of 
recipients is determined by two factors: the minimum odds necessary to apply and 
the probability of receiving benefits conditional on applying, as embedded in the 
participation constraint (5). Benefits affect the first margin, eligibility criteria affect 
the second one, while complexity affects both. The effect of complexity may then 
be decomposed into benefit (or rather cost) and eligibility effects. Absent its cost, 
increasing complexity (tightening screening) works better than modifying eligibil-
ity criteria: this is reflected in condition (15) by the factor ​

_
 a ​ − a multiplying the 

effect of eligibility on the number of recipients. This factor is greater for low ability 



Vol. 3 No. 1� 77Kleven and Kopczuk: Complexity and Take-Up

applicants than for high ability applicants. At the optimum then, if both eligibility 
and complexity are equally good at screening, the screening implications of the 
cost part of complexity must be biased against low-ability applicants. Equivalently 
though, it implies that benefits have to be particularly good at distinguishing the two 
types when the other instruments are optimized.

While the details of this discussion are model-specific, the main observation here 
is that the effect of complexity combines the intensity of screening effect and the 
cost effect, with the intensity of screening working better than eligibility in dis-
tinguishing the two types and the cost effect working in the same way as benefits 
do (though, obviously, with the opposite sign). These two observations imply that 
benefits have to be particularly good at screening. Both of them follow from our 
assumptions but are likely to be true more generally: it is intuitive to expect that 
increasing intensity of screening is better than modifying eligibility criteria because 
it magnifies visible differences between types and, while the effect of benefits and 
costs of applying need not be symmetric, there is no obvious presumption in which 
direction the asymmetry, if any, should go.

When ​
_
 a ​ and α are set optimally, benefits should be increased from some level B if 

  	 ​ ∂​N​L​
 _ ∂B
 ​  −  λB​(​ 

∂​N​L​
 _ ∂B
 ​  + ​  ∂​N​H​

 _ ∂B
 ​   + ​  ​N​L​  + ​ N​H​

 _ 
B

 ​ )​  >  0

	 ⇒ ​ 
​ 
∂​N​L​

 _ ∂B
 ​
 _ 

​ ∂​N​H​
 _ ∂B

 ​
 ​  > ​   λB _ 

1  −  λB
 ​  + ​   λB _ 

1  −  λB
 ​  ​ 

​N​L​  + ​ N​H​
 _ 

B ​ 
∂​N​H​

 _ ∂B
 ​
 ​  .

Recall equation (14): λB/​(1 − λB)​ reflects the optimal extent of screening per-
formed by the other instruments. Benefits should be used beyond their minimal level 
only if they are sufficiently better than the other instruments at screening by a factor 
identified in the last term—this is a correction for the budgetary cost of increasing 
benefits. It is difficult for benefits to satisfy this condition if the other instruments are 
already good at screening (λB/(1 − λB) is high), when there are a lot of individuals 
whose benefits will have to be increased (​N​L​ + ​N​H​ is high) and when B(∂​N​H​/∂B) is 
small. Substituting for ​(∂​N​L​/∂B)​/​(∂​N​H​/∂B)​ using the equality in (17) yields

	​ 
​a​H​  − ​ a​L​

 _  
− α ​ ∂​   P​/∂α _ 

∂​   P​/∂B
 ​

 ​  ​ 
∂​N​L​

 _ ∂ ​_ a ​
 ​  > ​   λB _ 

1  −  λB
 ​  ​ 

​N​L​  + ​ N​H​
 _ 

B
 ​ .

Recalling that ​(∂​N​L​/∂ ​_ a ​ )​/​(∂​N​H​/∂ ​_ a ​ )​ = λB/​(1 − λB)​, we can rewrite this to

(18)	​ 
​a​H​  − ​ a​L​

 _ α ​ ​  ∂​N​H​
 _ ∂ ​_ a ​
 ​   >  − ​ ∂​   P​/∂α _ 

∂​   P​/∂B
 ​ ​ 
​N​L​  + ​ N​H​

 _ 
B

 ​   =  − ​ ∂​   P​/∂α _ 
∂​   P​/∂B

 ​   ​ R _ 
​B​2​

 ​,
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where the last equality uses the budget identity R = B(​N​L​ + ​N​H​). It is optimal to 
increase B beyond ​ 

_
 B​ if this condition holds when evaluated at ​ 

_
 B​ and the optimal α 

and ​
_
 a ​ (at ​ 

_
 B​ ). How should we interpret this condition? B should be used if changes 

in eligibility ​
_
 a ​ bring too many high-ability individuals, where the inequality gives 

the specific meaning to “too many.” Alternatively, note from identity (15) that 
((​_ a ​ − ​a​L​)/α)(∂​N​H​/∂ ​_ a ​) is the effect of α on the number of high-ability recipients 
while holding the number of applicants constant (i.e., holding ​   P​ constant). Thus, 
the same condition can be expressed in terms of extra complexity bringing in “too 
many” high-ability individuals. The following proposition characterizes the optimal 
choice of benefits.

Proposition 6 (optimal benefits): Suppose that the first-best allocation is not 
feasible, R ≥ ​R​*​. Denote by ​N​ L​ * ​ the number of low-ability recipients under the best 
full separation policy identified by Proposition 2. Let ​​

_
 a ​​*​ =  ​inf​​_ a ​​  ​{max​α​ ​N​L​(α, ​

_
 a ​, ​ 
_
 B​) ≥ ​

N​ L​ * ​ }, ​a​H​ < ​​_ a ​​*​ < ∞.17 Then,  

	 1.	 For R sufficiently close to ​R​*​, setting B = ​ 
_
 B​ is optimal. 

	 2.	 For R sufficiently large, setting B = ​ 
_
 B​ is optimal. 

	 3.	 A sufficient condition for B > ​ 
_
 B​ is given by

(19) 	​  
​​
_
 a ​​*​  − ​ a​H​

 _ ​​_ a ​​*​  − ​ a​L​
 ​ ​G​ L​ −1​(​N​ L​ * ​)  ≥ ​ G​ H​ −1​ ​( ​  1 _ 

P(0) ​ ​(​ R _ 
​ 
_
 B​
 ​  − ​ N​ L​ * ​)​)​.   

Proof:
In the Appendix. 

The intuition for the first result is straightforward. When the budget is small (but 
large enough to make first best infeasible), the eligibility threshold ​

_
 a ​ will be very 

close to ​a​H​. As we cross ​a​H​ with ​
_
 a ​, initially we are still mostly providing benefits to 

low-ability individuals (on the margin, the share of high-ability recipients is close 
to zero when ​

_
 a ​ is close to ​a​H​ ). Given the presence of such a good instrument that 

does not have a direct revenue cost, it must dominate any instrument that does have a 
revenue cost (such as B ). That is, as the number of high-ability applicants is initially 
small, any screening benefits of using high benefits have to be dominated by the 
costly nature of this instrument. The second part is also intuitive: as the budget size 
increases, the number of individuals served increases as well and therefore increas-
ing benefits becomes more costly.

Part 3 is the most interesting. It gives the sufficient condition for B > ​ 
_
 B​. Moreover, 

note that this condition can be satisfied by varying ​G​H​ without affecting any of the 

17 We know that ​​
_
 a ​​*​ > ​a​H​ because, from the proof of Proposition 3, if the first-best allocation is not feasible, any 

non-full separation policy with ​
_
 a ​ ≤ ​a​H​ is dominated by a full separation policy and therefore also dominated by the 

best full separation policy ​N​ L​ * ​.
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other variables in equation (19). In particular, the definitions of ​N​ L​ * ​ and ​​
_
 a ​​*​ are based 

solely on the low-ability distribution and parameters—they do not depend on ​G​H​. 
Furthermore, the argument of ​G​ H​ − 1​ on the right-hand side depends on constants R, ​ 

_
 B​ 

and again on ​N​ L​ * ​ so that it is independent of ​G​H​. Finally, note that both the left-hand 
side and the argument of ​G​ H​ − 1​ are positive due to the fact that ​​

_
 a ​​*​ > ​a​H​ and ​N​ L​ * ​ deliv-

ers fewer low-ability recipients than R/​ 
_
 B​, which is what the first-best policy would 

deliver. Thus, given parameters and low-ability distribution, we will be able to find  
some distributions ​G​H​ that satisfy the condition identified in the above proposition. 
All that is required is selecting the distribution so that there are more than (1/P(0))
× (R/​ 

_
 B​ − ​N​ L​ * ​) high-ability individuals with σ smaller than (​​_ a ​​*​ − ​a​H​)/(​​_ a ​​*​ − ​a​L​)

× ​G​ L​ − 1​(​N​ L​ * ​). This is a requirement imposed on ​G​H​ at a particular strictly positive 
point.18 The corollary below is a consequence of this reasoning and it highlights that 
the case B > ​ 

_
 B​ cannot be dismissed as being irrelevant because it will apply when 

the number of high-ability applicants is sufficiently large.

Corollary 3: Fix the parameters of the problem other than the high-ability 
distribution. Select some distribution of high-ability individuals ​G​ H​ 0

 ​(σ) (with the 
corresponding number of high-ability individuals ​N​ H​ 0

 ​ ) and consider a class of dis-
tributions ​G​ H​ η ​(σ) = η​G​ H​ 0

 ​(σ) (with the corresponding number of high-ability indi-
viduals η ​N​ H​ 0

 ​ ). For high enough η, setting B > ​ 
_
 B​ is optimal.

Proof:
For sufficiently high η,

​G​ H​ η ​ ​(​ 
​​
_
 a ​​*​  − ​ a​H​

 _ ​​_ a ​​*​  − ​ a​L​
 ​ ​G​ L​ − 1​​(​N​ L​ * ​)​)​  =  η ​G​ H​ 0

 ​​(​ 
​​
_
 a ​​*​  − ​ a​H​

 _ ​​_ a ​​*​  − ​ a​L​
 ​ ​G​ L​ − 1​​(​N​ L​ * ​)​)​  ≥ ​   1 _ 

P(0) ​​(​ R _ 
​ 
_
 B​
 ​  − ​ N​ L​ * ​)​, 

and this condition is equivalent to the inequality in Part 3 of Proposition 6. 

Intuitively, as the number of high-ability individuals grows, the importance of 
screening increases so that government should rely on benefits that have been shown 
to be particularly good at screening despite their adverse revenue implications.

III.  Productive Complexity versus Pure Ordeals

In this section, we briefly discuss two different notions of complexity costs that 
the model allows for. Our focus so far has been on the cost of complexity varying 
as a function of the screening parameter α, but one might also consider changing 
the level of complexity costs conditional on the value of α. The effect of changes in 
α on the cost may be thought of as “productive complexity”—this is a by-product 
of an attempt to screen better. Changes in the cost given α may be interpreted as 
pure ordeals—they are not related to the extent of screening but reduce the welfare 

18 In particular, there is no restriction imposed on the properties of ​G​H​(·) around zero so that we can pick a 
distribution satisfying Assumption 3.
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of a program applicant, holding other things constant. In our context, it is natural to 
think of such ordeal costs as “unproductive complexity,” but they may include other 
types of costs such as fixed psychic costs of program participation due to stigma. As 
an illustration, we consider a simple formulation of the cost of complexity where 
f​(α)​ = s + cα. In this example, s may be interpreted as the pure ordeal while c⋅α is 
the cost of productive complexity.

If complexity were a pure ordeal, it would be able to serve a screening function 
only if it imposed a higher utility cost on high-ability individuals than on low-ability 
individuals, conditional on income (e.g. Nichols and Zeckhauser 1982). This con-
dition is not satisfied in our model where the utility cost of complexity is always 
higher for low-ability individuals under the assumed preference specification. This 
suggests that introducing pure ordeals or unproductive complexity in social pro-
grams is not socially optimal in the context of the model.19 The role of pure ordeals 
can be more precisely understood by considering the participation constraint (5): 
a change in s affects individual behavior only through the minimum odds required 
for applying, ​   P​(α, B). Given the independence of ​   P​ from a and σ, this effect is the 
same for everyone and equivalent to reducing the value of B. We have shown in the 
previous section that benefits are particularly good at screening (to such an extent 
that they may even be increased above the minimum even despite their revenue cost) 
and hence the same argument implies that stigma is particularly bad at screening. As 
a result, if s were a policy parameter, it should be set to zero.20

To shed further light on the effect of various types of complexity costs, a longer 
version of the paper (Kleven and Kopczuk 2008) considers numerical simulations 
that vary the pure ordeal and complexity parameters s and c.21 In the simulations, an 
increase in pure ordeals leads to a more lenient eligibility criterion in order to com-
pensate for the fact that individuals are less willing to apply. Pure ordeals have two 
offsetting effects on complexity: (1) Higher ordeals discourage all individuals from 
program participation, which calls for a compensating reduction in complexity-
driven transaction costs. (2) Those who continue to apply have higher probabilities 
of receiving benefits on average and contain a larger share of undeserving individu-
als. It then becomes harder to discriminate between low- and high-ability individu-
als, which makes it necessary to increase the rigor of testing. In our simulations, 
the second effect weakly dominates at low levels of the fixed cost, while the first 
effect strongly dominates at higher levels resulting in a non-monotonic relationship 
between the complexity parameter α and pure ordeals s.

While ordeals have a strong negative impact on equilibrium take-up among the 
intended recipients, they have an indirect desirable effect on the amount of rejection 
errors. The reduction in rejection errors may seem beneficial by itself, but it is a 
consequence of the difficulty to screen in the presence of ordeals: at very high levels 

19 These comments on the use of ordeals are specific to the specification of preferences in our model. It is an 
empirical question whether stigma and complexity impose lower or higher costs on high-ability individuals than 
on low-ability individuals.

20 Of course, another difference between s and B in the model is that the latter has revenue cost. If increasing s 
was costly, the conclusion would naturally be unchanged.

21 Here we view the ordeal-parameter s as a primitive of the model (say, a fixed psychic cost of stigma) rather 
than a policy parameter that is optimized.
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of ordeals, virtually all applicants of both types are approved. Moreover, higher 
ordeals increase the number of high-ability applicants and create more type II errors 
in equilibrium, because of the slackening of policy instruments ​

_
 a ​ and α along with 

the fact that pure ordeals are less costly for the non-deserving individuals. Overall, 
ordeals are bad for targeting efficiency as they reduce the number of deserving 
recipients and increase the number of undeserving recipients.22

As a result, the model predicts that programs with high pure ordeals (or high 
stigma) should be characterized by low take-up, almost no rejection errors, and rela-
tively low productive screening. This prediction arguably fits the empirical pattern: 
welfare programs such as Temporary Aid for Needy Families (TANF) and Food 
Stamps tend to be associated with high stigma, low take-up, low rates of false rejec-
tion and arguably a relatively low degree of screening, whereas social insurance 
programs like DI are characterized by low stigma, high take-up, high rates of false 
rejection and a very high degree of complexity.

IV.  Concluding Remarks

This paper stresses the importance of complexity in public programs for the take-
up of benefits. The empirical literature on benefit take-up shows that transaction 
costs arising from complex application processes constitute important barriers to 
enrollment in social programs. A large part of the observed complexity is related 
to screening efforts such as eligibility criteria, documentation, forms, interviewing, 
testing, and appeals, which suggests that complexity is not a pure deadweight cost 
(an ordeal) imposed on applicants. We therefore model complexity as a by-product 
of efforts to screen between deserving and undeserving applicants, and study the 
choice of screening intensity and associated complexity by policy makers interested 
in poverty alleviation. In the characterization of program design, we integrate the 
study of take-up with the study of classification errors of Type I (rejection errors) 
and Type II (award errors). While a more rigorous screening technology has desir-
able effects on the amount of rejection and award errors, the associated complexity 
introduces transaction costs into the application process and induces incomplete 
take-up.

We find that optimal programs that are not universal always feature a high screen-
ing intensity and complexity in order to restrict the number of rejection and award 
errors. Although complexity hurts take-up among the truly deserving, the govern-
ment can use eligibility and benefit instruments to partially compensate for this. 
Hence, the model can explain the presence of high complexity and incomplete 
take-up as equilibrium outcomes of policy making under imperfect information. It 
is central to this result that complexity is driven by screening efforts and is therefore 
not fully unproductive. Our model also incorporates unproductive complexity (an 
ordeal), and we argued in Section III that this form of complexity is bad for target-
ing efficiency and should not be used as a policy instrument under the assumptions 
of our model.

22 This finding is consistent with the earlier argument that, if ordeals were a policy instrument, it should not be 
used for screening purposes in the context of our framework.
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The model may be able to shed light on the heterogeneity of complexity, tar-
geting, take-up and classification errors across different social programs. We find 
that program design and outcomes depend on the following key parameters: the 
maximum number of individuals that can be reached (i.e., budget size relative to 
the target benefit), the number of potential applicants, the distribution of true skill, 
the distribution of measured skill, complexity costs, and pure ordeal costs. The fact 
that all of these parameters are likely to vary simultaneously across different social 
programs complicates a comparison of the theoretical predictions and real-world 
programs. A careful calibration exercise could facilitate such an analysis, but is 
beyond the scope of this paper.

Our model makes a number of simplifying assumptions that we would like to 
discuss briefly. First, we consider policy makers who are interested in income main-
tenance and therefore not directly concerned with the utility cost that complexity 
imposes on program applicants. We outline an extension of the model to social wel-
fare maximization in Appendix B. While this extension introduces some additional 
and interesting effects, we argue that the model retains the central insights of the 
simpler income maintenance model. In particular, the basic screening argument for 
complexity studied in the context of the income maintenance model carry over to 
the welfarist model. The welfarist approach introduces two additional offsetting 
effects on complexity and take-up. On the one hand, by placing a weight on the 
utility cost of complexity, the approach calls for less complexity and higher take-up. 
On the other hand, rejection errors are worse than take-up errors under the wel-
farist approach, because the former is associated with a utility cost of applying. This 
favors policies that can substitute take-up errors for rejection errors, which creates 
an argument for more complexity and lower take-up.

Second, while the model accounts for complexity costs borne by individuals, it 
ignores that complexity may also create program costs borne by the government. 
Accounting for administrative costs will have offsetting effects on equilibrium com-
plexity. On the one hand, allowing for complexity to be positively associated with 
administrative costs obviously makes it less effective as a policy instrument. On 
the other hand, it seems reasonable that administrative costs would also depend 
positively on the number of applications that have to be processed, which favors 
instruments that are capable of increasing the number of deserving recipients with 
no accompanying increase in the number of applicants. This tends to improve the 
efficacy of complexity as it reduces the amount of rejection errors while making it 
more costly for would-be applicants to claim the benefit.

The model makes several other simplifying assumptions such as focusing on a two-
type ability distribution and restricting attention to a flat benefit that does not depend on 
the eligibility signal. Extending the model in these directions would enrich the analysis 
and possibly add empirical content to the theory. This paper should be seen as an initial 
step towards incorporating administrative complexity as a choice variable in policy 
analysis. Although several authors have suggested that complexity is an important 
aspect of policy design, for example in the context of tax policy (Joel Slemrod 1990; 
Slemrod and Shlomo Yitzhaki 2002), little has been done in terms of actual modeling. 
We have emphasized an application to the design of transfer programs and the take-up 
of social benefits, but our model may be applicable to other areas of public policy.
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Appendix A: Proofs

Proof of Lemma 2:
We want to evaluate ∂​N​a​/∂α and ∂​N​a​/∂B when ​

_
 a ​ > a and ​   P​(α, B) = P(0). 

Begin with the first of these. Differentiating formula (10) explicitly yields

(A1) 	​  
∂​N​a​ _ ∂α ​  = ​ ∫​ 

0

 ​ 
​​_ σ ​​a​(α,​

_
 a ​,B)

​p(·)​ ​
_
 a ​  −  a _ σ ​  d​G​a​(σ)  + ​  ∂​​_ σ ​​a​ _ ∂α ​ ​   P​(α, B)​g​a​(​​

_
 σ ​​a​). 

The first term is unambiguously positive. We will show that the second term is zero 
when ​

_
 a ​ > a and ​   P​(α, B) = P(0). Evaluating ∂​​_ σ ​​a​/∂α yields

(A2) 	​  
∂​​_ σ ​​a​ _ ∂α ​  = ​ 

​(​_ a ​ − a)​​P​− 1  ​  −  α​(​_ a ​ − a)​​​(p​(​ 
α​(​_ a ​  −  a)​

 _ ​_ ​σ​a​ ​
 ​ )​)​​

−1

​​ ∂​   P​ _ ∂α ​ 
     ____   

​(​P​− 1​​(​   P​(α, B))​)​
 ​  

 	  =  ​ 
​​
_
 σ ​​a​ _ α ​  − ​   ​​_ σ ​​ a​ 2​

 _ 
 α(​_ a ​ − a) ​ ​​(p​(​ 

α​(​_ a ​  −  a)​
 _ ​_ ​σ​a​ ​

 ​ )​)​​
−1

​​ ∂​   P​ _ ∂α ​ .

Note that li​m​ ​   P​(α,B)→P(0)​    ​​​_ σ ​​a​ = ∞: as the threshold probability of receiving benefits 
approaches P(0), the number of individuals not applying goes to zero. All other 
terms in expression (A2): α, ​

_
 a ​ − a, ∂​   P​/∂α and p(⋅) are positive and finite (the 

argument of p(⋅) goes to 0 as ​​
_
 σ ​​a​ goes to infinity and density at 0 is positive). 

Consequently, as we approach P(0) with ​   P​, expression (A2) tends to − ∞ at the 
rate of ​​

_
 σ ​​2​. Consequently, the behavior of the second term of (A1) depends on the 

behavior of ​​
_
 σ ​​ a​ 2​g(​​_ σ ​​a​) and, by Assumption 2, ​lim​​​_ σ ​​a​→∞​​​_ σ ​​ a​ 2​g(​​_ σ ​​a​) = 0. 

Now consider ∂​N​a​/∂B. It is equal to (∂ ​​_ σ ​​a​/∂B)​   P​(α, B)​g​a​(​​
_
 σ ​​a​) and we have 

∂ ​​_ σ ​​a​/∂B = (− α(​_ a ​ − a)/(​P​− 1​(​   P​)​)​2​)d​P​− 1​(​   P​)/dB = (− ​​_ σ ​​ a​ 2​1/α(​_ a ​ − a))d​P​− 1​(​   P​
)/dB. It is straightforward to show as before that all terms but ​​

_
 σ ​​a​ and g(​​_ σ ​​a​) are 

bounded away from zero and infinity. Therefore ∂​N​a​/∂B behaves as g(​​_ σ ​​a​)​​
_
 σ ​​ a​ 2​ and 

thus it is zero in the limit by Assumption 2. 
Finally, the second term of (A1) is uniformly zero when ​   P​(α, B) < P(0) and 

the first term is continuous. Therefore, the whole expression in (A1) is continuous, 
which proves the third part of the lemma. Similarly, ∂​N​a​/∂B is uniformly zero when 
​   P​(α, B) < P(0), so that it is also continuous at ​   P​(α, B) = P(0). 

Proof of Lemma 3:
Denote by (​α​*​, ​a​H​ , ​B​*​) the best policy under full-separation characterized in 

Proposition 2, and consider increasing ​
_
 a ​ above ​a​H​. We will show first that the right-

derivative of ​N​H​ with respect to ​
_
 a ​ is equal to zero at (​α​*​, ​a​H ​, ​B​*​ ): ∂​N​H​(​α​*​, ​a​H​, ​B​*​ )/∂ ​​_ a ​​+ ​ 

= 0. Differentiating (10) with respect to ​
_
 a ​ yields

(A3) 	​  
∂​N​a​ _ ∂​_ a ​

 ​   = ​ ∫​ 
0

 ​ 
​​_ σ ​​a​(α,​

_
 a ​,B)

​ p​(​ 
α​(​_ a ​  −  a)​

 _ σ ​ )​​ α _ σ ​ ​g​a​(σ)dσ  + ​  ∂ ​​_ σ ​​a​ _ ∂ ​_ a ​
 ​ ​   P​(α, B)​g​a​(​​

_
 σ ​​a​), 
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such that

(A4) ​  ∂​N​H​(​α​*​, ​a​H ​, ​B​*​ )  __ ∂ ​ _ ​a​+​​ ​   = 

	​  lim   
​​
_
 a ​→​a​H​    

​
_
 a ​>​a​H​

 ​
​​{  ​ ∫​ 

0

 ​ 
​​_ σ ​​H​(​α​*​,​_ a ​,​B​*​)

​p(⋅)​ ​α​*​ _ σ ​ ​g​H​(σ)dσ  + ​  ∂ ​​_ σ ​​H​
 _ ∂ ​_ ​a​+​ ​ ​ ​   P​(​α​*​, ​B​*​)​g​H​(​​_ σ ​​H​ (​α​*​, ​_ a ​ , ​B​*​ ))}​. 

Note that  ​lim​​_ a ​→​a​H​​ ​​
_
 σ ​​H​ = 0, and therefore the second term is zero: we have g(0) = 0 

while the other components ​   P​ and ∂​​_ σ ​​H​/∂​​_ a ​​+ ​ = α/​P​− 1​​(⋅)​ tend to finite limits (the 
limit of ​P​− 1​​(⋅)​ is positive because we are considering a point with ​   P​ > P(0)). In the 
first term, the integrand p​(⋅)​(​α​*​/σ)​g​H​(σ) is bounded from above in the neighbor-
hood of σ = 0 by Assumption 3 and because p(⋅) is bounded from above. Therefore, 
the first term tends to zero. 

On the other hand, for the low-ability individuals we have that ​a​L​ < ​_ a ​, ​​
_
 σ ​​L​ > 0, 

and ∂​​_ σ ​​L​/∂​_ a ​ > 0, so that the derivative ∂​N​L​/∂​_ a ​ given by A3 is strictly positive. 
Hence, starting at the best full-separation policy (​α​*​, ​a​H ​, ​B​*​ ), we can increase 

the threshold ​
_
 a ​ slightly above ​a​H​ so as to give benefits to more low-ability people, 

while bringing in only an infinitesimal number of high-ability people. We would 
then be spending too much money, but we can reduce B below ​B​*​ until the revenue 
constraint is satisfied. At this new equilibrium, since B is lower, the total number of 
recipients, ​N​L​ + ​N​H​, is higher. Moreover, since the number of high-ability recipients 
is infinitesimal, the number of low-ability recipients is higher than before. 

Proof of Lemma 4:
Consider R = ​R​*​ + ε. Denote the optimal policy at ​R​*​ by (​α​*​, ​a​H​, ​ 

_
 B​) and note that 

it involves ​   P​ > P(0) (if ​   P​ = P(0), increasing the number of low-ability recipients 
could be increased by increasing α by Lemma 2 and therefore implement the first-
best for an even greater budget). To simplify notation, denote the optimal policy 
given ε by (α(ε), ​_ a ​(ε), B(ε)). 

We will show first that ​lim ​ε→0​ ​​
_
 σ ​​H​ = 0. To see that note that the proof of 

Proposition 2 implies that we can achieve (​R​*​ + ε)/​ 
_
 B​ > ​N​L​ > ​R​*​/​ 

_
 B​ by sticking to 

the full separation policies. Note that we must have ​N​H​ < ε/​ 
_
 B​ because otherwise ​

N​L​ ≥ ​R​*​/​ 
_
 B​ and the optimal non-separation policy would be preferred. By definition ​

N​H​ = ​∫​0​ 
​​_ σ ​​H​​P(α(​_ a ​ − ​a​H​)/​σ​H​)d​G​H​(​σ​H​). We know that P(α(​_ a ​ − ​a​H​)/​σ​H​) > P(0) for 

everyone because ​
_
 a ​ > ​a​H​. Therefore, ​N​H​ > ​G​H​(​​_ σ ​​H​)P(0) and consequently ​G​H​(​​_ σ ​​H​)

< ​N​H​/P(0) < ε/​ 
_
 B​P(0), implying that ​lim ​ε→0​ ​​

_
 σ ​​H​ = 0. 

Now observe that ​lim ​ε→0​ ​​
_
 σ ​​H​ = 0 implies ​lim ​ε→0​ ​

_
 a ​ = ​a​H​. Recall that ​​

_
 σ ​​H​ 

= α(​_ a ​ − ​a​H​)/​P​− 1​(​   P​(α,B)) and ​​
_
 σ ​​L​ = α(​_ a ​ − ​a​L​)/​P​− 1​(​   P​(α,B)) so that ​​

_
 σ ​​H​ 

= ((​_ a ​ − ​a​H​)/(​_ a ​ − ​a​L​))​​_ σ ​​L​. Therefore, ​
_
 a ​ − ​a​H​ = (​​_ σ ​​H​/(​​_ σ ​​L​ − ​​_ σ ​​H​))(​a​H​ − ​a​L​). Note 

also that ​G​L​(​​_ σ ​​L​) > ​R​*​/​ 
_
 B​ (the number of low-ability applicants which is still greater 

than the number of recipients must be at least as high as in the full-separation opti-
mum). Consequently, as ​​

_
 σ ​​H​ → 0, ​​

_
 σ ​​H​/(​​_ σ ​​L​ − ​​_ σ ​​H​ ) → 0 and therefore ​

_
 a ​ − ​a​H​ → 0. 

Consider what happens when ε → 0. The resulting value of the objec-
tive is ​N​L​(ε). ​N​L​ is a continuous function of policy parameters in the relevant 
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region.23 Suppose that ​lim ​ε→0​ (α, ​
_
 a ​, B) ≠ (​α​*​, ​​_ a ​​*​, ​B​*​). In that case, ​lim ​ε→0​ ​N​L​(ε) 

= ​N​L​(​lim ​ε→0​ α(ε), ​lim ​ε→0​ ​
_
 a ​(ε), ​lim ​ε→0​ B(ε)) < ​N​L​(​α​*​, ​​_ a ​​*​, ​B​*​)—this last inequality 

follows from the fact that the limiting point (​lim ​ε→0​ α(ε), ​lim ​ε→0​ ​
_
 a ​(ε), ​lim ​ε→0​ B(ε)) 

implements full separation because ​   P​(α(ε), B(ε)) > P(0) (by Proposition 4), 
a(ε) → ​a​H​ as demonstrated earlier and (​α​*​, ​​_ a ​​*​, ​B​*​ ) was the optimal point under full 
separation. This is however a contradiction because it implies that for sufficiently 
small ε we would have been better off using the full separation policy (and not using 
all of the money). Consequently, ​lim ​ε→0​ (α, ​

_
 a ​, B) = (​α​*​, ​a​H​, ​ 

_
 B​). 

Proof of identity 15:
Recall the definition of ​N​a​, equation (10) and the definition of ​​

_
 σ ​​a​ in equation 

(6). α affects ​N​a​ through two channels. First, α(​_ a ​ − a) is the maximum realiza-
tion of the individual error term that results in receiving benefits—it enters both the 
integrand in ​N​a​ and the limit of integration. Second, the minimum acceptable prob-
ability threshold ​   P​(α, B) influences who applies. The effect of α on ​N​a​ is the sum of 
these two effects. Instrument ​

_
 a ​ works only on the first margin, while instrument B 

works only on the second margin. Recognizing that allows for writing the effect of 
α as a combination of the effects with respect to the other two probabilities. 

Proof of Proposition 6:

Part 1: 
Let ​α​*​ be the optimal value of α at the full separation policy with maximum 

budget ​R​*​. Denote by ​   λ​ the Lagrange multiplier from the problem of maximizing 
the objective function with respect to α and ​

_
 a ​ while setting B = ​ 

_
 B​. It can be easily 

shown that we will want to increase B over ​ 
_
 B​ if and only if

(A5) 	​  
∂​N​L​

 _ ∂B
 ​  > ​   ​   λ​B _ 

1  − ​    λ​B
 ​  ​ 
∂​N​H​

 _ ∂B
 ​   + ​   ​   λ​B _ 

1  − ​    λ​B
 ​  ​ ​N​L​  +  ​N​H​

 _ 
B

 ​  .

The left-hand side is non-negative and we don’t have to worry about it increasing 
without bounds as ε changes—it converges to a finite limit of (∂​N​L​/∂B)(​α​*​, ​a​H​, ​ 

_
 B​ ).

All terms on the right-hand side are non-negative and (​N​L​ + ​N​H​)/B is finite and 
bounded away from zero (​N​L​ > ​R​*​/​ 

_
 B​ and B = ​ 

_
 B​ ). We will show that ​   λ​B/(1 − ​   λ)​B 

→ ∞ as ε → 0 and thus this inequality is violated for small enough ε. To see that, 
recall that ​   λ​B/​(1 − ​   λ​B)​ = ​(∂​ N​L​/∂ ​_ a ​ )​/​(∂​N​H​/∂ ​_ a ​)​. We will show that the numera-
tor is finite while the denominator falls to zero. To see that, write explicitly ∂​N​a​/∂​_ a ​:

(A6) 	​  
∂​N​a​ _ ∂​_ a ​

 ​   = ​ ∫​ 
0

 ​ 
​​_ σ ​​a​

 ​αp​(​ 
α(​_ a ​  −  a) _ σ ​ )​​ ​g​a​(σ) _ σ ​  dσ  + ​   α _  

​P​− 1​​(​   P​(α, B))​
 ​ ​   P​(α, B)​g​a​(​​

_
 σ ​​a​). 

23 ​N​a​ is continuous when ​
_
 a ​ > a and has a discontinuity at ​

_
 a ​ = a when ​   P​ = P(0). In this case, the discontinuity 

is at ​a​L​, but we are considering ​
_
 a ​ ≥ ​a​H​ > ​a​L​.
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All terms here are non-negative. The first-term vanishes for the high-types as 
ε → 0, because ​lim ​ε→0​ ​​

_
 σ ​​H​ = 0 while the integrand is bounded away from infinity 

in the neighborhood of σ = 0 by Assumption 3. It remains positive for low-ability 
individuals because ​​

_
 σ ​​L​ remains bounded away from zero as ε→0. By Lemma 4, 

​lim ​ε→0​ ​   P​(α, B) = ​   P​(​α​*​, ​ 
_
 B​) > P(0), so that ​P​− 1​(​   P​(α,B)) has non-zero limit. 

Consequently, for the high-ability types the second term disappears because ​g​H​
(0) = 0 while it remains positive for the low-ability types. As a result  ​lim ​ε→0​ ​   λ​B/
(1 − ​   λ​B) = ​lim ​ε→0​ ​(∂​N​L​/∂ ​_ a ​ )​/​(∂​N​H​/∂ ​_ a ​ )​ = ∞, implying that the inequality (A5) 
must be violated for sufficiently small ε and therefore B = ​ 

_
 B​ is optimal for suffi-

ciently small εs.

Part 2:
This is an implication of condition (18) evaluated at ​ 

_
 B​ and the optimal α and ​_

 a ​. To see this, hold ​ 
_
 B​ constant and increase R. The parameter α is bounded by 

P​(0)​ < ​   P​​(α, ​ 
_
 B​)​ < 1, so that ​(∂​   P​/∂α)​/​(∂ ​   P​/∂B)​ = ((− ​e​βB​ − 1)/(​e​β f (α)​ − 1​)) f ′​(α) 

is bounded away from zero when evaluated at the optimal α and ​ 
_
 B​. 

Moreover, we can show that ∂​N​H​/∂​_ a ​ → 0 as we keep increasing R. To see this, 
start by noting that, as R increases, ​

_
 a ​ has to increase. There exists a finite bud-

get size ​ 
_
 R​ ≥ ​ 

_
 B​​(​N​ L​ * ​ + ​N​ H​ * ​)​ at which everyone receives benefits, and at that budget 

size we have ​
_
 a ​ = ∞ and ​​

_
 σ ​​a​ = ∞. As R approaches this value, we have ​

_
 a ​ → ∞ 

and ​​
_
 σ ​​a​ → ∞. 

Now recall eq. (A6) and consider what happens as ​
_
 a ​ and ​​

_
 σ ​​a​ increases. The second 

term can be written as ​   P​(α, B)​​_ σ ​​a​​g​a​(​​
_
 σ ​​a​)/(​_ a ​ − a). We must have   ​lim​​​_ σ ​​a​→∞​ ​​_ σ ​​a ​​g​a​(​​

_
 σ ​​a​)

= 0 (if the limit exists), because otherwise ​g​a​(⋅) would not be a distribution func-
tion. Moreover, ​

_
 a ​ − a tends to ∞ so that the second term disappears in the limit. 

For the first term, integration by parts yields

 ​ ∫​ 
0

 ​ 
​​_ σ ​​a​

 ​αp​(​ 
α(​_ a ​  −  a) _ σ ​ )​​ ​g​a​(σ) _ σ ​  dσ  =

​  1 _ ​_ a ​ − a ​ {−P​(​ 
α(​_ a ​  −  a) _ σ ​ )​σ​g​a​(σ) ​|​ 

0
​ 

​​
_
 σ ​​a​
​  + ​ ∫​ 

0

 ​ 
​​_ σ ​​a​

 ​P​(​ ​
_
 a ​  −  a _ σ ​ )​[​g​a​(σ)  +  σ​g​ a​ ′ ​(σ)]dσ} 

  = ​   1 _ ​_ a ​ − a ​ {(1−​   P​(α, B))​​_ σ ​​a​ ​g​a​(​​
_
 σ ​​a​)  + ​ ∫​ 

0

 ​ 
​​_ σ ​​a​

 ​P​(​ 
α(​_ a ​  −  a) _ σ ​ )​[​g​a​(σ)  +  σ​g​ a​ ′ ​(σ)]dσ}. 

We have that 1/(​_ a ​ − a) tends to zero. The first-term in the bracket disappears as ​​
_
 σ ​​a​ 

tends to infinity. Because P(⋅) is a c.d.f., it can be bounded from above by 1, so that 
the second term is smaller than ​∫​0​ 

​​_ σ ​​a​​​g​a​(σ) + σ​g​ a​ ′ ​(σ)dσ = σ​g​a​(σ) ​|​ 0​ ​​
_
 σ ​​a​​ = ​​_ σ ​​a​ ​g​a​​(​​

_
 σ ​​a​)​ and 

therefore also disappears as ​​
_
 σ ​​a​ gets large. Consequently, ∂​N​a​/∂​_ a ​ tends to zero as ​

_
 a ​ 

and ​​
_
 σ ​​a​—and budget size R—become large (for both L - and H-types). 

By implication, as we keep increasing the budget size R, the left-hand side of (18) 
goes to zero, whereas the right-hand side increases without bound. As a result, for a 
large enough R the inequality has to be violated. 
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Part 3: 
Suppose that the optimal policy satisfies B = ​ 

_
 B​. Because a full-separa-

tion policy delivers ​N​ L​ *
 ​ individuals, an optimal policy must provide bene-

fits to more than ​N​ L​ * ​ individuals. By definition of ​​
_
 a ​​*​, it must therefore satisfy ​_

 a ​ ≥ ​​_ a ​​*​. Furthermore, it must satisfy ​G​L​(​​_ σ ​​L​) > ​N​ L​ *
 ​ (the number of low-ability 

applicants which is greater than the number of recipients must be greater than ​N​ L​ * ​),
such that ​​

_
 σ ​​L​ > ​G​ L​ − 1​(​N​ *​ ). Recall the identity ​​

_
 σ ​​H​ = ((​_ a ​ − ​a​H​)/(​_ a ​ − ​a​L​))​​_ σ ​​L​.

This formula is increasing in ​
_
 a ​ and therefore ​​

_
 σ ​​H​ ≥ ((​​_ a ​​*​ − ​a​H​)/(​​_ a ​​*​ − ​a​L​))​​_ σ ​​L​ 

> ((​​_ a ​​*​ − ​a​H​)/(​​_ a ​​*​ − ​a​L​))​G​ L​ − 1​(​N​ L​ * ​). Note that this lower limit is strictly positive 
because ​​

_
 a ​​*​ > ​a​H​. Now, note that we also have an upper bound for ​​

_
 σ ​​H​: We need 

to have at least ​N​ L​ * ​ low-ability recipients and, with the budget R, we can then have 
no more than (R/​ 

_
 B​ ) − ​N​ L​ * ​ high-ability recipients. Consequently, ​N​H​ < (R/​ 

_
 B​) −

​N​ L​ * ​ while ​N​H​ > P​(0)​​G​H​(​​_ σ ​​H​) (at least a share P​(0)​ of the high-ability applicants 
receive benefits, because ​   P​(α, B) > P​(0)​). Consequently, ​​

_
 σ ​​H​ < ​G​ H​ − 1​(1/P(0))

× ((R/​ 
_
 B​ ) − ​N​ L​ * ​). Putting it together we have ((​​_ a ​​*​ − ​a​H​)/(​​_ a ​​*​ − ​a​L​​))G​ L​ − 1​(​N​ L​ * ​) < 

​​_ σ ​​H​ < ​G​ H​ − 1​(1/P(0))((R/​ 
_
 B​ ) − ​N​*​)). If the upper bound is lower than the lower 

bound, there is no ​​
_
 σ ​​H​ that satisfies this condition and therefore our original assump-

tion that B = ​ 
_
 B​ is optimal must be false.24 

Appendix B: A Welfarist Approach to Complexity

In this section, we outline a welfarist approach to complexity and discuss how it 
affects the main insights presented above. We consider a government maximizing 
the welfare of low-ability individuals, i.e., it puts a zero welfare weight on high-
ability individuals. This objective retains the spirit of the poverty-alleviation prob-
lem considered in the rest of the paper, but shifts the focus from income to utility. 
Because low-ability individuals differ with respect to the σ -parameter, we consider 
the ex-ante expected utility of a low-ability individual drawing σ from the distribu-
tion ​G​L​(σ). Hence, the social welfare function is given by 

(B1)	​ N​ L​ A​ u(​a​L​  +  B  −  f (α))  + ​ N​ L​ R​ u(​a​L​  −  f (α))  + ​ (​​ 
_
 N​​L​  − ​ N​ L​ A​  − ​ N​ L​ R​)​u(​a​L​),

where ​N​ L​ A​ = ​N​ L​ A​​(α, ​
_
 a ​, B)​ is the number of accepted low-ability applicants, ​N​ L​ R​ 

= ​N​ L​ R​​(α, ​
_
 a ​, B)​ is the number of rejected low-ability applicants, and ​​ 

_
 N​​L​ − ​N​ L​ A​ − ​N​ L​ R​ 

is the number of low-ability individuals who decide not to take-up the benefit. We 
can alternatively write this objective as

(B2)	​ N​ L​ A​ ​[​u​ L​ A​  − ​​ _ u ​​L​]​  + ​ N​ L​ R​​[​u​ L​ R​  − ​​ _ u ​​L​]​,

24 Remarks: There is no inconsistency with B = ​ 
_
 B​ for small R—as we reduce R, ​a​*​ → ​a​H​ and therefore the 

lower bound goes to zero (I think the upper bound also goes to zero, but apparently our assumption of a finite slope 
of density guarantees that it does not go to zero that fast). If we can choose B > ​ 

_
 B​, ​a​*​ would fall—this is the same 

argument as the one we made to show that we can always spend all of the money on a full separation policy, higher B 
allows for setting higher α while holding ​   P​ constant. With the same ​   P​ but higher α, probability of receiving benefits 
for everyone goes up because ​

_
 a ​ > ​a​L​ and screening is better—there is therefore more applicants and they are more 

successful. Consequently, for high enough B we can guarantee the existence of ​σ​H​ that would satisfy the inequality.
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where ​u​ L​ A​ ≡ u(​a​L​ + B − f (α)), ​u​ L​ R​ ≡ u(​a​L​ − f (α)), and ​​
_
 u ​​L​ ≡ u(​a​L​). We have 

dropped the term ​​ 
_
 N​​L​ ​​_ u ​​L​, which is a constant that does not depend on policy param-

eters. In the above expression, we have that ​u​ L​ A​ − ​​_ u ​​L​ is positive, while ​u​ L​ R​ − ​​_ u ​​L​ is 
negative. This implies that the government objective is increasing in the number of 
low-ability recipients ​N​ L​ A​ as in the earlier formulation, and decreasing in the number 
of rejected low-ability applicants ​N​ L​ R​ as the worst possible outcome for a low-ability 
individual is to incur the complexity cost without getting the benefit. In other words, 
this objective favors policies that substitute take-up errors (Type Ia) for rejection 
errors (Type Ib). This is in contrast to the poverty-alleviation objective, where the 
two forms of Type I error are perfect substitutes. Finally, the utility terms ​u​ L​ A​ − ​​_ u ​​L​ 
and ​u​ L​ R​ − ​​_ u ​​L​ are obviously decreasing in the complexity costs, and the policy mak-
ers now account for this effect.

Will there be more or less complexity under the welfarist approach than under 
the income maintenance approach? There are two new effects. First and obvious, 
because the utility cost of complexity enters the government objective directly, 
complexity becomes less attractive as an instrument. Second, the fact that rejection 
errors are now worse than take-up errors favors policies that are capable of identify-
ing applicants more precisely even when this reduces the number of applicants. All 
else equal, this creates an argument for a more complex screening process.

To understand the trade-offs in program design, consider the maximization of 
social welfare (B2) with respect to α, ​

_
 a ​, and B subject to a budget constraint given 

by ​[​N​ L​ A​ + ​N​ H​ A
 ​]​B ≤ R. An interior solution with ​N​ H​ A

 ​ > 0 (non-separation equilib-
rium) has to satisfy the following first-order conditions for α and ​

_
 a ​:

	 ​ ∂​N​ L​ A​
 _ ∂α ​​[​u​ L​ A​  − ​​ _ u ​​L​]​  + ​  ∂​N​ L​ R​

 _ ∂α ​​[​u​ L​ R​  − ​​ _ u ​​L​]​  + ​ N​ L​ A​ ​ 
∂​u​ L​ A​

 _ ∂α ​  + ​ N​ L​ R​ ​ 
∂ ​u​ L​ R​

 _ ∂α ​ 

	 =  λ​[​ ∂​N​ L​ A​
 _ ∂α ​  + ​  ∂​N​ H​ A

 ​
 _ ∂α ​]​B

	 ​ ∂​N​ L​ A​
 _ ∂​_ a ​

 ​​ [​u​ L​ A​  − ​​ _ u ​​L​]​  + ​  ∂​N​ L​ R​
 _ ∂ ​_ a ​
 ​​ [​u​ L​ R​  − ​​ _ u ​​L​]​  =  λ​[​ ∂​N​ L​ A​

 _ ∂​_ a ​
 ​   + ​  ∂​N​ H​ A

 ​
 _ ∂​_ a ​

 ​ ]​B.

These two conditions can be combined to give

​ ∂​N​ L​ A​/∂α _ 
∂​N​ H​ A

 ​/∂α
 ​  = ​  ∂​N​ L​ A​/∂​_ a ​

 _ 
∂​N​ H​ A

 ​/∂​_ a ​
 ​  − ​ [​ ∂​N​ L​ R​/∂α _ 

∂​N​ H​ A
 ​/∂α

 ​  − ​  ∂​N​ L​ R​/∂​_ a ​
 _ 

∂​N​ H​ A
 ​/∂​_ a ​

 ​]​​ 
​u​ L​ R​  − ​​ _ u ​​L​

  __  
​u​ L​ A​  − ​​ _ u ​​L​  −  λB

 ​ 

	 − ​ 
​N​ L​ A​​ 

∂​u​ L​ A​
 _ ∂α ​  + ​ N​ L​ R​​ 

∂​u​ L​ R​
 _ ∂α ​
  __   

​ ∂​N​ H​ A
 ​
 _ ∂α ​​[​u​ L​ A​  − ​​ _ u ​​L​  −  λB]​

 ​ ,

which is analogous to condition (14) in the poverty-alleviation model. The left-hand 
side term and the first right-hand side term correspond exactly to condition (14). 



Vol. 3 No. 1� 89Kleven and Kopczuk: Complexity and Take-Up

These terms capture that the optimal setting of complexity and eligibility should 
reflect the capability of each instrument to screen low-ability recipients from high-
ability recipients. The second and third terms on the right-hand side capture the two 
new effects mentioned above. The second term reflects that the instrument which is 
better at avoiding rejection errors should be pushed further. The third term reflects 
that, because complexity is associated with a direct utility cost, this instrument 
should be used less aggressively.

To conclude, intensity of testing and associated complexity are associated with 
the same screening benefits and costs as in the earlier formulation (operating through 
its effects on accepted applicants of the two types, ​N​ L​ A​ and ​N​ H​ A

 ​ ) along with an addi-
tional screening benefit from converting rejection errors into take-up errors (operat-
ing through ​N​ L​ R​ ) and an additional negative effect from the utility cost of complexity 
(operating through ​u​ L​ A​ and ​u​ L​ R​ ). Although equilibrium complexity may be lower in a 
welfarist model, the net effect on complexity is in general theoretically ambiguous. 
Moreover, because take-up errors are more acceptable than rejection errors under 
social welfare maximization, the model would still be able to sustain incomplete 
take-up as an equilibrium policy outcome. In this sense, the model retains the central 
insights of the simpler poverty-alleviation model.
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