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The Basic Problem

Given a neural network NN which maps a region D ⊆ Rn to R, compute

max
x∈D

NN(x).
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Outline of Talk

max
x∈D

NN(x)

1 The Optimization Problem for a Trained Neural Network

Mixed Integer Programming (MIP) Formulations
Using Distributionally Robust Optimization (DRO) with
Marginals

2 The Statistical Problem when the NN needs to be learned
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What is an (artificial feedforward) Neural Network?

x1

x2

x3

x1
2 NN(x)

n nodes
per layer

L (fully-connected) layersx = (x1, x2, x3)

at i ’th neuron in `’th layer, x`i = σ(w `,i · x`−1 + b`,i ), where x`−1 is vector
of variables from previous layer and σ is non-linear activation function

often, σ = max{·, 0} (ReLU)

we will more generally consider x`i = maxk=1,...,d(w `,i,k · x`−1 + b`,i,k)

Will Ma (Columbia) DRO in MIP for NN 1 / 17



The Optimization Problem MIP Formulations Using DRO Minimal Polyhedral Descriptions The Statistical Problem

Motivation for the Problem: NN Verification

NN can classify images, but is vulnerable to adversarial examples
(Goodfellow/Shlens/Szegedy ’15)

Want to verify NN is insensitive under small perturbations, e.g.
prove

max
x :‖x−(reference panda)‖∞≤ε

NNgibbon(x)−NNpanda(x) ≤ 0
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Basic Problem

Given a fixed NN : D → R, compute maxx∈D NN(x).

NN(x) is generally non-convex

but composed of piecewise-linear functions

verifiable optimality matters (cannot use first-order methods)

evaluation is easy, but search region D is a large/continuous

e.g. box domain (∞-norm ball)
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MIP to the rescue
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NN(x)

recall that x`i = maxk=1,...,d(w `,i,k · x`−1 + b`,i,k)

add integer vector z`,i ∈ {0, 1}d at each neuron which equals the
basis vector ek for a piece k taking the maximum

at each neuron `, i , use linear constraints on the x`i , z`,ik , and x`−1

variables

then solve using Branch and Bound
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Desirable Properties of MIP Formulations

single neuron defined by f (x) = maxk=1,...,d(wk · x + bk)

x ∈ D is vector for previous layer, y ∈ R is value for neuron, z is
vector of added integer variables

valid: when z ∈ {0, 1}d , (x,y)-region described is function itself

sharp: when z ∈ [0, 1]d , (x,y)-region described is convex hull

ideal: (x,y,z)-region described is convex hull in extended space

f (x) = max{x − 0.5, 0}
over D = [0, 1]

0
x

1

y
0.5

f (x)
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Not all MIP formulations are the same!

Big-M Our Formulation Disjunctive (“Balas”)
Tightness of valid, valid, valid,

LP-relaxation for not sharp sharp, ideal
Single Neuron ideal for d = 2

# of Continuous
Θ(Ln) Θ(Ln) Θ(Ln2d)

Variables
Speed of BnB

fastest
in Practice

Our formulation is tailored to Neural Nets (specifically, the max of d
affine functions)

Goal: add constraints (not variables) to Big-M formulation until sharp
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Assume D = [0, 1]n. Want to describe points (x , y) in

conv
({

(x , f (x)) : x ∈ [0, 1]n
})

Step 1: at a fixed x , upper bound on y is

sup
X random vector over [0,1]n with E[X ]=x

E[f (X )]

Step 2: by convexity/Jensen, can restrict X to {0, 1}n

= sup
X random vector over {0,1}n with E[Xi ]=xi ∀i

E[f (X )]

Step 3: reinterpret as DRO with marginals

= sup
θ∈Γ(Ber(x1),...,Ber(xn))

EX∼θ[f (X )]

f (x) = max{x − 0.5, 0}
over D = [0, 1]

0
x

1

y
0.5

x

?

x = 1
3 · 1 + 2

3 · 0

upper bound on y is
1
3 f (1) + 2

3 f (0) = 1
6
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y ≤ sup
θ∈Γ(Ber(x1),...,Ber(xn))

EX∼θ[ max
k=1,...,d

(wk · x + bk)]

⇐⇒y ≤ sup
ν∈D({w1,...,wd})

(
n∑

i=1

sup
θi∈Γ(νi ,Ber(xi ))

E(Wi ,Vi )∼θi [WiVi ] +
d∑

k=1

bkν(wk)

)

sup-sup duality from Distributionally Robust Optimization with marginals

can switch sup and max and assume inner problem takes worst case

Meilijson/Nadas ’79, Natarajan/Song/Teo ’09 [continuous marginals],
Chen/M./Natarajan/Simchi-Levi/Yan ’18 [arbitrary marginals]

Let zk = ν(wk), the probability that k ’th piece is maximum

after LP duality and a bit of massaging, get

y ≤
n∑

i=1

min
K=1,...,d

(
wK
i xi +

d∑
k=1

max{wk
i − wK

i , 0}zk
)

+
d∑

k=1

bkzk

equivalent to exponential family of linear constraints
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Our Formulation for a Single Neuron with D =
∏n

i=1[Li ,Ui ], arbitrary bk

y ≤
n∑

i=1

(
w

K(i)
i xi +

d∑
k=1

max{(wk
i − w

K(i)
i )Ui , (w

K(i)
i − wk

i )Li}zk
)

+
d∑

k=1

bkzk

∀K : [n]→ [d ]←− exponential family, but separation oracle

y ≥ wk · x + bk ∀k = 1, . . . , d ←− no lower-bound constraints added, by convexity

x ∈ [L1,U1]× · · · × [Ln,Un]

z ∈ ∆d ∩ {0, 1}d

valid, sharp, and no redundant constraints x

y

when d = 2, ideal

the d = 2 result holds even if D is a product of simplices

(useful for one-hot encoding binary features)
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Some Remarks on our Sharpness/Idealness Results

Our results do not imply:

an integral LP relaxation for whole network (unless only one neuron)

Our results do suggest:

branching heuristics will be faster in practice

[corroborated by our experiments; see also Vielma ’15, Huchette ’18]

Our results do prove:

minimal polyhedral description of convex hull of ReLU (or max of
d = 2 affine functions), in extended space with z-variables

exponentially many facets; tractable separation procedure

But what about original space without z-variables?

Will Ma (Columbia) DRO in MIP for NN 10 / 17



The Optimization Problem MIP Formulations Using DRO Minimal Polyhedral Descriptions The Statistical Problem

Minimal Polyhedral Description in Original Space

We also establish the minimal polyhedral description of

conv
({

(x ,max{w · x + b, 0}) : x ∈ D
})

(or max of 2 affine functions) with inequalities in x and y variables.

Exponentially many facets; tractable separation procedure

Key proof technique:

when d = 2, function maxk=1,...,d(w k · x + bk) is supermodular

(modulo appropriate sign flips)

therefore, extremal distribution in DRO with Marginals problem

sup
θ∈Γ(Ber(x1),...,Ber(xn))

EV∼θ

[
max

k=1,...,d
(w k · V + bk)

]
is comonotonic coupling (perfect positive correlation)

Not the case when d > 2, which makes problem significantly more challenging!
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Bound Propagation in the Formulations
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NN(x)

formulations at layer ` depend on domain D`−1 for layer `− 1

can write formulations for relaxation
∏

i [L
`−1
i ,U`−1

i ] ⊇ D`−1

valid bounds L`i ,U
`
i , with ` = 1, . . . , L, can be efficiently propagated

through network, and require formulations of Projected Polyhedron
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The Optimization Problem

Given a fixed NN : D → R, compute maxx∈D NN(x).

The Statistical Problem

Given data points (xj , yj)j=1,...,J , drawn IID from a distribution over
D × R, find a point x ∈ D which maximizes E[y |x ].

A Solution Method:

1 Train a neural network NN which accurately predicts y given x ,
using the data points (xj , yj)j=1,...,J .

2 Find the point x ∈ D which maximizes NN(x).
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A Zoo of Applications

maxx NNpanda(x)

x is the price vector for several complement/substitute products;

y is the demand for a particular product

x is a DNA sequence; y is how well it binds to a particular protein

Objections?

Will Ma (Columbia) DRO in MIP for NN 14 / 17



The Optimization Problem MIP Formulations Using DRO Minimal Polyhedral Descriptions The Statistical Problem

A Zoo of Issues

endogeneity; prediction does not imply causation

even with no confounding, low prediction error does not imply
uniformly good approximation across D

optimizer’s curse: usually end up at x where NN(x) is
astronomically high yet E[y |x ] is worse than that of a “safe” point

uninterpretable model; cannot incorporate any structure into NN(x)

But, Some Unique Benefits

NN solution method allows for automated non-linear extrapolation

cannot be achieved by linear regression, or sticking to training
points xj with high value of yj
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Experiments on DNA Data

x ∈ D = {G ,C ,A,T}8; 65536 possible sequences

assume y deterministically equals f (x) ∈ [0, 1]

1% of sequences are randomly chosen to be training data

train fully-connected 4x100 ReLU NN; average squared loss < 0.01

submit 15 best sequences not in training data according to NN

repeat experiment (with new sequences as training data)—50 instances

test Vanilla NN Max and Constrained NN Max (suggested by Bastani ’19)

A Zoo of Possibilities
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Summary

1 MIP formulations for maxx∈D NN(x) problem

“Strong Mixed-Integer Programming Formulations for Trained
Neural Networks” joint with Ross Anderson, Joey Huchette,
Christian Tjandraatmadja, Juan Pablo Vielma

2 Using duality result from DRO with Marginals

“Distributionally Robust Linear and Discrete Optimization with
Marginals” joint with Louis Chen, Karthik Natarajan, David
Simchi-Levi, Zhenzhen Yan

3 Minimal polyhderal descriptions under no added integer variables,
with application to bound propagation [in preparation]

4 Statistical Problem [WIP]

Thanks!

My contact: wm2428@gsb.columbia.edu
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