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1. Setup

The key takeaway of diffusion probabilistic models (DPMs) is to reverse some meticulously
chosen stochastic dynamics to create meaningful distributions from noise, thus achieving
generative modeling. Given a data in Rn with distribution pdata(·), the task is to generate
multiple (many) data sets whose distributions are pdata(·), or close to pdata(·).

Reverse SDE. Let us explain DPMs. Consider a (forward) stochastic differential equation
(SDE):

dXt = b(t,Xt)dt+ σ(t,Xt)dBt, with X0 ∼ pdata(·), (1.1)

where (Bt, t ≥ 0) is d-dimensional Brownian motion, and b : R+ × Rn → Rn and σ :
R+×Rn → Rn×d are model parameters to be designed. Some conditions on b(·, ·) and σ(·, ·)
are required so that the SDE (1.1) is at least well-defined (see [15, Chapter 5]), and we will
elaborate this later. Let p(t, ·) be the probability density of Xt.

Set T > 0 to be fixed, and run the SDE (1.1) until time T to get XT ∼ p(T, ·). The idea is
that if we start with p(T, ·) and run the process X backward, then we can generate copies of
p(0, ·) = pdata(·). To be more precise, consider the time reversal Xt := XT−t for 0 ≤ t ≤ T .
Assuming that X also satisfies an SDE, we can implement the backward procedure by

dXt = b̄(t,Xt)dt+ σ̄(t,Xt)dBt, with X0 ∼ p(T, ·). (1.2)

So we generate the desired XT ∼ pdata(·) at time T . There are two questions:

(1) How can we sample the initial distribution p(T, ·) in (1.2)?

(2) What are the parameters b̄(·, ·) and σ̄(·, ·) (in terms of b(·, ·), σ(·, ·) and the distribution
of X)?

For (1), the distribution p(T, ·) of XT depends on p(0, ·) = pdata(·), and it is generally hard
to compute p(T, ·) in closed-form. One way is to choose suitable model parameters b(·, ·)
and σ(·, ·) so that Xt converges to a target or prior distribution p∞(·). If b(t, x) = b(x) and
σ(t, x) = σ(x) are time-independent, p∞(·) can be the stationary distribution of the SDE
(1.1). Now instead of taking p(T, ·) as the initial distribution for the backward process (1.2),
we set

X0 ∼ p∞(·), (1.3)

which is independent of p(0, )̇ = pdata(·). This explains why DPMs generate distributions from
“noise” p∞(·). It should also be kept in mind that the model parameters b(·, ·) and σ(·, ·) are
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chosen so that “noise” p∞(·) is easy to sample, e.g. uniform or Gaussian distributed, or as a
product measure. The backward process then becomes

dXt = b̄(t,Xt)dt+ σ̄(t,Xt)dBt, with X0 ∼ p∞(·). (1.4)

Comparing (1.2) with (1.4), we see that closer the distributions p(T, ·) and p∞(·) are, closer
the distribution of XT governed by (1.4) is to pdata(·). It requires either taking T to be
sufficiently large, or performing a time-change or conditioning which we will illustrate with
examples later.

For (2), it relies on the following general result on the time reversal of SDEs.

Theorem 1.1 (Time reversal formula). [12] Let a(t, x) := σ(t, x)σ(t, x)>. Under suitable
conditions on b(·, ·), σ(·, ·) and {p(t, ·)}0≤t≤T , we have

σ(t, x) = σ(T − t, x), b(t, x) = −b(T − t, x) +
∇ · (p(T − t, x)a(T − t, x))

p(T − t, x)
, (1.5)

where ∇ · f = divf (the divergence of f).

Proof. Here we give a heuristic derivation of the time reversal formula (1.5). First, the
infinitesimal generator of X is L := 1

2∇·a(t, x)∇+ ba ·∇, where ba := b− 1
2∇·a. It is known

that the density p(t, x) satisfies the the FokkerPlanck equation:

∂

∂t
p(t, x) = L∗p(t, x), (1.6)

where L∗ := 1
2∇ · a(t, x)∇ − ∇ · ba is the adjoint of L. Let p(t, x) := p(T − t, x) be the

probability density of the time reversal X. By (1.6), we get

∂

∂t
p(t, x) = −1

2
∇ · (a(T − t, x)∇p(t, x)) +∇ · (ba(T − t, x) p(t, x)) . (1.7)

On the other hand, we expect the generator of X to be L := 1
2∇ · a(t, x)∇ + ba · ∇. The

Fokker-Planck equation for p(t, x) is

∂

∂t
p(t, x) =

1

2
∇ · (a(t, x)∇p(t, x))−∇ ·

(
ba(t, x) p(t, x)

)
. (1.8)

Comparing (1.7) and (1.8), we set a(t, x) = a(T − t, x) and then get(
ba(T − t, x) + ba(t, x)

)
p(t, x) = a(T − t, x)∇p(t, x),

which is rewritten as(
b(T − t, x) + b(t, x)

)
p(t, x)−∇ · a(T − t, x) p(t, x) = a(T − t, x)∇p(t, x). (1.9)

This yields the desired result. �

Let us comment on Theorem 1.1. [12] proved the result by assuming that b(·, ·) and σ(·, ·)
are globally Lipschitz, and the density p(t, x) satisfies an a priori H1 bound. The implicit
condition on p(t, x) is guaranteed if ∂t +L is hypoelliptic, or ∇2a(t, x) is uniformly bounded.
These conditions were relaxed in [23], where only the boundedness of ∇a(t, x) in some L2

norm is required. In another direction, [10, 11] used an entropy argument to prove the time
reversal formula in the case σ(t, x) = σI. This approach was further developed in [4] which
made connections to optimal transport.
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By Theorem 1.1, the backward procedure is written as

dXt =
(
−b(T − t,Xt) + a(T − t,Xt)∇ log p(T − t,Xt) +∇ · a(T − t,Xt)

)
dt

+ σ(T − t,Xt)dBt. (1.10)

Since b(·, ·) and σ(·, ·) are chosen in advance, all but the term ∇ log p(T − t,Xt) in (1.10)
are available. So in order to implement the backward procedure (1.10), we need to compute
∇p(t, x) – known as Stein’s score of Xt.

Examples. Now let us illustrate reverse SDE (1.10) with several concrete examples of DPMs.

Example 1.2 (Constant diffusion). Let σ(t, x) = σI. Theorem 1.1 specifies to Föllmer’s
time reversal formula:

dXt =
(
−b(T − t,Xt) + σ2∇ log p(T − t,Xt)

)
dt+ σdBt. (1.11)

(a) Orstein-Ulenback (OU) process b(t, x) = θ(µ−x) with θ > 0, µ ∈ Rn. It is known that

given X0 = x, the distribution of Xt is p(t, ·;x) = N (µ+ (x−µ)e−θt, σ
2

2θ (1− e−2θt)I).

So the stationary distribution of the OU process is p∞(·) ∼ N (µ, σ
2

2θ I). The backward
procedure of the OU process is

dXt =

(
θ(Xt − µ) + σ2∇ log p(T − t,Xt)

)
dt+ σdBt,

with X0 ∼ N
(
µ+ (x− µ)e−θT ,

σ2

2θ
(1− e−2θT )I

)
, x ∼ pdata(·),

(1.12)

or

dXt =
(
θ(Xt − µ) + σ2∇ log p(T − t,Xt)

)
dt+ σdBt,

with X0 ∼ N
(
µ,
σ2

2θ
I

)
.

(1.13)

(b) Sign-drifted process bi(t, x) = − sgn(xi)bi for |xi| ≥ ε and smooth, with bi, ε > 0. The

stationary distribution p∞(·) ∝ ⊗ni=1νi(·), where νi(·) ∝ exp(−2bi|xi|
σ2 ) for |xi| ≥ ε. If

we take ε small, then νi(·) is close to Laplace(0, σ
2

2bi
)
d
= σ2

2bi
Laplace(0, 1) (Laplace(0, 1)

is known as the double exponential). So the the backward procedure of the sign-drifted
process is considered as:

dXt = (“ sgn(Xt) · b” + σ2∇ log p(T−t,Xt))dt+ σdBt,

with X0 ∼ ⊗ni=1Laplace

(
0,
σ2

2bi

)
.

(1.14)

in which “ sgn(Xt) · b”i = −bi(T − t,Xt) = sgn((Xt)i)bi

(c) (Overdamped) Langevin process b(t, x) = −∇U(x) for a suitable function U : Rn →
R. We know that the Langevin process has the stationary distribution p∞(·) ∝
exp

(
−σ2U(·)

2

)
which is a Gibbs measure. The backward procedure of the Langevin



4 WENPIN TANG

process is

dXt =
(
∇U(Xt) + σ2∇ log p(T − t,Xt)

)
dt+ σdBt,

with X0 ∝ exp

(
−2U(·)

σ2

)
.

(1.15)

By taking U(x) = θ
2 |x − µ|2, we recover the OU process in (a); and by taking

U(x) = (−b1|x1|, . . . ,−bn|xn|), we recover the sign-drifted process in (b). Generally,

we choose U(·) so that the Gibbs measure X0 ∝ exp
(
−2U(·)

σ2

)
is easy to sample.

Example 1.3 (State-dependent diffusion). Let σ(t, x) = σ(x), and a(x) := σ(x)σ(x)>.
Theorem 1.1 reduces to

dXt =
(
−b(T − t,Xt) + a(Xt)∇ log p(T − t,Xt) +∇ · a(Xt)

)
dt+ σ(Xt)dBt. (1.16)

(a) 1-dimensional Geometric Brownian Motion b(t, x) = µx and σ(x) = σx with σ > 0.

It is known that given X0 = x, Xt = x exp
(

(µ− σ2

2 )t+ σBt

)
, i.e. Xt/x follows

a log-normal distribution. Thus the backward procedure of the Geometric Brownian
Motion process becomes

dXt =
(
−(µ− 2σ2)Xt + σ2∇ log p(T − t,Xt)

)
dt+ σXtdBt,

with X0 ∼ x · exp(N ((µ− σ2

2
)T, σ2))

(1.17)

Example 1.4 (Time-dependent diffusion). Let σ(t, x) = σ(t) and a(t) := σ(t)σ(t)>. Theo-
rem 1.1 simplifies to

dXt =
(
−b(T − t,Xt) + a(T − t)∇ log p(T − t,Xt)

)
dt+ σ(T − t)dBt. (1.18)

If we take σ(t) = σ(t)I (where σ(t) on the l.h.s. is a matrix, while that on the r.h.s. is a
scalar), the backward procedure reads as

dXt =
(
−b(T − t,Xt) + σ2(T − t)∇ log p(T − t,Xt)

)
dt+ σ(T − t)dBt. (1.19)

(a) Simulated annealing (SA) σ(t) = E
log(2+t) and b(t, x) = −∇U(x) for E > 0 sufficiently

large, and a suitable function U : Rn → R with the (global) minimum at x∗. It is
known that the SA process converges to the point mass p∞(·) = δx∗, see e.g. [28]. So
the backward procedure of the SA process is

dXt =

(
∇U(Xt) +

E2

log2(2 + T − t)
∇ log p(T − t,Xt)

)
dt

+
E

log(2 + T − t)
dBt, with X0 ∼ δx∗ .

(1.20)

The time reversal (1.20) is a noise boosting process. The benefit of SA is that the
initial distribution for the backward procedure is a point mass, and so is easy to
“sample”.
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(b) Variance exploding (VE) SDE [27] b(t, x) = 0 and

σ(t) = σmin

(
σmax

σmin

) t
T
√

2

T
log

σmax

σmin
, with σmin � σmax, (1.21)

which is the continuum limit of score matching with Langevin dynamics (SMLD) [26].

Note that Xt = X0 +
∫ t
0 σ(s)dBs is the Paley-Wiener integral. Given X0 = x, the

distribution of Xt is given by

p(t, ·;x) = N
(
x0,

(∫ t

0
σ2(s)ds

)
I

)
= N

(
x, σ2min

((
σmax

σmin

) 2t
T

− 1

)
I

)
.

(1.22)

The name “variance exploding” comes from the fact that Var(X0) � Var(XT ) since
σmin � σmax. Moreover, p(T, ·;x0) is close to the uniform distribution (in the support
of data). So the backward procedure of the VE SDE is

dXt = σ2(T − t))∇ log p(T − t,Xt) + σ(T − t)dBt,
with X0 ∼ N

(
x, (σ2max − σ2min)I

)
, x ∼ pdata(·),

(1.23)

or

dXt = σ2(T − t))∇ log p(T − t,Xt) + σ(T − t)dBt, with X0 ∼ Unif. (1.24)

(c) Variance preserving (VP) SDE [27]. Let

β(t) := βmin +
t

T
(βmax − βmin), with βmin � βmax. (1.25)

Set

σ(t) =
√
β(t) and b(t, x) = −1

2
β(t)x, (1.26)

which is the continuum limit of the denoising diffusion probabilistic models (DDPM)

[13]. By applying Itô’s formula to e
1
2

∫ t
0 β(s)dsXt, we get the distribution of Xt given

X0 = x:

p(t, ·;x) = e−
1
2

∫ t
0 β(s)dsN

(
x, (e

∫ t
0 β(s)ds − 1)I

)
= N

(
e−

1
2

∫ t
0 β(s)dsx, (1− e−

∫ t
0 β(s)ds)I

)
= N

(
e−

t2

4T
(βmax−βmin)− t2βminx, (1− e−

t2

2T
(βmax−βmin)−tβmin)I

)
.

(1.27)

Thus, p(T, ·;x0) = N (e−
T
4
(βmax+βmin)x0, (1 − e−

T
2
(βmax+βmin))I), which is close to

N (0, I) if βmax is set to be large. This is why the SDE is called variance preserving.
So the backward procedure of the VP SDE is

dXt =

(
1

2
β(T − t)Xt + β(T − t)∇ log p(T − t,Xt)

)
dt

+
√
β(T − t))dBt,

with X0 ∼ N (e−
T
4
(βmax+βmin)x, (1− e−

T
2
(βmax+βmin))I), x ∼ pdata(·),

(1.28)
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or

dXt =

(
1

2
β(T − t)Xt + β(T − t)∇ log p(T − t,Xt)

)
dt

+
√
β(T − t))dBt, with X0 ∼ N (0, I).

(1.29)

(d) Sub-variance preserving (Sub VP) SDE [27]. Let β(t) be defined by (1.25). Set

σ(t) =

√
β(t)(1− e−2

∫ t
0 β(s)ds) and b(t, x) = −1

2
β(t)x. (1.30)

Let

γ(t) := e−2
∫ t
0 β(s)ds = e−

t2

T
(βmax−βmin)−2tβmin , (1.31)

so σ(t) =
√
β(t)(1− γ(t)). The same reasoning as in (c) shows that given X0 = x,

the distribution of Xt is

p(t, ·;x) = N
(
e−

1
2

∫ t
0 β(s)dsx, (1− e−

∫ t
0 β(s)ds)2I

)
= N

(
e−

t2

4T
(βmax−βmin)− t2βminx, (1− e−

t2

2T
(βmax−βmin)−tβmin)2I

) (1.32)

Note that Varsub VP(Xt) ≤ VarVP(Xt), thus the name “sub VP” SDE. The backward
procedure of the VP SDE is

dXt =

(
1

2
β(T − t)Xt + β(T − t)(1− γ(T − t))∇ log p(T − t,Xt)

)
dt

+
√
β(T − t)(1− γ(T − t))dBt,

with X0 ∼ N (e−
T
4
(βmax+βmin)x, (1− e−

T
2
(βmax+βmin))2I), x ∼ pdata(·),

(1.33)

or

dXt =

(
1

2
β(T − t)Xt + β(T − t)(1− γ(T − t))∇ log p(T − t,Xt)

)
dt

+
√
β(T − t)(1− γ(T − t))dBt, with X0 ∼ N (0, I).

(1.34)

Score matching. The idea from recently developed score-based generative modeling [13,
26, 27] consists of estimating ∇ log p(t, x) by function approximations, i.e. score matching.
More precisely, denote by {sθ(t, x)}θ a family of functions on R+ × Rn parametrized by θ,
e.g. kernel or neural networks. The goal is to solve the score matching problem:

min
θ
J (θ) := Ep(t,·)|sθ(t,X)−∇ log p(t,X)|2. (1.35)

Again the stochastic optimization (1.35) seems to be far-fetched since ∇ log p(t, x)’s are not
available. Interestingly, this problem has been studied in the context of estimating statistical
models with unknown normalizing constant. (It is easily seen that if p(·) is a Gibbs measure,
then its Stein’s score ∇ log p(·) does not depend on the normalizing constant). The following
result due to Hyvärinen shows that the (implicit) score matching problem (1.35) can be recast
into a feasible stochastic optimization with no ∇ log p(t,X)-term.

Theorem 1.5 (Equivalent score matching). [14] Let

J̃ (θ) := Ep(t,·)
[
|sθ(t,X)|2 + 2∇ · sθ(t,X)

]
. (1.36)
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Under suitable conditions on sθ, we have J̃ (θ) = J (θ) + C for some C independent of θ.

Consequently, the minimum point of J̃ and that of J coincide.

Proof. We have

∇θJ (θ) = ∇θEp(t,·)
[
|sθ(t,X)|2

]
− 2Ep(t,·) [∇θsθ(t,X) · ∇ log p(t,X)]

= ∇θEp(t,·)
[
|sθ(t,X)|2

]
− 2

∫
∇θsθ(t, x) · ∇p(t, x)dx

= ∇θEp(t,·)
[
|sθ(t,X)|2

]
− 2∇θ

∫
sθ(t, x) · ∇p(t, x)dx

= ∇θEp(t,·)
[
|sθ(t,X)|2

]
+ 2∇θ

∫
∇ · sθ(t, x) p(t, x)dx

= ∇θEp(t,·)
[
|sθ(t,X)|2 + 2∇ · sθ(t,X)

]
= ∇θJ̃ (θ),

where we use the divergence theorem in the fourth equation. �

Now assume that θ∗ solves the equivalent score matching problem:

min
θ
J̃ (θ) = Ep(t,·)

[
|sθ(t,X)|2 + 2∇ · sθ(t,X)

]
. (1.37)

The backward procedure in the generative SDE modeling is:

dXt =
(
−b(T − t,Xt) + a(T − t,Xt) sθ(T − t,Xt) +∇ · a(T − t,Xt)

)
dt

+ σ(T − t,Xt)dBt, (1.38)

with X0 ∼ p(T, ·) or X0 ∼ p∞(·). By running the SDE (1.38) until time T multiple (many)
times, we generate copies of XT whose distribution is expected to be close to pdata(·).
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2. Wasserstein Score Matching Error bound

Now we consider how XT in the generative SDE model (1.38) approaches pdata(·), with
X0 ∼ p(T, ·) orX0 ∼ p∞(·). We focus on the time-dependent case σ(t, x) = σ(t), which covers
Examples 1.2 and 1.4. Recall that a(t) := σ(t)σ(t)>. We make the following assumptions.

Assumption 2.1. The following conditions hold:

(1) There exists rσ : [0, T ]→ R+ such that ||a(t)||2 ≤ rσ(t) for 0 ≤ t ≤ T .

(2) There exists rb : [0, T ] → R such that (x− x′) · (b(t, x)− b(t, x′)) ≥ rb(t)|x− x′|2 for
all 0 ≤ t ≤ T and x, x′ ∈ Rn.

(3) There exists L > 0 such that |sθ(t, x) − sθ(t, x′)| ≤ L|x − x′| for all 0 ≤ t ≤ T and
x, x′ ∈ Rn.

(4) There exists ε > 0 such that Ep(t,·)|sθ(t, x)−∇ log p(t, x)|2 ≤ ε2 for all 0 ≤ t ≤ T .

The condition (1) assumes the boundedness of the diffusion parameter from above; (2)
assumes the monotonicity of the drift parameter; and (3) assumes the (uniform) Lipschitz
property of the score matching functions. (As a comparison, in all other existing works,
the Lipschitz continuity assumption is for the score function itself instead of the matching
function, e.g. [7, 5]). These conditions are used to quantify how a perturbation of the model
parameters in an SDE will affect its distribution. The condition (4) specifies how accurate
Stein’s score is estimated by function approximations. Note that the constants L, ε may
depend on T . In most aforementioned examples, the drift parameter b(t, x) is affine in x. So
the density p(t, ·) is Gaussian-like, and its Stein’s score ∇ log p(t, ·) is almost affine. Thus,
it is reasonable (and consistent) to assume (3), i.e. the score matching sθ(t, x) is (uniform)
Lipschitz in x.

The following theorem quantifies how close pdata(·) and the distribution of XT are.

Theorem 2.2. Let (Xt, 0 ≤ t ≤ T ) be defined by (1.38), and let Assumption 2.1 hold.
Define η := 0 if X0 ∼ p(T, ·), or W2(p(T, ·), p∞(·)) if X0 ∼ p∞(·), and

u(t) :=

∫ T

T−t

(
1− 2rb(s) + 2L2r2σ(s)

)
ds. (2.1)

Then we have

W2(pdata(·), XT ) ≤

√
η2eu(T ) + 2ε2

∫ T

0
r2σ(t)eu(T )−u(T−t)dt. (2.2)

Moreover, if rb(t) ≤ 1
2 holds for all t ∈ [0, T ] (e.g. rb(t) ≤ 0), then the bound (2.2) can be

simplified as:

W2(pdata(·), XT ) ≤
√
η2eu(T ) +

ε2

L2
(eu(T ) − 1). (2.3)

Proof. The idea relies on coupling, which is similar to [29, Lemma 4]. Consider the coupled
SDEs: {

dYt = (−b(T − t, Yt) + a(T − t)∇ log p(T − t, Yt)) dt+ σ(T − t)dBt,
dZt = (−b(T − t, Zt) + a(T − t)sθ(T − t, Zt)) dt+ σ(T − t)dBt,
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where 1) Y0 = Z0 ∼ p(T, ·) ifX0 ∼ p(T, ·), and 2) (Y0, Z0) are coupled to achieveW2(p(T, ·), p∞(·))
if X0 ∼ p∞(·), i.e. Y0 ∼ p(T, ·), Z0 ∼ p(∞, ·), and E|Y0 − Z0|2 = W2(p(T, ·), p∞(·)). Then it
is easy to see that

W 2
2 (pdata(·), XT ) ≤ E|YT − ZT |2. (2.4)

So the goal is to bound E|YT − ZT |2. By Itô’s formula, we get

d|Yt − Zt|2 = 2(Yt − Zt) · (−b(T − t, Yt) + a(T − t)∇ log p(T − t, Yt)
+ b(T − t, Zt)− a(T − t)sθ(T − t, Zt))dt

which implies that

dE|Yt − Zt|2

dt
= −2E((Yt − Zt) · (b(T − t, Yt)− b(T − t, Zt))︸ ︷︷ ︸

(a)

)

+ 2E((Yt − Zt) · a(T − t)(∇ log p(T − t, Yt)− sθ(T − t, Zt)))︸ ︷︷ ︸
(b)

. (2.5)

By Assumption 2.1 (2), we get

(a) ≥ rb(T − t)E|Yt − Zt|2. (2.6)

Moreover,

(b) ≤ 1

2
E|Yt − Zt|2 +

1

2
E|a(T − t)(∇ log p(T − t, Yt)− sθ(T − t, Zt))|2

≤ 1

2
E|Yt − Zt|2 +

1

2
r2σ(T − t)E|∇ log p(T − t, Yt)− sθ(T − t, Zt)|2

≤ 1

2
E|Yt − Zt|2 + r2σ(T − t)

(
E|∇ log p(T − t, Yt)− sθ(T − t, Yt)|2

+ E|sθ(T − t, Yt)− sθ(T − t, Zt)|2
)

≤
(

1

2
+ L2r2σ(T − t)

)
E|Yt − Zt|2 + ε2r2σ(T − t),

(2.7)

where we use Assumption 2.1 (1) in the second inequality, and (3)(4) in the last inequality.
Combining (2.5), (2.6) and (2.7), we have

dE|Yt − Zt|2

dt
≤
(
−2rb(T − t) + 1 + 2L2r2σ(T − t)

)
E|Yt − Zt|2 + 2ε2r2σ(T − t). (2.8)

Applying Grönwall’s inequality, we have:

E|YT − ZT |2 ≤ eu(T )E|Y0 − Z0|2 + ε2
∫ T

0
r2σ(T − t)eu(T )−u(t)dt.

Combining (2.4) yield (2.2). Notice that denoting f(t) = u(T )− u(T − t), then

df

dt
(s) = −2rb(s) + 2L2r2σ(s) + 1.

Thus if rb(t) ≤ 1
2 , then combining the following inequality leads to (2.3), as∫ T

0
r2σ(t)eu(T )−u(T−t)dt ≤

∫ T

0

1

2L2
f ′(t)ef(t)dt =

1

2L2
(ef(T ) − ef(0)) =

1

2L2
(eu(T ) − 1).
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�

Looking at the bound (2.2), the data generation error W2(pdata(·), XT ) is linear in the score
matching error ε and the initialization error η, and these errors propagate exponentially in
time T (in most examples, rb(t) ≤ 0 so u(t) is positive and at least linear). This implies that
the data generation error may explode if T is set to be large even at the continuous level,
not to mention discretization errors. If X0 ∼ p(T, ·) (exact time reversal), then η = 0 and
we can simply take T = 1, say. If X0 ∈ p∞(·), then η > 0 and is generally decreasing in T .

In this case, we can choose T to tradeoff the term “ηeu(T )”.

Now let’s specify the error bound (2.2) to the examples. (Example 1.2 constant diffusion
and Example 1.4 time-dependent diffusion)

• Example 1.2 (a) OU process. We have rσ(t) = σ > 0 and rb(t) = −θ < 0. So

u(t) = (2θ + L2σ2

2 + 1)t := COUt, and

W2(pdata(·), XT ) ≤

√(
η2 +

ε2σ2

2COU

)
eCOUT − ε2σ2

2COU

. (2.9)

Recall that

W2(N (m1,Σ1),N (m2,Σ2)) =

√
|m1 −m2|2 + Tr

(
Σ1 + Σ2 − 2(Σ

1
2
1 Σ2Σ

1
2
1 )

1
2

)
.

If X0 ∼ p∞(·) = N (µ, σ
2

2θ I), because of convexity of Wasserstein Distance we have

η≤EX∼pdata(·)

√
|X − µ|2e−2θT +

σ2

2θ

(
2− e−2θT − 2

√
1− e−2θT

)
n, (2.10)

which decays as e−θT . Thus, η2eCOUT � e(
L2σ2

2
+1)T which suggests to pick a small T .

• Example 1.2 (c) Langevin process. Assume that there exists L′ > 0 such that

(x− x′) · (∇U(x)−∇U(x′)) ≤ L′|x− x′|2 for all x, x′ ∈ Rn, (2.11)

(which is obviously satisfied by the OU process). We have rσ(t) = σ > 0 and
rb(t) = −L′ < 0. So we get the same bound as in (2.9) by replacing COU with

CLang := 2L′ + L2σ2

2 + 1.

Assume further that the Gibbs measure p∞(·) ∝ exp(−2U(·)
σ2 ) satisfies the log-

Sobolev inequality (LSI) with constant α. For instance, if ∇2U ≥ κI (known as

Bakry-Émery condition [1]), then the LSI constant α = 2κ
σ2 . By [25, Theorem 1.7],

H(p(T, ·) | p∞(·)) ≤ e−σ2αTH(p(0, ·) | p∞(·)),

where H(µ | ν) denotes the relative entropy (or KL divergence) between µ and ν.
Recall that a probability measure ν is said to satisfy Talagrands inequality with
constant γ > 0, if for all probability measure µ with H(µ | ν) <∞,

W 2
2 (µ, ν) ≤ 2

γ
H(µ | ν).
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It follows from [22, Theorem 1] that LSI implies Talagrands inequality with the same
constant. Thus, if X0 ∼ p∞(·), we get

η = W2(p(T, ·), p∞(·)) ≤
√

2H(p(0, ·) | p∞(·))
α

e−
σ2α
2
T . (2.12)

Therefore, the term η2eCLangT � e(−σ2α+2L′+L2σ2

2
+1)T .

• Example 1.4 (a) SA process. We also assume (2.11). We have rσ(t) = E
log(2+T−t) and

rb(t) = −L′ < 0, so

u(t) = (2L′ + 1)t+
L2E2

2

∫ t

0

1

log2(2 + s)
ds

= (2L′ + 1)t+
L2E2

2

[
li(s)− s

log s

]t+2

2

,

where li(t) :=
∫ t
0

1
log sds is the logarithmic integral. It is easy to see that for T

sufficiently large, u(T ) ≤ (2L′ + 1.1)T , and u(T ) − u(T − t) ≤ (2L′ + 1.1)t for all
0 ≤ t ≤ T . Thus, we get the bound

W2(pdata(·), XT ) ≤

√(
η2 +

ε2E2

2(2L′ + 1.1)

)
e(2L′+1.1))T − ε2E2

2(2L′ + 1.1)
. (2.13)

But the dependence of η = W2(p(T, ·), δx∗) in T seems to be hard. In practice, we
may try a simple U(·) (e.g. quadratic) and a suitable time-decaying σ(t).

• Example 1.4 (b) VE SDE. We have rσ(t) = σ2(t) with σ(t) defined by (1.21), and
rb(t) = 0, so

u(t) =
L2

2

∫ T

T−t
σ4(s)ds+ t =

L2σ4min

2T
log

σmax

σmin

((
σmax

σmin

) 4t
T

− 1

)
+ t.

Hanyang: There looks to be some calculation error here as I redo the computation,
the result should be

u(t) =
L2

2

∫ T

T−t
σ4(s)ds+ t =

L2σ4max

2T
log

σmax

σmin

(
1−

(
σmax

σmin

)− 4t
T

)
+ t.

but the inequality of u(T )− u(T − t) below is still right.

We have u(T )− u(T − t) ≤ t+
L2(σ4

max−σ4
min)

2T log σmax
σmin

. Therefore,

W2(pdata(·), XT ) ≤
(
η2
(
σmax

σmin

)L2

2T
(σ4

max−σ4
min)

eT +
2ε2

T (T + 4 log σmax
σmin

)(
log

σmax

σmin

)2(σmax

σmin

)L2

2T
(σ4

max−σ4
min)

(eTσ4max − σ4min)

) 1
2

.

(2.14)

• Example 1.4 (c) VP SDE. We have rσ(t) = β(t) and rb(t) = −1
2β(t), with β(t) defined

by (1.25) as:

β(t) := βmin +
t

T
(βmax − βmin) = βmax −

T − t
T

(βmax − βmin) =: γ(T − t),
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thus γ(0) = βmax, γ(t)− γ(0) = −βmax−βmin
T t and

u(t) =

∫ T

T−t

(
β(s) +

L2β2(s)

2

)
ds+ t =

∫ t

0

(
γ(s) +

L2γ2(s)

2

)
ds+ t

=

∫ t

0

(
(L2βmax + 1)(γ(s)− βmax) +

L2(γ(s)− βmax)2

2
+
L2β2max

2
+ βmax

)
ds+ t

=
L2βmax + 1

2
(γ(t)− βmax)t+

L2(γ(s)− βmax)2t

6
+

(
L2β2max

2
+ βmax + 1

)
t

=
L2(βmax − βmin)2t3

6T 2
− (L2βmax + 1)(βmax − βmin)

2T
t2 +

(
L2β2max

2
+ βmax + 1

)
t

thus u(T ) = C·T , where C = L2(βmax−βmin)
2

6 − (L2βmax+1)(βmax−βmin)
2 +

(
L2β2

max
2 + βmax + 1

)
.

Notice that rb(t) < 0, thus by the bound (2.3), we have:

W2(pdata(·), XT ) ≤
√

(η2 +
ε2

L2
)eC·T − ε2

L2
. (2.15)

We also compute the initialization error η as:

η ≤ Ex∼pdata(·)W2

(
N (e−

T
4
(βmax+βmin)x, (1− e−

T
2
(βmax+βmin))I),N (0, I)

)
= Ex∼pdata(·)

(
e−

T
2
(βmax+βmin)‖x‖2 + (1−

√
1− e−

T
2
(βmax+βmin))2 × n

) 1
2

(2.16)

• Example 1.4 (d) sub-VP SDE. We have rσ(t) = β(t)(1 − e−2
∫ t
0 β(s)ds) and rb(t) =

−1
2β(t), with β(t) defined by (1.25). It is easy to see that the error bound for the VP

SDE is also valid.
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3. Discretization Issues

We further investigate the discretization error imposed by the time discretization.

3.1. L2 error for general SDEs. We first focus on a general non-autonomous SDE result
for the L2 error presented by [17] for Euler-Maruyama approximation, defined as below:

For a given discretization 0 = t0 < t1 < · · · < tn < · · · < tN = T of the time interval
[0, T ] (not necessarily a uniform one), an Euler approximation is a continuous time stochastic
process Y = {Y (t), 0 ≤ t ≤ T} satisfying the iterative scheme

Yn+1 = Yn + b (tn, Yn) ∆n + σ (tn, Yn) ∆Wn, (3.1)

for n = 0, 1, 2, . . . , N − 1 with initial value Y0 = X0, and in (3.1) we denote Yn = Y (tn),
∆n = tn+1 − tn, and ∆Wn ∼ N (0,∆nI)

Denote δ = maxn ∆n, we have the following L2 error bound of the discretization error,
mainly revised from Theorem 10.2.2 of [17]:

Theorem 3.1. Suppose that E(|X0|2) < ∞ and assume the smoothness and the growth
condition as:

(i) |b(t, x)− b(t, y)| ≤ K|x− y|, |σ(t, x)− σ(t, y)| ≤ K|x− y|,
(ii) |b(t, x)|2 ≤ K2

(
1 + |x|2

)
, |σ(t, x)|2 ≤ K2

(
1 + |x|2

)
,

(iii) |b(s, x)− b(t, x)|+ |σ(s, x)− σ(t, x)| ≤ K(1 + |x|)|s− t|
1
2 ,

(3.2)

for all s, t ∈ [0, T ] and x, y ∈ Rn, where the constants K do not depend on δ. Then, for the
Euler approximation Y δ, we have

E

(∣∣∣XT − Y δ
T

∣∣∣2) ≤ K(T ) · δ. (3.3)

Proof. By Lemma A.3, we have:

E

(
sup
0≤s≤t

|Xs|2
)
≤ (4t+ 16)

{
E |X0|2 + (1 + E |X0|2)te(2K

2+1)t
}

(3.4)

Consider the Euler Approximation interpolated continuously by

Y δ
t = Y δ

n +

∫ t

tn

b
(
tn, Y

δ
n

)
ds+

∫ t

tn

σ
(
tn, Y

δ
n

)
dWs, (3.5)

for t ∈ [tn, tn+1] and n = 0, · · · , N − 1. By Lemma A.5, we have:

E

(
sup
0≤s≤t

|Ys|2
)
≤ (4t+ 16)

{
E |X0|2 + (1 + E |X0|2)te(2K

2+1)t
}
. (3.6)

(Proof to be finished) �

3.2. L2 error for time-dependent-only diffusion. For the time-dependent case σ(t, x) =
σ(t) which is of our interest to DPM, we can derive a sharper bound by the results of Theorem
10.3.5 of [17]:
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Theorem 3.2. Suppose that E(|X0|2) <∞ and under appropriate smoothness and the growth
condition of b(·, ·) and σ(·, ·) (stronger than (3.2)), then for the Euler approximation Y δ the
estimate

E

(∣∣∣XT − Y δ
T

∣∣∣2) ≤ K(T ) · δ2 (3.7)

holds, where the constant K(T ) does not depend on δ.

As a remark, actually for Theorem 3.1 and 3.2, both the error bound is uniform over T , i.e.
we actually have:

E

(
sup

0≤t≤T

∣∣∣Xt − Y δ
t

∣∣∣2) ≤ K5(T ) · δ (3.8)

for general case of the diffusion term and for an only time-dependent diffusion term,

E

(
sup

0≤t≤T

∣∣∣Xt − Y δ
t

∣∣∣2) ≤ K(T ) · δ2 (3.9)

which can be directly see from the proof.

3.3. Summarized Results for DPM.
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4. The power of contraction

Next we consider the discretization of the backward SDE (Xt, 0 ≤ t ≤ T ) defined by (1.38).
We show that under certain contraction assumptions, the constant K(T ) in the discretization
error derived in the previous section will ‘vanish’ and become a constant independent of T .

To simplify the presentation, we still focus on the time-dependent case σ(t, x) = σ(t). Fix

δ > 0 as the step size, and set tk := kδ for k = 0, . . . , N := T/δ. Let X̂0 = X0, and

X̂k := X̂k−1 + (−b(T − tk, X̂k−1)+a(T − tk−1)sθ(T − tk−1, X̂k−1))δ

+ σ(T − tk−1)(Btk −Btk−1
), for k = 1, . . . , N,

(4.1)

be the Euler-Maruyama discretization of X over [0, T ]. (Here Btk −Btk−1
can be realized as

N (0, δ).) By triangle inequality,

W2(pdata(·), X̂N ) ≤W2(pdata(·), XT ) +
(
E|XT − X̂N |2

) 1
2
, (4.2)

where in the second term on the right side X and X̂ are coupled (i.e. driven by the same
Brownian motion B). The term W2(pdata(·), XT ) has been studied in Theorem 2.2. In what

follows, we deal with the global discretization error
(
E|XT − X̂N |2

) 1
2
.

The key idea is to make the backward SDE (1.38) be “contractive”, so the discretiza-
tion error will not expand (or ampilify) over the time. To this end, we need some extra
assumptions.

Assumption 4.1. The following conditions hold:

(1) There exists Lσ > 0 such that |σ(t)− σ(t′)| ≤ Lσ|t− t′| for all t, t′.

(2) There exists Rσ > 0 such that rσ(t) ≤ Rσ.

(3) There exists Lb > 0 such that |b(t, x)− b(t′, x′)| ≤ Lb(|t− t′|+ |x−x′|) for all t, t′ and
x, x′.

(4) There exists Ls > 0 such that |sθ(t, x)− sθ(t′, x′)| ≤ Ls(|t− t′|+ |x− x′|) for all t, t′

and x, x′.

(5) There exists Rs > 0 such that |sθ(T, x)| ≤ Rs(1 + |x|) for all x.

Wenpin: Comment on these assumptions...

The analysis of the error
(
E|XT − X̂N |2

) 1
2

relies on the following lemmas. The lemma

below proves the contraction of the backward SDE X.

Assumption 4.2 (Contraction). There exists β > 0 such that∫ T

T−t
(rb(s)− Lr2σ(s)) ds ≥ βt, for all t, (4.3)

or simply

β := inf
0≤t≤T

(
rb(t)− Lr2σ(t)

)
> 0.
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Lemma 4.3. Let (X
x
t , 0 ≤ t ≤ T ) be defined by (1.38) with X

x
0 = x. Let Assumption 2.1

(1)–(3) and Assumption 4.2 (4) hold, then(
E|Xx

t −X
y
t |2
) 1

2 ≤
(
E|x− y|2

) 1
2 exp(−βt), for all t, (4.4)

where X
x

and X
y

be coupled, i.e. they are driven by the same Brownian motion with (dif-
ferent) initial values x and y respectively (x and y represent two random variables).

Proof. Recall that σ(t, x) = σ(t) does not depend on the state x. We have

d|Xx
s −X

y
s |2 = 2

(
X
x
s −X

y
s

)
·
(
− b(T − s,Xx

s ) + a(T − s)sθ(T − s,X
x
s )

+ b(T − s,Xy
s)− a(T − s)sθ(X

y
s)

)
ds.

Thus,

d

ds
E|Xx

s −X
y
s |2 = −2E

[
(X

x
s −X

y
s) · (b(T − s,X

x
s )− b(T − s,Xy

s))
]︸ ︷︷ ︸

(a)

+ 2E
[
(X

x
s −X

y
s)a(T − s)(sθ(T − s,X

x
s )− sθ(T − s,X

y
s))
]︸ ︷︷ ︸

(b)

.
(4.5)

By Assumption 2.1 (2), we get

(a) ≥ rb(T − s)E|X
x
s −X

y
s |2. (4.6)

By Assumption 2.1 (1)(3), we obtain

(b) ≤ Lr2σ(T − s)E|Xx
s −X

y
s |2. (4.7)

Combining (4.5), (4.6) and (4.7) yields

d

ds
E|Xx

s −X
y
s |2 ≤ −2(rb(T − s)− Lr2σ(T − s))E|Xx

s −X
y
s |2.

By Grönwall’s inequality, we have

E|Xx
s −X

y
s |2 ≤ E|x− y|2 exp

(
−2

∫ t

0
(rb(T − s)− Lr2σ(T − s))ds

)
,

which, by the condition (4.3), yields (4.4) �

Next we deal with the local (one-step) discretization error of the process X. Fixing t? ≤
T − δ, the (one-step) discretization of X starting at Xt? = x is:

X̂t?,x
1 = x+ (−b(T − t?, x) + a(T − t?)sθ(T − t?, x))δ + σ(T − t?)(Bt?+δ −Bt?). (4.8)

The following lemma provides an estimate of the local discretization error.

Lemma 4.4. Let (X
t?,x
t , t? ≤ t ≤ T ) be defined by (1.38) with X

t?,x
t? = x, and X̂t?,x

1 be given

by (4.8). Let Assumption 4.1 hold. Then for δ sufficiently small (i.e. δ ≤ δ for some δ < 1),
there exists C1, C2 > 0 independent of δ and x such that(

E|Xt?,x
t?+δ − X̂

t?,x
1 |2

) 1
2 ≤ (C1 + C2

√
E|x|2)

1
2 δ

3
2 , (4.9)
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|E(X
t?,x
t?+δ − X̂

t?,x
1 )| ≤ (C1 + C2

√
E|x|2)

1
2 δ

3
2 . (4.10)

Proof. For ease of presentation, we write Xt (resp. X̂1) for X
t?,x
t (resp. X̂t?,x

1 ). Without loss
of generality, set t? = 0. We have

Xδ = x+

∫ δ

0
−b(T − t,Xt) + a(T − t)sθ(T − t,Xt)dt+

∫ δ

0
σ(T − t)dBt,

X̂1 = x+

∫ δ

0
−b(T, x) + a(T )sθ(T, x)dt+

∫ δ

0
σ(T )dBt.

So

E|Xδ − X̂1|2

= E
∣∣∣∣ ∫ δ

0
b(T, x)− b(T − t,Xt)dt+

∫ δ

0
a(T − t)sθ(T − t,Xt)− a(T )sθ(T, x)dt

+

∫ δ

0
σ(T − t)− σ(T )dBt

∣∣∣∣2
≤ 3E

( ∣∣∣∣∫ δ

0
b(T, x)− b(T − t,Xt)dt

∣∣∣∣2 +

∣∣∣∣∫ δ

0
a(T − t)sθ(T − t,Xt)− a(T )sθ(T, x)dt

∣∣∣∣2
+

∣∣∣∣∫ δ

0
σ(T − t)− σ(T )dBt

∣∣∣∣2)
≤ 3

(
δ

∫ δ

0
E|b(T, x)− b(T − t,Xt)|2dt︸ ︷︷ ︸

(a)

+δ

∫ δ

0
E|a(T − t)sθ(T − t,Xt)− a(T )sθ(T, x)|2dt︸ ︷︷ ︸

(b)

+

∫ δ

0
|σ(T − t)− σ(T )|2dt︸ ︷︷ ︸

(c)

)
,

(4.11)
where we use the CauchySchwarz inequality and Itô’s isometry in the last inequality. By
Assumption 4.1 (1), we get

(c) ≤
∫ δ

0
L2
σt

2dt =
L2
σ

3
δ3. (4.12)

By Assumption 4.1 (3), we have

(a) ≤
∫ δ

0
2L2

b(t
2 + E|Xt − x|2)dt = 2L2

b

(
δ3

3
+

∫ δ

0
E|Xt − x|2dt

)
.

According to [16, Theorem 4.5.4], we have E|Xt − x|2 ≤ C(1 + E|x|2)teCt for some C > 0
(independent of x). Consequently, for t ≤ δ sufficiently small (bounded by δ < 1),

E|Xt − x|2 ≤ C ′(1 + E|x|2)t, for some C ′ > 0 (independent of δ, x).

We then get

(a) ≤ 2L2
b

(
δ3

3
+
C ′(1 + E|x|2)

2
δ2
)
≤ 2L2

b

(
1

3
+
C ′

2
+
C ′

2
E|x|2

)
δ2. (4.13)
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Similarly, we obtain by Assumption 4.1 (1)(2)(4)(5):

(b) ≤ C ′′(1 + E|x|2)δ2, for some C ′′ > 0 (independent of δ, x). (4.14)

Combining (4.11), (4.12), (4.13) and (4.14) yields the estimate (4.9).

Next we have

|E(Xδ − X̂1)|

=

∣∣∣∣E∫ δ

0
b(T, x)− b(T − t,Xt)dt+ E

∫ δ

0
a(T − t)sθ(T − t,Xt)− a(T )sθ(T, x)dt

∣∣∣∣
≤
∫ δ

0
E|b(T, x)− b(T − t,Xt)|dt+

∫ δ

0
E|a(T − t)sθ(T − t,Xt)− a(T )sθ(T, x)|dt

≤ C ′′′
∫ δ

0

(
t(1 + E|x|) + E|Xt − x|

)
dt

≤ C ′′′′(1 +
√

E|x|2)δ
3
2 , for some C ′′′′ > 0 (independent of δ, x).

where the third inequality follows from Assumption 4.1, and the last inequality is due to the

fact that E|Xt−x| ≤
(
E|Xt − x|2

) 1
2 ≤

√
C ′(1 + E|x|2)t. This yields the estimate (4.10). �

Now we state the result for the global discretization error E|XT − X̂N |2.

Theorem 4.5. Let (Xt, 0 ≤ t ≤ T ) be defined by (1.38), and (X̂k, 0 ≤ k ≤ N) be defined
by (4.1). Let Assumption 2.1 (1)–(3) and Assumption 4.1 hold. Then there exists C > 0
(independent of δ, T ) such that (

E|XT − X̂N |2
) 1

2 ≤ C
√
δ. (4.15)

Proof. The proof is split into four steps.

Step 1. Recall that tk = kδ for k = 0, . . . , N . Denote Xk := Xtk , and let

ek :=
(
E|Xk − X̂k|2

) 1
2
.

The idea is to build a recursion for the sequence (ek)k=0,...,N . Also write (X
t?,x
t , t? ≤ t ≤ T )

to emphasize that the reversed SDE (1.38) starts at X
t?,x
t? = x, so Xk+1 = X

tk,Xk

tk+1
. We have

e2k+1 = E
∣∣∣∣Xk+1 −X

tk,X̂k
tk+1

+X
tk,X̂k
tk+1

− X̂k+1

∣∣∣∣2
= E|Xk+1 −X

tk,X̂k
tk+1

|2︸ ︷︷ ︸
(a)

+E|Xtk,X̂k
tk+1

− X̂k+1|2︸ ︷︷ ︸
(b)

+2E
[
(Xk+1 −X

tk,X̂k
tk+1

)(X
tk,X̂k
tk+1

− X̂k+1)

]
︸ ︷︷ ︸

(c)

.

(4.16)

Step 2. We analyze the term (a) and (b). By Lemma 4.3 (the contraction property), we get

(a) = E|Xtk,Xk

tk+1
−Xtk,X̂k

tk+1
|2 ≤ e2k exp(−2βδ). (4.17)
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By (4.9) (in Lemma 4.4), we have

(b) ≤
(
C1 + C2E|X̂k|2

)
δ3. (4.18)

Step 3. We analyze the cross-product (c). By splitting

Xk+1 −X
tk,X̂k
tk+1

= (Xk − X̂k) +

[
(Xk+1 −Xk)− (X

tk,X̂k
tk+1

− X̂k)

]
︸ ︷︷ ︸

:=dδ(Xk,X̂k)

,

we obtain

(c) = E
[
(Xk − X̂k)(X

tk,X̂k
tk+1

− X̂k+1)

]
︸ ︷︷ ︸

(d)

+E
[
dδ(Xk, X̂k)(X

tk,X̂k
tk+1

− X̂k+1)

]
︸ ︷︷ ︸

(e)

. (4.19)

For the term (d), we have

(d) = E
[
(Xk − X̂k)E(X

tk,X̂k
tk+1

− X̂k+1|Fk)
]

≤ ek
(
E|E(X

tk,X̂k
tk+1

− X̂k+1|Fk)|2
) 1

2

≤ ek
(
C1 + C2

√
E|X̂k|2

)
δ

3
2 ,

(4.20)

where we use the tower property (of the conditional expectation) in the first equation, the
Cauchy-Schwarz inequality in the second inequality, and (4.10) in the final inequality. Ac-

cording to [21, Lemma 1.3], there exists C0 > 0 (independent of δ, X̂k) such that(
Ed2δ(Xk, X̂k)

) 1
2 ≤ C0ek

√
δ. (4.21)

Thus,

(e) ≤
(
Ed2δ(Xk, X̂k

) 1
2

(
E|Xtk,X̂k

tk+1
− X̂k+1|2

) 1
2

≤ C0ek

(
C1 + C2

√
E|X̂k|2

)
δ2.

(4.22)

where we use (4.9) and (4.21) in the last inequality. Combining (4.19), (4.20) and (4.22)
yields for δ sufficiently small,

(c) ≤ ek
(
C ′1 + C ′2

√
E|X̂k|2

)
δ

3
2 , for some C ′1, C

′
2 > 0 (independent of δ, X̂k). (4.23)

Step 4. Combining (4.16) with (4.17), (4.18) and (4.23) yields

e2k+1 ≤ e2k exp(−2βδ) +
(
C1 + C2E|X̂k|2

)
δ3 + ek

(
C ′1 + C ′2

√
E|X̂k|2

)
δ

3
2 .
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A standard argument shows that Lemma 4.3 (the contraction property ) implies E|Xt|2 ≤ C
for some C > 0. Thus, E|X̂k|2 ≤ 2(C + e2k). As a result, for δ sufficiently small,

e2k+1 ≤ e2k
(

1− 3

4
βδ

)
+D1δ

3 +D2e
2
k

(
δ3 + δ

3
2

)
+D3ekδ

3
2 , (4.24)

for some D1, D2, D3 > 0 (independent of δ). Note that

D2e
2
k

(
δ3 + δ

3
2

)
≤ 1

4
e2kβδ, for δ sufficiently small,

and

D3ekδ
3
2 ≤ 1

4
e2kβδ +

2D2
3

β
δ2.

Thus, the estimate (4.24) leads to

e2k+1 ≤ e2k
(

1− 1

4
βδ

)
+Dδ2, for some D > 0 (independent of δ). (4.25)

Unfolding the inequality (4.25) yields the estimate (4.15). �

As a remark, if we can improve the estimate in (4.10):

|E(X
t?,x
t?+δ − X̂

t?,x
1 )| ≤ (C1 + C2

√
E|x|2)

1
2 δ2, (4.26)

(i.e. δ2 local error instead of δ
3
2 ), then the discretization error is Cδ.

Now by (4.2), Theorem 2.2 and Theorem 4.5, we have

W2(pdata(·), X̂N ) ≤W2(pdata(·), XT ) + C
√
δ, (4.27)

where a bound for W2(pdata(·), XT ) is given by (2.2) or (2.3). The term W2(pdata(·), XT )
depends on T , and may decay (exponentially) in T as discussed in Section 2. The discretiza-

tion error C
√
δ is now independent of T – it is an “infill” discretization error (by fixing the

horizon T ). If we choose
N = T γ steps with γ > 1,

then δ = T 1−γ . The discretization error scales as T−
γ−1
2 = N

− γ−1
2γ , which is roughly N−

1
2

for large γ.

Note that as mentioned before, if we can improve the estimate in (4.10):

|E(X
t?,x
t?+δ − X̂

t?,x
1 )| ≤ (C1 + C2

√
E|x|2)

1
2 δ2, (4.28)

(i.e. δ2 local error instead of δ
3
2 ), then the discretization error is Cδ. In this case, the error

scales as N
− γ−1

γ , which is roughly 1/N for large γ.
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5. Examples and Experiments

We consider some concrete examples which may lead to the contraction property of the
reversed SDE. There’s an issue justifying the key assumption Assumption 4.2, as typically
we do not know L thus we could not verify (4.4). But a necessary condition implied by (4.4)
is that there exists inft∈[0,T ] rb(t) > 0. Recall that rb(t) such that:

(x− x′) · (b(t, x)− b(t, x′)) ≥ rb(t)|x− x′|2 for all 0 ≤ t ≤ T

(a) ‘Reverse’ Orstein-Ulenback (OU) process b(t, x) = θ(x − µ) with θ > 0, µ ∈ Rn and
σ(t) ≡ σ. Given X0 = x, the distribution of XT is

p(T, ·;x) = N (µ+ (x− µ)eθT ,
σ2

2θ
(e2θT − 1)I), (5.1)

which enables us to conduct exact sampling.
(b) ‘Reverse’ Variance preserving (VP) SDE [27]. Let

β(t) := βmin +
t

T
(βmax − βmin), with βmin � βmax. (5.2)

Set

σ(t) =
√
β(t) and b(t, x) =

1

2
β(t)x, (5.3)

By applying Itô’s formula to e−
1
2

∫ t
0 β(s)dsXt, we get the distribution of Xt given X0 =

x:

p(t, ·;x) = e
1
2

∫ t
0 β(s)dsN

(
x, (1− e−

∫ t
0 β(s)ds)I

)
= N

(
e

1
2

∫ t
0 β(s)dsx, (e

∫ t
0 β(s)ds − 1)I

)
= N

(
e
t2

4T
(βmax−βmin)+

t
2
βminx, (e

t2

2T
(βmax−βmin)+tβmin − 1)I

)
.

(5.4)

Thus, p(T, ·;x0) = N (e
T
4
(βmax+βmin)x0, (e

T
2
(βmax+βmin) − 1)I).

(c) ‘Reverse’ sub-variance preserving (Sub VP) SDE [27]. Let β(t) be defined by (1.25).
Set

σ(t) =

√
β(t)(e2

∫ t
0 β(s)ds − 1) and b(t, x) =

1

2
β(t)x. (5.5)

Let

γ(t) := e2
∫ t
0 β(s)ds = e

t2

T
(βmax−βmin)+2tβmin , (5.6)

so σ(t) =
√
β(t)(γ(t)− 1). The same reasoning as in (b) shows that given X0 = x,

the distribution of Xt is

p(t, ·;x) = N
(
e

1
2

∫ t
0 β(s)dsx, (e

∫ t
0 β(s)ds − 1)2I

)
= N

(
e
t2

4T
(βmax−βmin)+

t
2
βminx, (e

t2

2T
(βmax−βmin)+tβmin − 1)2I

) (5.7)
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The backward procedure of the VP SDE is

dXt =

(
1

2
β(T − t)Xt + β(T − t)(1− γ(T − t))∇ log p(T − t,Xt)

)
dt

+
√
β(T − t)(1− γ(T − t))dBt,

with X0 ∼ N
(
e
T
4
(βmax+βmin)x, (e

T
2
(βmax+βmin) − 1)2I

)
, x ∼ pdata(·),

(5.8)
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6. Literature Review

We briefly review some key assumptions and bounds developed in recent works for the the-
oretical analysis of DPMs. We limit the analysis to diffusion instead of latent diffusion first.
We also focus on the direct analysis for [27], with an earlier analysis on SGM like [3].

6.1. TV distance with L∞ error. The first quantitative convergence results for the method-
ology of [27] is [7] (extra assumptions on time-homogeneous diffusion term contrary to the
exact form of [27]), which provides the TV distance bound with respect to the horizon length
T under a L∞ score matching error. The precise result is listed as below.

Theorem 6.1. Assume that b(t, x) = −αx for α ≥ 0 with a constant diffusion term σ(t, x) =
I wlog. Further assume that there exists M ≥ 0 such that for any t ∈ [0, T ] and x ∈ Rd

‖sθ?(t, x)−∇ log pt(x)‖ ≤ ε,

with sθ? ∈ C
(
[0, T ]× Rd,Rd

)
. Assume that pdata ∈ C3

(
Rd, (0,+∞)

)
is bounded and that

there exist d1, A1, A2, A3 ≥ 0, β1, β2, β3 ∈ N and m1 > 0 such that for any x ∈ Rd and
i ∈ {1, 2, 3}∥∥∇i log pdata (x)

∥∥ ≤ Ai (1 + ‖x‖βi
)
, 〈∇ log pdata (x), x〉 ≤ −m1‖x‖2 + d1‖x‖, (6.1)

with β1 = 1. Then for any α ≥ 0, there exist Bα, Cα, Dα ≥ 0 such that for any N ∈ N
and {γk}Nk=1 with γk > 0 for any k ∈ {1, . . . , N} denoting the EulerMaruyama discretization

parameters such that T =
∑N

k=1 γk, γ̄ = supk∈{1,...,N} γk, the following bounds on the total
variation distance hold:
(a) if α > 0, we have

∥∥L (X̄T

)
− pdata

∥∥
TV
≤ Cα

(
ε+ γ̄1/2

)
exp [DαT ] +Bα exp

[
−α1/2T

]
;

(b) if α = 0, we have
∥∥L (X̄T

)
− pdata

∥∥
TV
≤ C0

(
ε+ γ̄1/2

)
exp [D0T ] + B0

(
T−1 + T−1/2

)
;

in which L
(
X̄T

)
denotes the true distribution of X̄T after descritization and score-matching

error.

Proof. A sketch of proof is that we bound the distance by two terms through the following
inequality:

‖L
(
X̄T

)
− pdata‖TV ≤ ‖L

(
X̄T

)
− X̄T ‖TV + ‖X̄T − pdata‖TV (6.2)

≤ ‖L
(
X̄T

)
− X̄T ‖TV︸ ︷︷ ︸

(a)

+ ‖X̄0 −XT ‖TV︸ ︷︷ ︸
(b)

, (6.3)

in which the second inequality follows from the data processing inequality (for the TV dis-
tance) that:

‖µ0P− µ1P‖TV ≤ ‖µ0 − µ1‖TV

for any distribution µ0, µ1 and markov transition kernel P. The bound of term (a) relies on
the Girsanov’s Theorem (Theorem 7.7 of [19]) which leads to the final bound that

(a) ≤ C3 exp [C3T ]
(
γ̄ + M2

)
,

which is independent of α and the bound of term (b) is controlled through the mixing
properties, whose proof is reminiscent of [2]. �



24 WENPIN TANG

We briefly comment on the intuition of the assumptions in Theorem 6.1. The main assump-
tion (6.1), in addition to the bounded L∞ error, can be shown to lead to:∥∥∥∇` log pt (xt)

∥∥∥ ≤ D`

(
1 + ‖xt‖β`

)
for any t and the certain continuity property of ∇` log pt (·) in order to finally satisfy the con-
dition of applying Girsanov’s Theorem, and thus bounding the term (a). In addition, since
(a) is a composition of the discretization error and the score-matching error, it is possible
that we divide the error into two parts which may improve the bound, which not surprisingly
is captured by later analysis.

6.2. TV distance with L2 error. The [5] provides a quite similar argument of the DDPM
case [13] for the TV distance under a L2 error. Moreover, [5] indeed divide the error term
(a) into two parts corresponding to the discretization error and convergence error, as we
commented before. Again the paper assumes that the diffusion term is a constant with σ ≡ I
(although the paper’s author claimed that it could be extended to general case, e.g. VE-SDE
or VP-SDE) and n = d, the dimension of data is same as the dimension of the brownian
motion. The key assumptions of [5] are:

Aspt 1 (Lipschitz score). For all t ≥ 0, the score ∇ ln qt is L-Lipschitz.

Aspt 2 (second moment bound). For some η > 0,Eq
[
‖ · ‖2+η

]
is finite.

Aspt 3 (regular starting distribution). For all k = 1, ..., N,Eqkh
[
‖skh −∇ ln qkh‖2

]
≤ ε2score

Aspt 4 (score estimation error). The data distribution q has finite KL divergence w.r.t.
the standard Gaussian, i.e. KL

(
q‖γd

)
<∞.

Again the assumptions 1 and 2 are essentially used to bound the discretization error.

Theorem 6.2. Let L
(
X̄T

)
denotes the true distribution of X̄T after discretization and score-

matching error, and suppose that the step size h := T/N satisfies h . 1/L, where L ≥ 1.
Then, it holds that

TV (pT , q) .
√

KL (q‖γd) exp(−T )︸ ︷︷ ︸
convergence of forward process

+
(
L
√
dh+ Lm2(q)h

)√
T︸ ︷︷ ︸

discretization error

+ εscore
√
T︸ ︷︷ ︸

score estimation error

.

Notably Corollary 6 of [5] provides a Wasserstein 2 bound given the bounded support as-
sumption.

6.3. Wasserstein-1 distance with maniford hypothesis.

6.4. Ignoring error. With existing works like [6, 18], assuming an oracle of the score func-
tion with no matching error.
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7. Min-Max Optimal Rate for the diffusion models

8. Constrained Domains

Discuss other approaches, e.g. [7]; diffusion models in constraint domains [9], on the simplex
[8, 24] and reflected diffusion models [20]. These are related to constrained diffusions with
the stationary distribution of exponential form.
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Appendix A. Lemmas and Proofs

Lemma A.1 (Grönwall’s inequality). Let α, β : [t0, T ]→ R be integrable with

0 ≤ α(t) ≤ β(t) + L

∫ t

t0

α(s)ds

for t ∈ [t0, T ] where L > 0. Then

α(t) ≤ β(t) + L

∫ t

t0

eL(t−s)β(s)ds

for t ∈ [t0, T ].

Lemma A.2 (Doob’s inequality). A right-continuous martingale X = {Xt, t ≥ 0} with finite
p th-moment satisfies the Doob’s inequality:

E

(
sup
0≤s≤t

|Xt|p
)
≤
(

p

p− 1

)p
E (|Xt|p) .

Lemma A.3 (Theorem 4.5.4 and 4.5.5 of [16]). Suppose that for all t ∈ [0, T ] and x, y ∈ R,
there exists a constant K > 0 such that

|b(t, x)− b(t, y)| ≤ K|x− y|, |σ(t, x)− σ(t, y)| ≤ K|x− y|

and

|b(t, x)|2 ≤ K2
(
1 + |x|2

)
, |σ(t, x)|2 ≤ K2

(
1 + |x|2

)
.

Further, assume that

E |X0|2 <∞,
then we have the following second moment estimate and uniform second moment estimate of
the solution Xt of (1.1) satisfies

E |Xt|2 ≤
(

1 + E |X0|2
)
e(2K

2+1)·t (A.1)

for t ∈ [0, T ] and

E

(
sup

0≤s≤T
|Xs|2

)
≤ (4T + 16)

{
E |X0|2 + (1 + E |X0|2)Te(2K

2+1)T
}
. (A.2)

Proof. We first prove (A.1). By Ito’s formula:

d|Xt|2 = 2Xt · (b(t,Xt)dt+ σ(t,Xt)dBt) + |σ(t, x)|2dt

thus integrating from 0 to t and taking expectation, we have

E|Xt|2 = E|X0|2 +

∫ t

0

(
2Xs · b(s,Xs) + |σ(t, x)|2

)
dt

≤ E|X0|2 +

∫ t

0

(
(K2 + 1)

(
1 + |Xs|2

)
+K2

(
1 + |Xs|2

))
dt

≤ E|X0|2 + (2K2 + 1)t+ (2K2 + 1)

∫ t

0
E|Xs|2ds.
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By applying the Grönwall’s inequality, we have:

E|Xt|2 ≤ E|X0|2 + (2K2 + 1)t+ (2K2 + 1)

∫ t

0
e(2K

2+1)(t−s) (E|X0|2 + (2K2 + 1)s
)
ds

= E|X0|2 + (2K2 + 1)t+ E|X0|2(e(2K
2+1)t − 1)− (2K2 + 1)t− 1 + e(2K

2+1)t

≤ (1 + E|X0|2)e(2K
2+1)t,

which yields (A.1). To prove (A.2), notice that

Yt := Xt −
∫ t

0
b(s,Xs)ds−X0

is a martingale, thus by Doob’s inequality:

E

(
sup

0≤t≤T
|Yt|2

)
≤ 4E

(
|YT |2

)
.

By Itô’s isometry, we have that the right hand side:

E
(
|YT |2

)
= E(

∫ T

0
|σ(s,Xs)|2ds) ≤ E(

∫ T

0
K2(1 + |Xs|2)ds).

By using the growth condition and (A.1):

E(

∫ T

0
K2(1 + |Xs|2)ds) ≤ K2T +K2

∫ T

0
(1 + E|X0|2)e(2K

2+1)tds

≤ K2T +
1

2
(1 + E|X0|2)

(
e(2K

2+1)T − 1
)

≤ (1 + E|X0|2)
(
e(2K

2+1)T − 1
)

Also notice that:

sup
0≤t≤T

|Xt|2 = sup
0≤t≤T

∣∣∣∣Yt +

∫ t

0
b(s,Xs)ds+X0

∣∣∣∣2
≤ 4

(
sup

0≤t≤T
|Yt|2 + sup

0≤t≤T

∣∣∣∣∫ t

0
b(s,Xs)ds

∣∣∣∣2
)

+ 2|X0|2

≤ 4

(
sup

0≤t≤T
|Yt|2 +

(∫ T

0
|b(s,Xs)|ds

)2
)

+ 2|X0|2

≤ 4

(
sup

0≤t≤T
|Yt|2 + T

∫ T

0
|b(s,Xs)|2ds

)
+ 2|X0|2

Thus taking the expectation on both sides and using the growth condition:

E

(
sup

0≤t≤T
|Xt|2

)
≤ 16E |Yt|2 + 4T

∫ T

0
K2(1 + E|Xs|2)ds+ 2E

(
|X0|2

)
≤ (4T + 16)

{
E |X0|2 + (1 + E |X0|2)Te(2K

2+1)T
}

which concludes our proof. �
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Lemma A.4. Let Yt defined as in (3.5) and further denote

Rs = (A.3)

Proof. The result is a direct corollary pf [16, Lemma 10.8.1] when `(α) = n(α) = 1 and
`(α) = 1, n(α) = 0. �

Lemma A.5. Suppose the same conditions as in Lemma A.3, then we have that Yt defined
in (3.5) satisfies

E |Yt|2 ≤
(

1 + E |X0|2
)
e(2K

2+1)·t (A.4)

for t ∈ [0, T ] and

E

(
sup

0≤s≤T
|Ys|2

)
≤ (4T + 16)

{
E |X0|2 + (1 + E |X0|2)Te(2K

2+1)T
}

(A.5)

Proof. �
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