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Abstract
We develop a continuous-time control approach to
optimal trading in a Proof-of-Stake (PoS) blockchain,
formulated as a consumption-investment problem that
aims to strike the optimal balance between a partici-
pant’s (or agent’s) utility from holding/trading stakes
and utility from consumption. We present solutions
via dynamic programming and the Hamilton–Jacobi–
Bellman (HJB) equations. When the utility functions
are linear or convex, we derive close-form solutions
and show that the bang-bang strategy is optimal (i.e.,
always buy or sell at full capacity). Furthermore, we
bring out the explicit connection between the rate of
return in trading/holding stakes and the participant’s
risk-adjusted valuation of the stakes. In particular, we
show when a participant is risk-neutral or risk-seeking,
corresponding to the risk-adjusted valuation being a
martingale or a sub-martingale, the optimal strategy
must be to either buy all the time, sell all the time, or
first buy then sell, and with both buying and selling
executed at full capacity. We also propose a risk-control
version of the consumption-investment problem; and
for a special case, the “stake-parity” problem, we show
a mean-reverting strategy is optimal.
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2 TANG and YAO

1 INTRODUCTION

As a digital exchange vehicle, blockchain technology has been successfully deployed in many
applications including cryptocurrency Nakamoto (2008), healthcare Donovan (2019), supply
chain Chod et al. (2020), electoral votingWood (2018), and non-fungible tokensWang et al. (2021).
A blockchain is a growing chain of accounting records, called blocks, which are jointlymaintained
by participants of the system using cryptography. Consider for instance Bitcoin – a peer-to-peer
decentralized payment system. In contrast to traditional payment processing networks, Bitcoin
provides a permissionless environment in which everyone is free to participate. At the core of Bit-
coin is the consensus protocol known as Proof of Work (PoW), in which “miners” compete with
each other by solving a hashing puzzle so as to validate an ever-growing log of transactions (the
“longest chain”) to update a distributed ledger; and the miner who solves the puzzle first receives
a reward (a number of coins). Thus, while the competition is open to all participants, the chance
of winning is proportional to a miner’s computing power.

Despite its popularity, the PoW protocol has some obvious drawbacks. Competition among
miners has led to exploding levels of energy consumption in Bitcoin mining, (Mora et al.,
2018; Platt et al., 2021). Alsabah and Capponi (2020); Arnosti and Weinberg (2022); Chiu and
Koeppl (2017) pointed out that PoW mining will lead to centralization, violating the core tenet of
decentralization. To solve the problem of energy efficiency, King and Nadal (2012); Wood (2014)
introduced another consensus protocol – Proof of Stake (PoS), which is a bidding mechanism to
select a miner to validate the new block. Participants who choose to join the bidding process are
required to commit certain stakes (coins they own), and the winning probability is proportional
to the stakes committed. Hence, a participant in a PoS blockchain is a “bidder”, and only the win-
ning bidder becomes the miner who does the validation. As yet the PoS protocol has not been as
popular as PoW. However, it is catching up quickly, and blockchain developers have strong incen-
tives to switch from a PoW to a PoS ecosystem. A prominent case in this direction is Ethereum 2.0,
where two parallel chains –Mainnet (PoW) and Beacon Chain (PoS) are expected soon to merge
into one unified PoS blockchain Duggan and Powell (2022).

There has been an active stream of recent studies on PoS in the research literature; and here
we briefly mention several that relate closely to our study. In Saleh (2021) it is shown that the
PoS protocol is “without waste” from an economic standpoint. Issues of stability and decentral-
ization of the PoS protocol are examined in Roşu and Saleh (2021); Tang (2022). Specifically, it
is shown in Roşu and Saleh (2021) that for large owners of initial wealth in a PoS system their
shares of the total wealth will remain stable in the long run (i.e., proportions to the total wealth
will remain constant), and hence the rich-get-richer phenomenon will not happen. Tang (2022)
further extends this to medium and small participants, and reveals a phase transition in share sta-
bility among those different types of participants. In Roşu and Saleh (2021); Tang and Yao (2022),
various aspects of the consumption-investment problem in PoS are examined, and certain condi-
tions are identified under which a participant may have no incentive to trade with others. This
leads to the complementing question, given a participant does prefer to trade, what is the optimal
trading strategy?

Motivated by the above question, the objective of our study here is to develop a continuous-
time control approach to optimal trading in a PoS blockchain. While the control (or game)
approach has been proposed in previous studies Bertucci et al. (2020, 2022); Li et al. (2019), they
are all for the PoWprotocol. To the best of our knowledge, ours is the first controlmodel developed
for optimal trading under the PoS protocol.
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TANG and YAO 3

Here is an overview of our main results. We first formulate the consumption-investment prob-
lem, which aims to strike a balance between a participant’s utility from holding/trading stakes
and utility from consumption. It takes the form of a deterministic control problem with the real-
time trading strategy being the control variable. We start with a detailed analysis on a special
case that we call the “stake-hoarding” problem (Proposition 3.1), where we bring out the possible
scenario of monopoly. We then solve the general consumption-investment problem via dynamic
programming and the Hamilton–Jacobi–Bellman (HJB) equations (Theorem 3.4).

When the utility functions are linear or convex, more explicit solutions can be obtained, and
we show that the bang–bang control is optimal, that is, always buy or sell at full capacity (Proposi-
tions 4.1 and 4.3). Along with the optimal trading strategy, we are also able to bring out the explicit
connection between the rate of return in trading/holding stakes and the participant’s risk-adjusted
valuation of the stakes. In other words, the participant’s risk sensitivity is explicitly accounted
for in the trading strategy. In particular, when a participant is risk-neutral or risk-seeking, cor-
responding to the risk-adjusted valuation being a martingale or a sub-martingale, the optimal
strategy must be either buy all the time, sell all the time, or first buy then sell (with both buying
and selling executed at full capacity).

Finally, we propose a risk control version of the consumption-investment problem, by adding
a penalty term to control the level of stake holding so as to reduce the level of concentration
risk (Theorem 5.1). A special case is a “stake-parity” problem, where the participant’s holding is
controlled at a level that tries to track the system-wide average.We show that the “mean-reverting”
strategy is the optimal solution to the stake-parity problem (Proposition 5.2).

The rest of the paper is organized as follows. Section 2 details the formulation of the
consumption-investment problem under the PoS protocol. Section 3 presents the optimal solution
to the problem, and Section 4 focuses on the special case of linear and convex utility functions.
Section 5 presents extensions to risk-control objectives. Concluding remarks are summarized in
Section 6.

2 MODEL FORMULATION

This section introduces the problem of trading under the PoS protocol in continuous time, and
formulate a control model to solve the problem. First, collected below are some conventions that
will be used throughout this paper.

– ℝ denotes the set of real numbers, and ℝ+ denotes the set of nonnegative real numbers.
– For 𝑥, 𝑦 ∈ ℝ, 𝑥 ∧ 𝑦 denotes the smaller number of 𝑥 and 𝑦; 𝑥 ∨ 𝑦 denotes the larger number of
𝑥 and 𝑦.

– The symbol 𝑥 = 𝑜(𝑦)means 𝑥
𝑦
decays towards zero as 𝑦 → ∞.

– For a random variable 𝑋, 𝔼(𝑋) denotes the expectation of 𝑋.
– Let Ω be a subset of ℝ. A function 𝑓 ∈ 𝑘(Ω) if it is 𝑘-time continuously differentiable in Ω.
– For 𝑓 ∈ 1([0, 𝑇]), 𝑓′(𝑡) denotes the derivative of 𝑓. For 𝑓 ∈ 1([0, 𝑇] × Ω), 𝜕𝑡𝑓 (resp. 𝜕𝑥𝑓)
denotes the partial derivative of 𝑓 with respect to 𝑡 (resp. 𝑥).

Time is continuous, indexed by 𝑡 ∈ [0, 𝑇], for a fixed 𝑇 > 0 representing the length of a finite
horizon. Let {𝑁(𝑡), 0 ≤ 𝑡 ≤ 𝑇} (with 𝑁(0) ∶= 𝑁) denote the process of the total volume of stakes,
which are issued over time by the PoS protocol, and can be either deterministic or stochastic. For
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4 TANG and YAO

ease of presentation, we consider a deterministic process 𝑁(𝑡), which is increasing in time and
sufficiently smooth, with the derivative 𝑁′(𝑡) representing the instantaneous rate of “reward” –
additional stakes (or “coins”) injected into the system specified (exogenously) by the PoS protocol.
For instance, we will consider below, as a special case, the process 𝑁(𝑡) of a polynomial form:

𝑁𝛼(𝑡) = (𝑁
1

𝛼 + 𝑡)𝛼, 𝑡 ≥ 0. (1)

Then, 𝑁′𝛼(𝑡) = 𝛼(𝑁
1

𝛼 + 𝑡)𝛼−1, and 𝑁′′𝛼 (𝑡) = 𝛼(𝛼 − 1)(𝑁
1

𝛼 + 𝑡)𝛼−2, so the parametric family (1)
covers different rewarding schemes according to the values of 𝛼.

∙ For 0 < 𝛼 < 1, we have 𝑁′′𝛼 (𝑡) < 0 so the process 𝑁𝛼(𝑡) corresponds to a decreasing reward
(e.g., Bitcoin);

∙ For 𝛼 = 1, the process 𝑁1(𝑡) = 𝑁 + 𝑡 gives a rate one constant reward (e.g., Blackcoin);
∙ For 𝛼 > 1, we get 𝑁′′𝛼 (𝑡) > 0 and hence, the process 𝑁𝛼(𝑡) amounts to an increasing reward
(e.g., EOS).

Let 𝐾 ≥ 2 denote the total number of participants in the system, who are indexed by 𝑘 ∈
[𝐾] ∶= {1, … , 𝐾}. For each participant 𝑘, let {𝑋𝑘(𝑡), 0 ≤ 𝑡 ≤ 𝑇} (with 𝑋𝑘(0) = 𝑥𝑘) denote the pro-
cess of the number of stakes that participant 𝑘 holds, with 𝑋𝑘(𝑡) ≥ 0 and ∑𝐾𝑘=1 𝑋𝑘(𝑡) = 𝑁(𝑡) for
all 𝑡 ∈ [0, 𝑇]. In the (discrete-time) PoS protocol, in each round of the bidding process, individ-
ual participants commit stakes so as to be selected to validate the block and receive a reward;
and the winning probability is 𝑋𝑘(𝑡)∕𝑁(𝑡) for participant 𝑘, that is, proportional to the number
of stakes committed. (For instance, each round in Ethereum takes about 10 s, corresponding to
the block-generation time Buterin (2014).) For our continuous-time PoSmodel here, in which the
time required for each round of voting is “infinitesimal,” imagine there are𝑀 rounds of bidding
during any given time interval [𝑡, 𝑡 + Δ𝑡]. In each round participant 𝑘 gets either some stake(s)
or nothing; so the average total number of stakes 𝑘 will get over the𝑀 rounds is (by law of large
numbers when𝑀 is large),

𝑋𝑘(𝑡)

𝑁(𝑡)

𝑁′(𝑡)Δ𝑡

𝑀
⏟⎴⎴⎴⏟⎴⎴⎴⏟

average number of stakes in each round

× 𝑀
⏟⏟⏟

number of rounds

=
𝑋𝑘(𝑡)

𝑁(𝑡)
𝑁′(𝑡)Δ𝑡.

Hence, replacing Δ𝑡 by the infinitesimal 𝑑𝑡, we know participant 𝑘 will receive (on average)
𝑋𝑘(𝑡)

𝑁(𝑡)
𝑁′(𝑡)𝑑𝑡 stakes, where 𝑋𝑘(𝑡)

𝑁(𝑡)
is 𝑘’s winning probability, and 𝑁′(𝑡)𝑑𝑡 is the reward issued by

the blockchain in [𝑡, 𝑡 + 𝑑𝑡].
Participants are allowed to trade (buy or sell) their stakes. Participant 𝑘will buy 𝜈𝑘(𝑡)𝑑𝑡 stakes

in [𝑡, 𝑡 + 𝑑𝑡] if 𝜈𝑘(𝑡) > 0, and sell−𝜈𝑘(𝑡)𝑑𝑡 stakes if 𝜈𝑘(𝑡) < 0. This leads to the following dynamics
of participant 𝑘’s stakes under trading:

𝑋′
𝑘
(𝑡) = 𝜈𝑘(𝑡) +

𝑁′(𝑡)

𝑁(𝑡)
𝑋𝑘(𝑡) for 0 ≤ 𝑡 ≤ 𝜏𝑘 ∧ 𝑇 ∶= 𝑘, (2)

where 𝜏𝑘 ∶= inf {𝑡 > 0 ∶ 𝑋𝑘(𝑡) = 0} is the first time at which the process 𝑋𝑘(𝑡) reaches zero. It is
reasonable to stop the trading process if a participant runs out of stakes, or gets all available stakes:

 14679965, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/m

afi.12403 by C
olum

bia U
niversity L

ibraries, W
iley O

nline L
ibrary on [11/06/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



TANG and YAO 5

∙ If 𝑘 = 𝜏𝑘, then participant 𝑘 liquidates all his stakes by time 𝜏𝑘, and 𝑋𝑘(𝑘) = 0;
∙ If 𝑘 = max𝑗≠𝑘 𝜏𝑗 , then participant 𝑘 gets all issued stakes by time max𝑗≠𝑘 𝜏𝑗 , and hence
𝑋𝑘(𝑘) = 𝑁(𝑘).

We set 𝑋𝑘(𝑡) = 𝑋𝑘(𝑘) for 𝑡 > 𝑘.
The problem is for each participant 𝑘 to decide how to trade stakes with others under the

PoS protocol. Let {𝑃(𝑡), 0 ≤ 𝑡 ≤ 𝑇} be the price process of each (unit of) stake, which is a stochas-
tic process assumed to be independent of the dynamics in (2). (This assumption has appeared in
recent studies (e.g., Roşu and Saleh (2021)), and is somehow a reflection of the reality that the
crypto price tends to be affected by market shocks such as macroeconomics, geopolitics, breaking
news, and so on much more than by trading activities.) Here, the price 𝑃(𝑡) of each stake is mea-
sured in terms of an underlying risk-free asset (referred to as “cash” for simplicity); and let 𝑏𝑘(𝑡)
denote the (units of) risk-free asset that participant 𝑘 holds at time 𝑡, and let 𝑟 > 0 denote the risk-
free (interest) rate. Also note that all 𝐾 participants are allowed to trade stakes (with cash) only
internally among themselves, whereas each participants can only exchange cash with an external
source (say, a bank).
The decision for each participant 𝑘 at 𝑡 is hence a tuple (𝜈𝑘(𝑡), 𝑏𝑘(𝑡)). Let {𝑐𝑘(𝑡), 0 ≤ 𝑡 ≤ 𝑇} be

the process of consumption, or cash flow of participant 𝑘, which follows the dynamics below:

𝑑𝑐𝑘(𝑡) = 𝑟𝑏𝑘(𝑡)𝑑𝑡 − 𝑑𝑏𝑘(𝑡) − 𝑃(𝑡)𝜈𝑘(𝑡)𝑑𝑡, 0 ≤ 𝑡 ≤ 𝑘; (C1)

with

𝑏𝑘(0) = 0, 𝑏𝑘(𝑡) ≥ 0 for 0 ≤ 𝑡 ≤ 𝑘, 0 ≤ 𝑋𝑘(𝑡) ≤ 𝑁(𝑡) for 0 ≤ 𝑡 ≤ 𝑘. (C2)

Set 𝑏𝑘(𝑡) = 𝑏𝑘(𝑘) and 𝜈𝑘(𝑡) = 0 for 𝑡 > 𝑘.
In (C1), if 𝑑𝑏𝑘(𝑡) < 0, the participant sells the risk-free asset to get cash either for buying

stakes, or for consumption; if 𝑑𝑏𝑘(𝑡) > 0, the participant adds more risk-free asset. Thus, (C1) is
a self-financing condition in which 𝑟𝑏𝑘(𝑡)𝑑𝑡 − 𝑑𝑏𝑘(𝑡) is the net change (in value of the risk-free
asset held) used to finance new stakes 𝑃(𝑡)𝜈𝑘(𝑡)𝑑𝑡 and consumption 𝑑𝑐(𝑡). The requirements in
(C2) are all in the spirit of disallowing shorting on either the risk free asset 𝑏𝑘(𝑡) or the stakes
𝑋𝑘(𝑡). In some PoS blockchains, there is a minimum requirement for bidding (e.g., 32 ETHs for
Ethereum). In this case, we can impose a lower bound on the process 𝑋𝑘(𝑡), to prevent it from
falling below this threshold. The analysis will be similar. We also require that the trading strategy
be bounded: there is 𝜈𝑘 > 0 such that

|𝜈𝑘(𝑡)| ≤ 𝜈𝑘. (C3)

The objective of participant 𝑘 is:

sup
{(𝜈𝑘(𝑡),𝑏𝑘(𝑡))}

𝐽(𝜈𝑘, 𝑏𝑘) ∶= 𝔼

{
∫

𝑘

0

𝑒−𝛽𝑘𝑡[𝑑𝑐𝑘(𝑡) + 𝓁𝑘(𝑋𝑘(𝑡))𝑑𝑡] + 𝑒
−𝛽𝑘𝑘 [𝑏𝑘(𝑘) + ℎ𝑘(𝑋𝑘(𝑘)]

}

subject to (2), (C1), (C2), (C3),

(3)

where 𝛽𝑘 > 0 is a discount factor, a parameter measuring the risk sensitivity of participant 𝑘;
𝓁𝑘(⋅) and ℎ𝑘(⋅) are two utility functions representing, respectively, the running profit and the
terminal profit.
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6 TANG and YAO

While generally following Merton’s consumption-investment framework, our formulation as
presented above takes into account some distinct features of PoS blockchains and cryptocurren-
cies. One notable point is, the utilities 𝓁 and ℎ in the objective are expressed as functions of the
number of stakes 𝑋𝑘(𝑡), as opposed to their total value 𝑃(𝑡)𝑋𝑘(𝑡). To the extent that 𝑃(𝑡) is treated
as exogenous (as explained above), this difference may seem to be trivial. Yet, it is a reflection of
the more substantial fact that crypto-participants tend to mentally decouple the utility of holding
stakes from their monetary value at any given time. For instance, holding 1 ETH may be equiv-
alent to $5, 000 for one person, and $500 for another, and neither will be influenced by the ETH
market price at the time, which could be say, about $1, 500.

Throughout below, the following conditions will be assumed:

Assumption 2.1.

(i) 𝑁 ∶ [0, 𝑇] → ℝ+ is increasing with𝑁(0) = 𝑁 > 0, and𝑁 ∈ 2([0, 𝑇]).
(ii) 𝓁 ∶ ℝ+ → ℝ+ is increasing and 𝓁 ∈ 1(ℝ+).
(iii) ℎ ∶ ℝ+ → ℝ+ is increasing and ℎ ∈ 1(ℝ+).

3 THE CONSUMPTION-INVESTMENT PROBLEM

Herewe study the consumption-investment problem for participant 𝑘 in (3). To lighten notation,
omit the subscript 𝑘, and write out the problem in full as follows, where (C0) is a repeat of the
state dynamics in (2):

𝑈(𝑥) ∶= sup
{(𝜈(𝑡),𝑏(𝑡))}

𝐽(𝜈, 𝑏) ∶= 𝔼

{
∫



0

𝑒−𝛽𝑡[𝑑𝑐(𝑡) + 𝓁(𝑋(𝑡))𝑑𝑡] + 𝑒−𝛽 [𝑏( ) + ℎ(𝑋( )]
}

(4)

subject to 𝑋′(𝑡) = 𝜈(𝑡) +
𝑁′(𝑡)

𝑁(𝑡)
𝑋(𝑡), 𝑋(0) = 𝑥, (C0)

𝑑𝑐(𝑡) = 𝑟𝑏(𝑡)𝑑𝑡 − 𝑑𝑏(𝑡) − 𝑃(𝑡)𝜈(𝑡)𝑑𝑡, (C1)

𝑏(0) = 0, 𝑏(𝑡) ≥ 0 and 0 ≤ 𝑋(𝑡) ≤ 𝑁(𝑡), (C2)

|𝜈(𝑡)| ≤ 𝜈. (C3)

where  ∶= inf {𝑡 > 0 ∶ 𝑋(𝑡) = 0 or 𝑁(𝑡)} ∧ 𝑇.
Note that the expectation in the objective function is with respect to 𝑃(𝑡), which is involved

in 𝑑𝑐𝑘(𝑡) via (C1). Denote

𝑃𝛽(𝑡) ∶= 𝑒
−𝛽𝑡𝔼𝑃(𝑡), 𝑡 ∈ [0, 𝑇]. (5)

Substituting the constraint (C1) into the objective function, and taking into account

𝑟𝑏(𝑡)𝑑𝑡 − 𝑑𝑏(𝑡) = −𝑒𝑟𝑡𝑑(𝑒−𝑟𝑡𝑏(𝑡)),
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TANG and YAO 7

along with (5), we have

𝐽(𝜈, 𝑏) = −∫


0

𝑒(𝑟−𝛽)𝑡𝑑(𝑒−𝑟𝑡𝑏(𝑡)) + 𝑒−𝛽 𝑏( )

+∫


0

[
−𝑃𝛽(𝑡)𝜈(𝑡) + 𝑒

−𝛽𝑡𝓁(𝑋(𝑡)
]
𝑑𝑡 + 𝑒−𝛽 ℎ(𝑋( ))

⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟
𝐽2(𝜈)

= (𝑟 − 𝛽)∫


0

𝑒−𝛽𝑡𝑏(𝑡)𝑑𝑡

⏟⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⏟
∶=𝐽1(𝑏)

+ 𝐽2(𝜈), (6)

where 𝑏(0) = 0 is used in the last equality. Hence,

𝑈(𝑥) ∶= sup
{(𝜈,𝑏)}

𝐽(𝜈, 𝑏) = sup
𝑏
𝐽1(𝑏) + sup

𝜈
𝐽2(𝜈). (7)

Next, suppose 𝛽 ≥ 𝑟, a condition that will be assumed below (and readily justified as the risk
premium associated with the valuation of any stake over the risk-free asset). Then, from the 𝐽1(𝑏)
expression in (6), and taking into account 𝑏(𝑡) ≥ 0 as constrained in (C2), we have sup𝑏 𝐽1(𝑏) = 0
with the optimality binding at 𝑏∗(𝑡) = 0 for all 𝑡. Consequently, the problem in (4) is reduced
to

𝑈(𝑥) = sup
𝜈
𝐽2(𝜈) subject to (C0), (C2’), (C3), (8)

where (C2’) is (C2) without the constraints on 𝑏(⋅).
In summary, the key fact here is that the objective 𝑈(𝑥) is separable in the control variables

(𝜈(𝑡), 𝑏(𝑡)); hence the problem in (4) is decomposed into two optimal control problems, one on
the risk-free asset 𝑏(𝑡), and the other on the trading of stakes 𝜈(𝑡), as specified in (6) and (7).
Moreover, under the condition 𝛽 ≥ 𝑟, the consumption-investment problem is reduced to the one
in (8), where the objective function 𝐽2(𝜈) – refer to (6) – takes the form of a tradeoff between
the utility from holding stakes (𝓁(𝑋(𝑡)) and ℎ(𝑋( ))) and the dis-utility of reducing consump-
tion (−𝑃𝛽(𝑡)𝜈(𝑡)). Thus, the optimal trading strategy needs to strike a balance between these two
opposing terms.

Before we present the optimal solution to the consumption-investment problem in (8), we
make a digression to first study a simple degenerate case of 𝑃𝛽(𝑡) ≡ 0. This special case removes
the tradeoff mentioned above, so the solution becomes a one-sided strategy of always accumulat-
ing (or “hoarding”) the stakes at full capacity (𝜈). Yet, as the analysis below will show, there are
still some interesting (and subtle) issues involved. More importantly, this special case provides
a very accessible path to finding the optimal solution via dynamic programming and the HJB
equation.
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8 TANG and YAO

3.1 Stake-hoarding

As motived above, here the problem for participant 𝑘 is reduced to the following (again, omit the
subscript 𝑘):

𝑈(𝑥) ∶= sup
𝜈(𝑡) ∫



0

𝑒−𝛽𝑡 𝓁(𝑋(𝑡))𝑑𝑡 + 𝑒−𝛽 ℎ(𝑋( )) (9)

subject to (C0), (C2’), (C3).

Below, we denote 𝜈∗(𝑡) for the optimal control process, 𝑋∗(𝑡) for the corresponding state process,
and ∗ ∶= inf {𝑡 > 0 ∶ 𝑋∗(𝑡) = 𝑁(𝑡)} ∧ 𝑇 for the exit time.
Proposition 3.1. Denote

𝛾(𝑡) ∶= 𝜈𝑁(𝑡)∫
𝑡

0

𝑑𝑠

𝑁(𝑠)
+
𝑥𝑁(𝑡)

𝑁
for 0 ≤ 𝑡 ≤ 𝑇. (10)

We have:

(i) If 𝜈 ∫ 𝑇
0

𝑑𝑡

𝑁(𝑡)
≤ 𝑁−𝑥

𝑁
, then ∗ = 𝑇. The optimal control is 𝜈∗(𝑡) = 𝜈 for 0 ≤ 𝑡 ≤ 𝑇, the optimal state

process is 𝑋∗(𝑡) = 𝛾(𝑡) for 0 ≤ 𝑡 ≤ 𝑇, and𝑈(𝑥) = 𝑒−𝛽𝑇ℎ(𝑋∗(𝑇)) + ∫ 𝑇
0
𝑒−𝛽𝑡𝓁(𝑋∗(𝑡))𝑑𝑡.

(ii) If 𝜈 ∫ 𝑇
0

𝑑𝑡

𝑁(𝑡)
>
𝑁−𝑥

𝑁
, set

𝑡0 ∶= inf

{
𝑡 > 0 ∶ 𝜈 ∫

𝑡

0

𝑑𝑠

𝑁(𝑠)
=
𝑁 − 𝑥

𝑁

}
< 𝑇.

Assume further that

ℎ(𝑁(𝑡))′ + 𝓁(𝑁(𝑡)) ≤ 𝛽ℎ(𝑁(𝑡)) for all 0 ≤ 𝑡 ≤ 𝑇. (11)

Then, ∗ = 𝑡0. The optimal strategy is 𝜈∗(𝑡) = 𝜈 for 0 ≤ 𝑡 ≤ 𝑡0 (and 𝜈∗(𝑡) = 0 for 𝑡 > 𝑡0), the
optimal state process is 𝑋∗(𝑡) = 𝛾(𝑡) for 0 ≤ 𝑡 ≤ 𝑡0 (and 𝑋∗(𝑡) = 𝑁(𝑡0) for 𝑡 > 𝑡0), and 𝑈(𝑥) =
𝑒−𝛽𝑡0ℎ(𝑋∗(𝑡0)) + ∫ 𝑡0

0
𝑒−𝛽𝑡𝓁(𝑋∗(𝑡))𝑑𝑡.

Deferring the proof, we first make a few comments on the above proposition. Note that 𝛾(𝑡)
as specified in (10) is identified as the optimal state process 𝑋∗(𝑡), which is the number of stakes
given 𝜈∗(𝑡) = 𝜈. It is easy to see that the participant’s share of stakes, 𝑋∗(𝑡)∕𝑁(𝑡), is increasing in
𝑡, leading to centralization regardless of how the rewarding scheme is designed (although large
rewards may slow down the speed towards concentration). The interesting point of the above the-
orem is in its part (ii), where the required condition (11) is a technical one, to ensure the optimality
of 𝜈∗(𝑡) = 𝜈. The more substantive fact is ∗ = 𝑡0 < 𝑇, when 𝑋(∗) = 𝑁(∗), i.e., the participant
has accumulated all stakes available in the system, leading to the extreme situation of monopoly
(or “dictatorship”); and this is done before the end of the horizon, ithat is, forcing a pre-matured
exit time. See Figure 1 for an illustration.

The following corollary illustrates further this extreme phenomenon, with the polynomial
family 𝑁𝛼(𝑡) defined by (1), and with a long time horizon (𝑇 → ∞).
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TANG and YAO 9

F IGURE 1 Optimal stake
trading: concentration and monopoly.
[Color figure can be viewed at
wileyonlinelibrary.com]

Corollary 3.2. Let (𝑁𝛼(𝑡), 0 ≤ 𝑡 ≤ 𝑇) be defined by (1), (𝑋𝛼,∗(𝑡), 0 ≤ 𝑡 ≤ 𝑇) be the optimal state
process defined by (10) corresponding to𝑁𝛼(𝑡), and 𝛼,∗ ∶= inf {𝑡 > 0 ∶ 𝑋𝛼,∗(𝑡) = 𝑁𝛼(𝑡)} be the exit
time. Assume that the condition (11) holds for𝑁𝛼(𝑡). Then, as 𝑇 → ∞, we have

(i) For 𝛼 > 1,
∙ if 𝜈 ≤ (𝛼 − 1)(𝑁 − 𝑥)𝑁− 1𝛼 , then 𝑋𝛼,∗(𝑡) < 𝑁𝛼(𝑡) for all 𝑡. Moreover,

lim
𝑡→∞

𝑋𝛼,∗(𝑡)

𝑁𝛼(𝑡)
=

𝜈

𝛼 − 1
𝑁
1−𝛼

𝛼 +
𝑥

𝑁
. (12)

∙ if 𝜈 > (𝛼 − 1)(𝑁 − 𝑥)𝑁−
1

𝛼 , then 𝛼,∗ < ∞.
(ii) For 𝛼 ≤ 1, we have 𝛼,∗ < ∞.
Proof. Note that

∫
𝑇

0

𝑑𝑡

𝑁𝛼(𝑡)
=

⎧⎪⎨⎪⎩
1

1−𝛼

(
(𝑇 + 𝑁

1

𝛼 )1−𝛼 − 𝑁
1−𝛼

𝛼

)
for 𝛼 ≠ 1

log (1 + 𝑇∕𝑁) for 𝛼 = 1.
(13)

As 𝑇 → ∞, the dominant term in 1

1−𝛼
((𝑇 + 𝑁

1

𝛼 )1−𝛼 − 𝑁
1−𝛼

𝛼 ) is 1

𝛼−1
𝑁
1−𝛼

𝛼 if 𝛼 > 1, and is 1

1−𝛼
𝑇1−𝛼

if 𝛼 < 1; and the dominant term in log(1 + 𝑇∕𝑁) is log 𝑇. It then suffices to compare 𝜈 ∫ 𝑇
0

𝑑𝑡

𝑁𝛼(𝑡)
to

𝑁−𝑥

𝑁
, and the rest of the corollary is immediate. □

This corollary shows a sharp phase transition towards monopoly in terms of the rewarding
schemes. For 𝛼 > 1 (increasing reward), there is a threshold for 𝜈, only above which monopoly
may occur, and below which the share of stakes increases towards the value on the right side
of (12). For 𝛼 ≤ 1 (constant or decreasing reward), monopoly always occurs. Thus, these results
have practical implications in the design of the PoS protocol. For instance, if/when certain partic-
ipants have large capacities, adopting a suitable increasing reward scheme will counter the effect
of concentration.
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10 TANG and YAO

Now, returning to the proof of Proposition 3.1, we use the standard machinery of dynamic
programming and the HJB equation. Consider the following problem, where𝑉(𝑡, 𝑥) is the “value-
to-go” function, for 0 ≤ 𝑡 ≤ 𝑇 and 0 ≤ 𝑥 ≤ 𝑁(𝑡):

𝑉(𝑡, 𝑥) ∶= max
{𝜈(𝑠),𝑠≥𝑡} ∫



𝑡

𝑒−𝛽𝑠 𝓁(𝑋(𝑠))𝑑𝑠 + 𝑒−𝛽 ℎ(𝑋( ))

subject to 𝑋′(𝑠) = 𝜈(𝑠) +
𝑁′(𝑠)

𝑁(𝑠)
𝑋(𝑠), 𝑋(𝑡) = 𝑥,

0 ≤ 𝑋(𝑠) ≤ 𝑁(𝑠),
|𝜈(𝑠)| ≤ 𝜈.

Clearly, the solution to the above problem concerning 𝑉(𝑡, 𝑥), for all 𝑡 ∈ [0, 𝑇] and 𝑥 ∈ [0,𝑁(𝑡)],
will yield the desired solution to𝑈(𝑥) in (9), since𝑈(𝑥) = 𝑉(0, 𝑥). The following lemma identifies
an HJB equation (with terminal and boundary conditions), to which. 𝑉(𝑡, 𝑥) is a solution.

Lemma 3.3. Let 𝑄 ∶= {(𝑡, 𝑥) ∶ 0 ≤ 𝑡 < 𝑇, 0 < 𝑥 < 𝑁(𝑡)}. Then 𝑉 is the (unique) viscosity solution
to the following HJB equation:

⎧⎪⎨⎪⎩
𝜕𝑡𝑣 + 𝑒

−𝛽𝑡𝓁(𝑥) +
𝑥𝑁′(𝑡)

𝑁(𝑡)
𝜕𝑥𝑣 + sup|𝜈|≤𝜈{𝜈 𝜕𝑥𝑣} = 0 (𝑡, 𝑥) ∈ 𝑄,

𝑣(𝑇, 𝑥) = 𝑒−𝛽𝑇ℎ(𝑥),

𝑣(𝑡, 0) = 𝑒−𝛽𝑡ℎ(0), 𝑣(𝑡, 𝑁(𝑡)) = 𝑒−𝛽𝑡ℎ(𝑁(𝑡)).

(14)

Proof. Write the HJB equation as 𝜕𝑡𝑣 + 𝐻(𝑡, 𝑥, 𝜕𝑥𝑣) = 0, where

𝐻(𝑡, 𝑥, 𝑝) ∶= 𝑒−𝛽𝑡𝓁(𝑥) +
𝑥𝑁′(𝑡)

𝑁(𝑡)
𝑝 + sup|𝜈|≤𝜈{𝜈𝑝}.

The fact that𝑉 as specified in (14) is a viscosity solution follows a standard dynamic programming
argument, see (Fleming and Soner, 2006, Chapter II, Section 7).
Moreover, from the conditions in Assumption 2.1, we have,

|𝐻(𝑡, 𝑥, 𝑝) − 𝐻(𝑠, 𝑦, 𝑞)| ≤ 𝐶(|𝑡 − 𝑠| + |𝑥 − 𝑦| + |𝑝 − 𝑞| + |𝑥 − 𝑦||𝑝| + |𝑡 − 𝑠||𝑝|), (15)

for 0 ≤ 𝑠, 𝑡 ≤ 𝑇 and 0 ≤ 𝑥, 𝑦 ≤ 𝑁(𝑡), and for some 𝐶 > 0. By (Fleming and Soner, 2006, Chapter
II, Corollary 9.1), the HJB equation in (14) has a unique viscosity solution, which then must be
none other than 𝑉. □

What remains is to pin down the term sup|𝜈|≤𝜈{𝜈 𝜕𝑥𝑣} in the HJB equation, that is, to identify
the maximizing 𝜈. Given the intuitive solution that 𝜈 = 𝜈 > 0 (a “conjecture,” so far), the HJB
equation in 14 is expected to be

⎧⎪⎨⎪⎩
𝜕𝑡𝑣 + 𝑒

−𝛽𝑡𝓁(𝑥) +
(
𝜈 +

𝑥𝑁′(𝑡)

𝑁(𝑡)

)
𝜕𝑥𝑣 = 0 in 𝑄,

𝑣(𝑇, 𝑥) = 𝑒−𝛽𝑇ℎ(𝑥),

𝑣(𝑡, 0) = 𝑒−𝛽𝑡ℎ(0), 𝑣(𝑡, 𝑁(𝑡)) = 𝑒−𝛽𝑡ℎ(𝑁(𝑡)),

(16)
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TANG and YAO 11

which is a transport equation with variable coefficients. Now we solve the transport equation (16)
by the method of characteristics. For 0 ≤ 𝑡 ≤ 𝑇 and 0 ≤ 𝑥 ≤ 𝑁(𝑡), let 𝛾𝑡,𝑥(𝑠) be the solution to the
following equation:

𝛾′𝑡,𝑥(𝑠) = 𝜈 +
𝑁′(𝑠)

𝑁(𝑠)
𝛾𝑡,𝑥(𝑠), 𝑠 > 𝑡; 𝛾𝑡,𝑥(𝑡) = 𝑥. (17)

A direct computation yields

𝛾𝑡,𝑥(𝑠) = 𝜈𝑁(𝑠)∫
𝑠

𝑡

𝑑𝑢

𝑁(𝑢)
+
𝑥𝑁(𝑠)

𝑁(𝑡)
, 𝑠 ≥ 𝑡. (18)

Under the regularity conditions in Assumption 2.1, it is standard that (see, e.g., Ambrosio (2008);
Golse (2013))

𝑣(𝑡, 𝑥) = 𝑒−𝛽𝑡,𝑥ℎ(𝛾𝑡,𝑥(𝑡,𝑥)) + ∫
𝑡,𝑥
𝑡

𝑒−𝛽𝑠𝓁(𝛾𝑡,𝑥(𝑠))𝑑𝑠, (19)

where 𝑡,𝑥 ∶= inf {𝑠 > 𝑡 ∶ 𝛾𝑡,𝑥(𝑠) = 𝑁(𝑠)} ∧ 𝑇. We will next show that 𝑣(𝑡, 𝑥) given by (19) indeed
solves the HJB equation (14), which then proves Proposition 3.1.

Proof of Proposition 3.1. From the expression of 𝛾𝑡,𝑥(𝑠) in (18), we have

𝜕𝑥𝛾𝑡,𝑥(𝑠) =
𝑁(𝑠)

𝑁(𝑡)
> 0 and 𝜕𝑥𝑡,𝑥 ≤ 0. (20)

Note that 𝛾𝑡,𝑥(𝑠)∕𝑁(𝑠) is increasing in 𝑠. There are two cases.
Case 1: If 𝛾𝑡,𝑥(𝑇)∕𝑁(𝑇) ≤ 1, then 𝑡,𝑥 = 𝑇 and hence, 𝑣(𝑡, 𝑥) = 𝑒−𝛽𝑇ℎ(𝛾𝑡,𝑥(𝑇)) +

∫ 𝑇
𝑡
𝑒−𝛽𝑠𝓁(𝛾𝑡,𝑥(𝑠))𝑑𝑠. By the regularity conditions in Assumption 2.1, we get

𝜕𝑥𝑣 = 𝑒
−𝛽𝑇 𝑁(𝑇)

𝑁(𝑡)
ℎ′(𝛾𝑡,𝑥(𝑇)) + ∫

𝑇

𝑡

𝑒−𝛽𝑠
𝑁(𝑠)

𝑁(𝑡)
𝓁′(𝛾𝑡,𝑥(𝑠))𝑑𝑠 ≥ 0,

where the non-negativity follows from the fact that 𝑁(𝑡) > 0 and 𝓁, ℎ are increasing.
Case 2: If 𝛾𝑡,𝑥(𝑇)∕𝑁(𝑇) > 1, then 𝑡,𝑥 < 𝑇, and hence 𝑣(𝑡, 𝑥) = 𝑒−𝛽𝑡,𝑥ℎ(𝑁(𝑡,𝑥)) +

∫ 𝑡,𝑥
𝑡
𝑒−𝛽𝑠𝓁(𝛾𝑡,𝑥(𝑠))𝑑𝑠. As a result,

𝜕𝑥𝑣 = −𝛽𝑒
−𝛽𝑡,𝑥 (𝜕𝑥𝑡,𝑥)ℎ(𝑁(𝑡,𝑥)) + 𝑒−𝛽𝑡,𝑥 (𝜕𝑥𝑡,𝑥)(ℎ◦𝑁)′(𝑡,𝑥)

+ ∫
𝑡,𝑥
𝑡

𝑒−𝛽𝑠
𝑁(𝑠)

𝑁(𝑡)
𝓁′(𝛾𝑡,𝑥(𝑠))𝑑𝑠 + 𝑒

−𝛽𝑡,𝑥 (𝜕𝑥𝑡,𝑥)𝓁(𝑁(𝑡,𝑥))

= ∫
𝑡,𝑥
𝑡

𝑒−𝛽𝑠
𝑁(𝑠)

𝑁(𝑡)
𝓁′(𝛾𝑡,𝑥(𝑠))𝑑𝑠

− 𝑒−𝛽𝑡,𝑥 (𝜕𝑥𝑡,𝑥)
⏟ ⏟ ⏟
≤0 by (20)

(−𝓁◦𝑁 − (ℎ◦𝑁)′ + 𝛽ℎ◦𝑁)
⏟⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⏟

≥0 by (11)
(𝑡,𝑥)

≥ 0.
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12 TANG and YAO

So, in both cases, we have 𝜕𝑥𝑣(𝑡, 𝑥) ≥ 0. Thus, 𝑣(𝑡, 𝑥) defined by (19) is a classical solution and
hence, a viscosity solution to the HJB equation in (14). By Lemma 3.3, we conclude 𝑉(𝑡, 𝑥) =
𝑣(𝑡, 𝑥), and the optimal control is 𝜈∗(𝑠) = 𝜈 for 𝑠 ≥ 𝑡. Specializing to 𝑡 = 0 yields the results in
Proposition 3.1 (and 𝛾(𝑡) defined by (10) is just 𝛾0,𝑥(𝑡)). □

3.2 Main theorem and proof

We are now ready to present the main result of this section, the optimal solution to 𝑈(𝑥) in (8)
and hence to 𝑈(𝑥) in (4).

Theorem 3.4. Assume that 𝑟 ≤ 𝛽, and 𝑃𝛽(𝑡) in (5) satisfies the Lipschitz condition:
|𝑃𝛽(𝑡) − 𝑃𝛽(𝑠)| ≤ 𝐶|𝑡 − 𝑠| for some 𝐶 > 0. (21)

Then, 𝑈(𝑥) = 𝑣(0, 𝑥) where 𝑣(𝑡, 𝑥) is the unique viscosity solution to the following HJB equation,
where 𝑄 ∶= {(𝑡, 𝑥) ∶ 0 ≤ 𝑡 < 𝑇, 0 < 𝑥 < 𝑁(𝑡)}:

⎧⎪⎨⎪⎩
𝜕𝑡𝑣 + 𝑒

−𝛽𝑡𝓁(𝑥) +
𝑥𝑁′(𝑡)

𝑁(𝑡)
𝜕𝑥𝑣 + sup|𝜈|≤𝜈{𝜈(𝜕𝑥𝑣 − 𝑃𝛽(𝑡))} = 0 in 𝑄,

𝑣(𝑇, 𝑥) = 𝑒−𝛽𝑇ℎ(𝑥),

𝑣(𝑡, 0) = 𝑒−𝛽𝑡ℎ(0), 𝑣(𝑡, 𝑁(𝑡)) = 𝑒−𝛽𝑡ℎ(𝑁(𝑡)).

(22)

Moreover, the optimal strategy is 𝑏∗(𝑡) = 0 and 𝜈∗(𝑡) = 𝜈∗(𝑡, 𝑋∗(𝑡)) for 0 ≤ 𝑡 ≤ ∗, where 𝜈∗(𝑡, 𝑥)
achieves the supremum in (22), and 𝑋∗(𝑡) solves 𝑋′∗(𝑡) = 𝜈∗(𝑡, 𝑋∗(𝑡)) +

𝑁′(𝑡)

𝑁(𝑡)
𝑋∗(𝑡) with 𝑋∗(0) = 𝑥,

and ∗ ∶= inf {𝑡 > 0 ∶ 𝑋∗(𝑡) = 0 or𝑁(𝑡)} ∧ 𝑇.
Proof. Similar to the dynamic programming/HJB approach that proves Lemma 3.3 and
Proposition 3.1 above, here we consider

𝑉2(𝑡, 𝑥) ∶=max
𝜈(𝑠) ∫



𝑡

(−𝑃𝛽(𝑠)𝜈(𝑠) + 𝑒
−𝛽𝑠𝓁(𝑋(𝑠))𝑑𝑠 + 𝑒−𝛽 ℎ(𝑋( ))

subject to 𝑋′(𝑠) = 𝜈(𝑠) +
𝑁′(𝑠)

𝑁(𝑠)
𝑋(𝑠), 𝑋(𝑡) = 𝑥,

0 ≤ 𝑋(𝑠) ≤ 𝑁(𝑠),
|𝜈(𝑠)| ≤ 𝜈,

so that 𝑈(𝑥) = 𝑉2(0, 𝑥). By the same dynamic programming argument as above, 𝑉2 solves in the
viscosity sense the HJB equation in (22), which can be expressed as 𝜕𝑡𝑣 + 𝐻(𝑡, 𝑥, 𝜕𝑥𝑣) = 0, with

𝐻(𝑡, 𝑥, 𝑝) ∶= 𝑒−𝛽𝑡𝓁(𝑥) +
𝑥𝑁′(𝑡)

𝑁(𝑡)
𝑝 + sup|𝜈|≤𝜈{𝜈(𝑝 − 𝑃𝛽(𝑡))}.

It is readily checked that under Assumption 2.1 and the Liptschiz condition in (21), the inequality
in (15) holds. Thus, 𝑉2 as identified above is the unique viscosity to the HJB equation in (22). The
rest of the theorem is straightforward. □
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TANG and YAO 13

Comparing the HJB equations in (14) and in (22), we see the nonlinear term changes from
sup|𝜈|≤𝜈{𝜈𝜕𝑥𝑣} in the stake-hoarding problem, to sup|𝜈|≤𝜈{𝜈(𝜕𝑥𝑣 − 𝑃𝛽(𝑡))} in the stake-trading
problem, the latter being the general consumption-investment problem. The more general HJB
equation in (22) does not have a closed-form solution, and neither does the optimal trading strat-
egy 𝜈∗(𝑡). This calls for numerical methods; see, for example, Osher and Shu (1991), Souganidis
(1985).

4 LINEAR AND CONVEX UTILITIES

4.1 Linear utility

Consider the special case of linear utility, 𝓁(𝑥) = 𝓁𝑥 and ℎ(𝑥) = ℎ𝑥, for some given (positive)
constants 𝓁 and ℎ. In this case we can derive a closed-form solution to the HJB equation in (22),
and then derive the optimal strategy 𝜈∗(𝑡) (in terms of 𝑃𝛽(𝑡)).

To start with, the HJB equation in (22) now specializes to the following, with 𝑄 ∶= {(𝑡, 𝑥) ∶
0 ≤ 𝑡 < 𝑇, 0 < 𝑥 < 𝑁(𝑡)} (as before, refer to Lemma 3.3):

⎧⎪⎨⎪⎩
𝜕𝑡𝑣 + 𝓁𝑒

−𝛽𝑡𝑥 +
𝑥𝑁′(𝑡)

𝑁(𝑡)
𝜕𝑥𝑣 + sup|𝜈|≤𝜈{𝜈(𝜕𝑥𝑣 − 𝑃𝛽(𝑡))} = 0 (𝑡, 𝑥) ∈ 𝑄,

𝑣(𝑇, 𝑥) = ℎ𝑥,

𝑣(𝑡, 0) = 0, 𝑣(𝑡, 𝑁(𝑡)) = ℎ𝑁(𝑡).

(23)

For the nonlinear term sup|𝜈|≤𝜈{𝜈(𝜕𝑥𝑣 − 𝑃𝛽(𝑡))}, we have 𝜈∗(𝑡, 𝑥) = 𝜈 if 𝜕𝑥𝑣(𝑡, 𝑥) ≥ 𝑃𝛽(𝑡), and
𝜈∗(𝑡, 𝑥) = 𝜈 if 𝜕𝑥𝑣(𝑡, 𝑥) < 𝑃𝛽(𝑡).

Next, presuming that 𝜕𝑥𝑣 ≥ 𝑃𝛽(𝑡), and ignoring the boundary conditions, the HJB equation in
(23) becomes

𝜕𝑡𝑣 + 𝓁𝑒
−𝛽𝑡𝑥 − 𝜈𝑃𝛽(𝑡) +

(
𝜈 +

𝑥𝑁′(𝑡)

𝑁(𝑡)

)
𝜕𝑥𝑣 = 0, 𝑣(𝑇, 𝑥) = ℎ𝑥,

which has the (classical) solution

𝑣+(𝑡, 𝑥) ∶= ℎ𝑒−𝛽𝑇𝛾+𝑡,𝑥(𝑇) + ∫
𝑇

𝑡

[
𝓁𝑒−𝛽𝑠𝛾+𝑡,𝑥(𝑠) − 𝜈𝑃𝛽(𝑠)

]
𝑑𝑠, (24)

where

𝛾+𝑡,𝑥(𝑠) ∶= 𝜈𝑁(𝑠)∫
𝑠

𝑡

𝑑𝑢

𝑁(𝑢)
+
𝑥𝑁(𝑠)

𝑁(𝑡)
, 𝑠 ∈ [𝑡, 𝑇]. (25)

Similarly, presuming that 𝜕𝑥𝑣 < 𝑃𝛽(𝑡) and neglecting the boundary conditions turns the HJB
equation in (22) into the following form:

𝜕𝑡𝑣 + 𝓁𝑒
−𝛽𝑡𝑥 + 𝜈𝑃𝛽(𝑡) +

(
−𝜈 +

𝑥𝑁′(𝑡)

𝑁(𝑡)

)
𝜕𝑥𝑣 = 0, 𝑣(𝑇, 𝑥) = ℎ𝑥,

which has the solution

𝑣−(𝑡, 𝑥) ∶= ℎ𝑒−𝛽𝑇𝛾−𝑡,𝑥(𝑇) + ∫
𝑇

𝑡

[
𝓁𝑒−𝛽𝑠𝛾−𝑡,𝑥(𝑠) + 𝜈𝑃𝛽(𝑠)

]
𝑑𝑠, (26)
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14 TANG and YAO

where

𝛾−𝑡,𝑥(𝑠) ∶= −𝜈𝑁(𝑠)∫
𝑠

𝑡

𝑑𝑢

𝑁(𝑢)
+
𝑥𝑁(𝑠)

𝑁(𝑡)
, 𝑠 ∈ [𝑡, 𝑇]. (27)

The key observation is that

𝜕𝑥𝑣
+(𝑡, 𝑥) = 𝜕𝑥𝑣

−(𝑡, 𝑥) =
1

𝑁(𝑡)

(
ℎ𝑒−𝛽𝑇𝑁(𝑇) + 𝓁∫

𝑇

𝑡

𝑒−𝛽𝑠𝑁(𝑠)𝑑𝑠

)
⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟

∶=Ψ(𝑡)

; (28)

and Ψ(𝑡), notably independent of 𝑥, is decreasing in 𝑡 ∈ [0, 𝑇]:

Ψ(0) = ℎ𝑒−𝛽𝑇
𝑁(𝑇)

𝑁
+
𝓁

𝑁 ∫
𝑇

0

𝑒−𝛽𝑡𝑁(𝑡)𝑑𝑡 ↓ (≥) Ψ(𝑡) ↓ (≥) Ψ(𝑇) = ℎ𝑒−𝛽𝑇. (29)

This suggests that 𝜈∗(𝑡) = 𝜈 (buy all the time) if sup[0,𝑇] 𝑃𝛽(𝑡) ≤ Ψ(𝑇); and 𝜈∗(𝑡) = −𝜈 (sell all the
time) if inf [0,𝑇] 𝑃𝛽(𝑡) ≥ Ψ(0). Various other scenarios are also possible, such as first buy then sell,
or first sell then buy, and so forth.

The following proposition classifies all possible optimal strategies corresponding to 𝑃𝛽(𝑡) as
specified above, which we will comment on later.

Proposition 4.1. Let 𝓁(𝑥) = 𝓁𝑥 and ℎ(𝑥) = ℎ𝑥 with 𝓁, ℎ > 0, and𝑁(𝑡) satisfy Assumption 2.1 (i).
Assume that 𝑃𝛽(𝑡) satisfies the Lipschitz condition in (21), and that 𝜈 satisfies the following:

𝜈 ∫
𝑇

0

𝑑𝑡

𝑁(𝑡)
≤ 𝑥

𝑁
∧
𝑁 − 𝑥

𝑁
. (30)

Then, the following results hold:

(i) Suppose 𝑃𝛽(𝑡) stays constant, that is, for all 𝑡 ∈ [0, 𝑇], 𝑃(𝑡) = 𝑃(0) = 𝑃(0).
(a) If 𝑃(0) ≥ Ψ(0), then 𝜈∗(𝑡) = −𝜈 for all 0 ≤ 𝑡 ≤ 𝑇. That is, the participant sells at all time at

full capacity.
(b) If𝑃(0) ≤ Ψ(𝑇), then 𝜈∗(𝑡) = 𝜈. That is, the participant purchases at all time at full capacity.
(c) If Ψ(𝑇) < 𝑃(0) < Ψ(0), then

𝜈∗(𝑡) =

{
𝜈 for 𝑡 ≤ 𝑡0,
−𝜈 for 𝑡 > 𝑡0,

where 𝑡0 is the unique point in [0, 𝑇] such that 𝑃(0) = Ψ(𝑡0)withΨ(𝑡) defined in (28). That
is, the participant first buys and after some time sells, both at full capacity.

(ii) Suppose that 𝑃𝛽(𝑡) is increasing in 𝑡 ∈ [0, 𝑇].
(a) If 𝑃(0) ≥ Ψ(0), then 𝜈∗(𝑡) = −𝜈 for all 0 ≤ 𝑡 ≤ 𝑇. That is, the participant sells all the time

at full capacity.
(b) If 𝑃𝛽(𝑇) ≤ Ψ(𝑇), then 𝜈∗(𝑡) = 𝜈. That is, the participant purchases all the time at full

capacity.
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TANG and YAO 15

(c) If 𝑃(0) < Ψ(0) and 𝑃𝛽(𝑇) > Ψ(𝑇), then

𝜈∗(𝑡) =

{
𝜈 for 𝑡 ≤ 𝑡0,
−𝜈 for 𝑡 > 𝑡0,

where 𝑡0 is the unique point of intersection of 𝑃𝛽(𝑡) and Ψ(𝑡) on [0, 𝑇]. That is, the
participant first buys and after some time sells, both at full capacity.

(iii) Suppose that 𝑃𝛽(𝑡) is decreasing in 𝑡 ∈ [0, 𝑇].
(a) If 𝑃(0) ≥ Ψ(0), then the participant first sells, and may then buy, and so on, always (buy or

sell) at full capacity, according to the crossings of 𝑃𝛽(𝑡) and Ψ(𝑡) in [0, 𝑇].
(b) If 𝑃(0) < Ψ(0), then the participant first buys, and may then sell, and so on, always (buy or

sell) at full capacity, according to the crossings of 𝑃𝛽(𝑡) and Ψ(𝑡) in [0, 𝑇].

Proof. Recall that𝑋∗(𝑡) is the state process (number of stakes) corresponding to the optimal strat-
egy 𝜈∗(𝑡), which, as stipulated in the rest of the proposition, will be equal to either 𝜈 or −𝜈. The
condition in (30) then ensures that 0 ≤ 𝑋∗(𝑡) ≤ 𝑁(𝑡) for all 𝑡 ∈ [0, 𝑇], so ∗ = 𝑇 (i.e., there will no
forced early exit).
Thus, it suffices to find the optimal strategy 𝜈∗(𝑡) from

sup|𝜈|≤𝜈{𝜈[𝜕𝑥𝑣 − 𝑃𝛽(𝑡)]} = sup|𝜈|≤𝜈{𝜈[Ψ(𝑡) − 𝑃𝛽(𝑡)]}.
(i) and (ii). Since Ψ(𝑡) is decreasing and 𝑃(𝑡) is either constant or increasing, Ψ(𝑡) − 𝑃(𝑡) is

decreasing. Hence, we have the following cases (for both (i) and (ii)).

(a) If 𝑃(0) = 𝑃(0) ≥ Ψ(0), then 𝑃(𝑡) ≥ Ψ(𝑡) for all 𝑡 ∈ [0, 𝑇]; hence, 𝜈∗(𝑡) = −𝜈, and 𝑈(𝑥) =
𝑣−(0, 𝑥).

(b) Similarly, if 𝑃(0) ≤ Ψ(𝑇), then 𝑃(𝑡) ≤ Ψ(𝑡) for all 𝑡 ∈ [0, 𝑇]; hence, 𝜈∗(𝑡) = 𝜈, and 𝑈(𝑥) =
𝑣+(0, 𝑥).

(c) Otherwise, there will be a unique point for Ψ(𝑡) − 𝑃(𝑡) (which is decreasing in 𝑡) to cross 0
from above, and let 𝑡0 ∈ [0, 𝑇] denote the crossing point.

This implies that 𝜈∗(𝑡) = 𝜈 for 𝑡 ≤ 𝑡0, and 𝜈∗(𝑡) = −𝜈 for 𝑡 > 𝑡0; and
𝑈(𝑥) = 𝑣+(0, 𝑥) − 𝑣+(𝑡0, 𝛾

+
0,𝑥
(𝑡0)) + 𝑣

−(𝑡0, 𝛾
+
0,𝑥
(𝑡0)).

Part (iii) is similarly argued, the only complication is that Ψ(𝑡) − 𝑃(𝑡) is now non-monotone, and
hence, there will be multiple points when it crosses 0. □

Several remarks are in order. First note that the condition in (30) is to guarantee the constraint
(C2’) not activated prior to 𝑇; that is, to exclude the possibility of monopoly/dictatorship that
will trigger a forced early exit. This condition may well be removed, but then we would expect
another condition similar to the one in (11) to guarantee the optimality of a strategy when an early
exit occurs.

Second, 𝑃𝛽(𝑡) = 𝔼[𝑒−𝛽𝑡𝑃(𝑡)] combines 𝛽, whichmeasures the participant’s sensitivity towards
risk, with the stake price 𝑃(𝑡). Thus, the monotone properties of 𝑃𝛽(𝑡), which classify the three
parts (i)-(iii) in Proposition 4.1, naturally connect to martingale pricing: 𝑃𝛽(𝑡) being a constant in
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16 TANG and YAO

F IGURE 2 Optimal stake trading with linear 𝓁(⋅), ℎ(⋅) when 𝑃𝛽(𝑡) is constant (left) and 𝑃𝛽(𝑡) is increasing
(right). [Color figure can be viewed at wileyonlinelibrary.com]

(i) makes the process 𝑒−𝛽𝑡𝑃(𝑡) a martingale; whereas 𝑃𝛽(𝑡) increasing or decreasing, respectively,
in (ii) and (iii), makes 𝑒−𝛽𝑡𝑃(𝑡) a sub-martingale or a super-martingale.

On the other hand, the function Ψ(𝑡) = 𝜕𝑥𝑣+(𝑡, 𝑥) = 𝜕𝑥𝑣−(𝑡, 𝑥) represents the rate of return
of the participant’s utility (from holding of stakes, 𝑥); and interestingly, in the linear utility case,
this return rate is independent of 𝑥 while decreasing in 𝑡. Thus, the trading strategy is completely
determined by comparing this return rateΨ(𝑡)with the participant’s risk-adjusted stake price (or,
valuation) 𝑃𝛽(𝑡): if Ψ(𝑡) ≥ (resp. <)𝑃𝛽(𝑡), then the participant will buy (resp. sell) stakes.

Specifically, following (i) and (ii) of Proposition 4.1, for a constant or an increasing 𝑃𝛽(𝑡)
(corresponding to a risk-neutral or risk-seeking participant), there are only three possible optimal
strategies: buy all the time, sell all the time, or first buy then sell. (The first-buy-then-sell strategy
echoes the general investment practice that an early investment pays off in a later day.) See Figure 2
for an illustration.

4.2 A special case

In part (iii) of Proposition 4.1, when 𝑃𝛽(𝑡) is decreasing in 𝑡, like Ψ(𝑡), the multiple crossings
between the two decreasing functions can be further pinned down when there is more model
structure. Consider, for instance, when 𝑃(𝑡) follows a geometric Brownian motion (GBM):

𝑑𝑃(𝑡)

𝑃(𝑡)
= 𝜇𝑑𝑡 + 𝜎𝑑𝐵𝑡, or 𝑃(𝑡) = 𝑃(0)𝑒(𝜇−𝜎

2∕2)𝑡+𝜎𝐵𝑡 ; 𝑡 ∈ [0, 𝑇], (31)

where {𝐵𝑡} denotes the standard Brownian motion; and 𝜇 > 0 and 𝜎 > 0 are the two parameters
of the GBM model, representing the rate of return and the volatility of {𝑃(𝑡)}. From the second
equation in (31), we have 𝔼𝑃(𝑡) = 𝑃(0)𝑒𝜇𝑡; hence, 𝑃𝛽(𝑡) = 𝑃(0)𝑒−(𝛽−𝜇)𝑡. Then, a decreasing 𝑃𝛽(𝑡)
corresponds to 𝛽 > 𝜇. From (28), we can derive

Ψ′(𝑡) = −
𝑁′(𝑡)

𝑁(𝑡)
Ψ(𝑡) − 𝓁𝑒−𝛽𝑡,

and hence,

(
Ψ(𝑡) − 𝑃𝛽(𝑡)

)′
= −

𝑁′(𝑡)

𝑁(𝑡)
Ψ(𝑡) − 𝓁𝑒−𝛽𝑡 + (𝛽 − 𝜇)𝑃(0)𝑒−(𝛽−𝜇)𝑡. (32)
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TANG and YAO 17

Let Ψ𝛼(𝑡) denote Ψ(𝑡) for 𝑁(𝑡) = 𝑁𝛼(𝑡) defined by (1). The following proposition gives the con-
ditions under which Ψ𝛼(𝑡) − 𝑃𝛽(𝑡) is monotone in the regime 𝑁 → ∞, and optimal strategies are
derived accordingly.

Proposition 4.2. Suppose the assumptions in Proposition 4.1 hold, with 𝑁(𝑡) = 𝑁𝛼(𝑡) and {𝑃(𝑡)}
specified by (31) with 𝛽 > 𝜇. As𝑁 → ∞, we have the following results:

∙ If for some 𝜀 > 0,

𝑃(0) >
1

𝛽 − 𝜇

⎛⎜⎜⎝
𝛼ℎ𝑒−𝜇𝑇(𝑁

1

𝛼 + 𝑇)𝛼

𝑁
1+

1

𝛼

+
𝛼𝓁𝛽−1

𝑁
1

𝛼

+ 𝓁

⎞⎟⎟⎠ +
𝜀

𝑁
1

𝛼

, (33)

then Ψ𝛼(𝑡) − 𝑃𝛽(𝑡) is increasing on [0, 𝑇].
∙ If for some 𝜀 > 0,

𝑃(0) <
1

𝛽 − 𝜇

(
𝛼ℎ𝑒−𝛽𝑇

𝑁
1

𝛼 + 𝑇

+ 𝓁𝑒−𝜇𝑇

)
−
𝜀

𝑁
1

𝛼

, (34)

then Ψ𝛼(𝑡) − 𝑃𝛽(𝑡) is decreasing on [0, 𝑇].

Consequently, we have:

(a) If 𝑃(0) > 𝑒(𝛽−𝜇)𝑇Ψ𝛼(𝑇) and (33) holds, or 𝑃(0) > Ψ𝛼(0) and (34) holds, then 𝜈∗(𝑡) = −𝜈 for all
𝑡. That is, the participant sells all the time at full capacity.

(b) IfΨ𝛼(0) ≤ 𝑃(0) < 𝑒(𝛽−𝜇)𝑇Ψ𝛼(𝑇) and (33) holds, then 𝜈∗(𝑡) = −𝜈 for 𝑡 ≤ 𝑡0 and 𝜈∗(𝑡) = 𝜈 for 𝑡 >
𝑡0, where 𝑡0 is the unique point of intersection of𝑃𝛽(𝑡) andΨ𝛼(𝑡) on [0, 𝑇]. That is, the participant
first sells (before 𝑡0) and then buys (after 𝑡0), both at full capacity.

(c) If 𝑒(𝛽−𝜇)𝑇Ψ𝛼(𝑇) ≤ 𝑃(0) < Ψ𝛼(0) and (34) holds, then 𝜈∗(𝑡) = 𝜈 for 𝑡 ≤ 𝑡0 and 𝜈∗(𝑡) = −𝜈 for 𝑡 >
𝑡0, where 𝑡0 is the unique point of intersection of𝑃𝛽(𝑡) andΨ𝛼(𝑡) on [0, 𝑇]. That is, the participant
first buys (before 𝑡0) and then sells (after 𝑡0), both at full capacity.

(d) If 𝑃(0) < 𝑒(𝛽−𝜇)𝑇Ψ𝛼(𝑇) and (34) holds, or 𝑃(0) < Ψ𝛼(0) and (33) holds, then 𝜈∗(𝑡) = 𝜈 for all 𝑡.
That is, the participant buys all the time at full capacity.

Proof. Note that 𝑁
′
𝛼(𝑡)

𝑁𝛼(𝑡)
= 𝛼(𝑁

1

𝛼 + 𝑡)−1, and

∫
𝑇

𝑡

𝑒−𝛽𝑠𝑁𝛼(𝑠)𝑑𝑠 = 𝑒
𝛽𝑁

1
𝛼 𝛽−𝛼−1

(
Γ(𝛼 + 1, 𝛽(𝑁

1

𝛼 + 𝑡)) − Γ(𝛼 + 1, 𝛽(𝑁
1

𝛼 + 𝑇))

)
,

where Γ(𝑎, 𝑥) ∶= ∫ ∞
𝑥
𝑡𝑎−1𝑒−𝑡𝑑𝑡 is the incomplete Gamma function. As 𝑁 → ∞, we have

∫
𝑇

𝑡

𝑒−𝛽𝑠𝑁𝛼(𝑠)𝑑𝑠 = 𝛽
−1
(
𝑒−𝛽𝑡𝑁𝛼(𝑡) − 𝑒

−𝛽𝑇𝑁𝛼(𝑇)
)
+ 𝑜(𝑁),
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18 TANG and YAO

which together with (28) and (32) implies that

(
Ψ𝛼(𝑡) − 𝑃𝛽(𝑡)

)′
= −

𝛼

𝑁
1

𝛼 + 𝑡

[
ℎ𝑒−𝛽𝑇𝑁𝛼(𝑇)

𝑁𝛼(𝑡)
+ 𝓁𝛽−1

(
𝑒−𝛽𝑡 − 𝑒−𝛽𝑇

𝑁𝛼(𝑇)

𝑁𝛼(𝑡)

)
+ 𝑜(1)

]
− 𝓁𝑒−𝛽𝑡 + (𝛽 − 𝜇)𝑃(0)𝑒−(𝛽−𝜇)𝑡.

(35)

Multiplying the RHS of (35) by 𝑒(𝛽−𝜇)𝑡, we get

−
𝛼

𝑁
1

𝛼 + 𝑡

[
ℎ𝑒−𝛽(𝑡−𝑇)−𝜇𝑡𝑁𝛼(𝑇)

𝑁𝛼(𝑡)
+ 𝓁𝛽−1

(
𝑒−𝜇𝑡 − 𝑒−𝛽(𝑡−𝑇)−𝜇𝑡

𝑁𝛼(𝑇)

𝑁𝛼(𝑡)

)
+ 𝑜(1)

]
− 𝓁𝑒−𝜇𝑡 + (𝛽 − 𝜇)𝑃(0).

Clearly, the sum of all the terms above is lower bounded by

−

(
𝛼ℎ𝑒−𝜇𝑇𝑁𝛼(𝑇)

𝑁
1+

1

𝛼

+ 𝛼𝓁𝛽−1𝑁
−
1

𝛼 + 𝓁

)
+ (𝛽 − 𝜇)𝑃(0)

(33)
> 0,

which implies that inf [0,𝑇](Ψ𝛼(𝑡) − 𝑃𝛽(𝑡))′ > 0, and hence, Ψ𝛼(𝑡) − 𝑃𝛽(𝑡) is increasing.
Moreover, the term is upper bounded by

−

(
𝛼ℎ𝑒−𝛽𝑇

𝑁
1

𝛼 + 𝑇

+ 𝓁𝑒−𝜇𝑇

)
+ (𝛽 − 𝜇)𝑃(0)

(34)
< 0,

which implies that sup[0,𝑇](Ψ𝛼(𝑡) − 𝑃𝛽(𝑡))
′ < 0, and hence, Ψ𝛼(𝑡) − 𝑃𝛽(𝑡) is decreasing.

(a) If 𝑃(0) > 𝑒(𝛽−𝜇)𝑇Ψ𝛼(𝑇) and (33) holds, then Ψ𝛼(𝑇) < 𝑃𝛽(𝑇) and Ψ𝛼(𝑡) − 𝑃𝛽(𝑡) is increasing.
If 𝑃(0) > Ψ𝛼(0) and (34) holds, thenΨ𝛼(0) < 𝑃𝛽(0) andΨ𝛼(𝑡) − 𝑃𝛽(𝑡) is decreasing. In both cases,
we have Ψ𝛼(𝑡) − 𝑃𝛽(𝑡) < 0 for all 𝑡.
(b) (c) (d) follow the same argument as (a). □

See Figure 3 for an illustration of the results in the above proposition. Also note that the
connection to the participant’s risk sensitivity as remarked at the end of Section 4.1 can also be
mademore explicit when the price process 𝑃(𝑡) follows the GBMmodel in (31), for which we have
𝑃𝛽(𝑡) = 𝑃(0)𝑒

−(𝛽−𝜇)𝑡. Then, the three cases in Proposition 4.1 correspond to 𝛽 = 𝜇 (martingale),
𝛽 < 𝜇 (sub-martingale), and 𝛽 > 𝜇 (super-martingale). According to the three ranges of 𝛽, they
can be viewed as representing the participant as risk-neutral, risk-seeking and risk-averse.

4.3 Convex utility

It is possible to extend the above results to more general, non-linear utility functions 𝓁(⋅) and
ℎ(⋅), by following the same approach as above that leads to 𝑣+(𝑡, 𝑥) and 𝑣−(𝑡, 𝑥) in (24) and (26).

Specifically, considering the two cases of 𝜕𝑥𝑣 ≥ 𝑃𝛽(𝑡), and 𝜕𝑥𝑣 < 𝑃𝛽(𝑡), we can derive
𝑣+(𝑡, 𝑥) ∶= 𝑒−𝛽𝑇ℎ

(
𝛾+𝑡,𝑥(𝑇)

)
+ ∫ 𝑇

𝑡

[
𝑒−𝛽𝑠𝓁

(
𝛾+𝑡,𝑥(𝑠)

)
− 𝜈𝑃𝛽(𝑠)

]
𝑑𝑠, (36)
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TANG and YAO 19

F IGURE 3 Optimal stake trading with linear 𝓁(⋅), ℎ(⋅) when 𝑃𝛽(𝑡) = 𝑃(0)𝑒(𝜇−𝛽)𝑡 and 𝑁(𝑡) = 𝑁𝛼(𝑡).. [Color
figure can be viewed at wileyonlinelibrary.com]

𝑣−(𝑡, 𝑥) ∶= 𝑒−𝛽𝑇ℎ
(
𝛾−𝑡,𝑥(𝑇)

)
+ ∫ 𝑇

𝑡

[
𝑒−𝛽𝑠𝓁

(
𝛾−𝑡,𝑥(𝑠)

)
+ 𝜈𝑃𝛽(𝑠)

]
𝑑𝑠; (37)

whereas 𝛾+𝑡,𝑥 and 𝛾
−
𝑡,𝑥 remain the same as in (25) and (27).

TheΨ function in (28) now splits into two functions: for (𝑡, 𝑥) ∈ 𝑄 ∶= {(𝑡, 𝑥) ∶ 0 ≤ 𝑡 < 𝑇, 0 <
𝑥 < 𝑁(𝑡)}, we have

𝜕𝑥𝑣
+(𝑡, 𝑥) =

1

𝑁(𝑡)

(
𝑒−𝛽𝑇𝑁(𝑇)ℎ′

(
𝛾+𝑡,𝑥(𝑇)

)
+ ∫

𝑇

𝑡

𝑒−𝛽𝑠𝑁(𝑠)𝓁′
(
𝛾+𝑡,𝑥(𝑠)

)
𝑑𝑠

)
⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟

∶=Ψ+(𝑡,𝑥)

, (38)

and

𝜕𝑥𝑣
−(𝑡, 𝑥) =

1

𝑁(𝑡)

(
𝑒−𝛽𝑇𝑁(𝑇)ℎ′

(
𝛾−𝑡,𝑥(𝑇)

)
+ ∫

𝑇

𝑡

𝑒−𝛽𝑠𝑁(𝑠)𝓁′
(
𝛾−𝑡,𝑥(𝑠)

)
𝑑𝑠

)
⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟

∶=Ψ−(𝑡,𝑥)

. (39)

Note that both Ψ+ and Ψ− depend on 𝑥 (as well as on 𝑡), via 𝛾+𝑡,𝑥 and 𝛾
−
𝑡,𝑥. This dependence

makes it necessary to take a closer look at 𝛾+𝑡,𝑥 and 𝛾
−
𝑡,𝑥, since the 𝑥 = 𝑥(𝑡) involved in both depends

on the control 𝜈 before (and up to) 𝑡. We have the following cases: for 𝑠 ≥ 𝑡,
if 𝑥 = 𝛾+

0,𝑥
(𝑡), then 𝛾++(𝑠) ∶= 𝛾

+
𝑡,𝑥(𝑠) =

(
𝜈 ∫ 𝑠
𝑡

𝑑𝑢

𝑁(𝑢)
+ 𝜈 ∫ 𝑡

0

𝑑𝑢

𝑁(𝑢)
+
𝑥

𝑁

)
𝑁(𝑠), (40)

if 𝑥 = 𝛾−
0,𝑥
(𝑡), then 𝛾−−(𝑠) ∶= 𝛾

−
𝑡,𝑥(𝑠) =

(
−𝜈 ∫ 𝑠

𝑡

𝑑𝑢

𝑁(𝑢)
− 𝜈 ∫ 𝑡

0

𝑑𝑢

𝑁(𝑢)
+
𝑥

𝑁

)
𝑁(𝑠). (41)

In otherwords, 𝛾++ corresponds to 𝜈 = 𝜈 both before and after 𝑡, whereas 𝛾−− corresponds to 𝜈 = −𝜈
both before and after 𝑡. The other two cases are similar:

if 𝑥 = 𝛾+
0,𝑥
(𝑡), then 𝛾−+(𝑠) ∶= 𝛾

−
𝑡,𝑥(𝑠) =

(
−𝜈 ∫ 𝑠

𝑡

𝑑𝑢

𝑁(𝑢)
+ 𝜈 ∫ 𝑡

0

𝑑𝑢

𝑁(𝑢)
+
𝑥

𝑁

)
𝑁(𝑠), (42)
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20 TANG and YAO

if 𝑥 = 𝛾−
0,𝑥
(𝑡), then 𝛾+−(𝑠) ∶= 𝛾

+
𝑡,𝑥(𝑠) =

(
𝜈 ∫ 𝑠
𝑡

𝑑𝑢

𝑁(𝑢)
− 𝜈 ∫ 𝑡

0

𝑑𝑢

𝑁(𝑢)
+
𝑥

𝑁

)
𝑁(𝑠); (43)

where 𝛾−+ corresponds to 𝜈 = 𝜈 before (and up to) 𝑡 and 𝜈 = −𝜈 after 𝑡, and 𝛾+− corresponds to the
other way around.

Substituting these four cases into Ψ+ and Ψ− in (38) and (39) further splits the latter two into
four cases:

Ψ++(𝑡) ∶= Ψ
+(𝑡, 𝛾+

0,𝑥
(𝑡)), Ψ−−(𝑡) ∶= Ψ

−(𝑡, 𝛾−
0,𝑥
(𝑡)); (44)

Ψ−+(𝑡) ∶= Ψ
−(𝑡, 𝛾+

0,𝑥
(𝑡)), Ψ+−(𝑡) ∶= Ψ

+(𝑡, 𝛾−
0,𝑥
(𝑡)). (45)

All four are now functions of 𝑡 only, as 𝑥 has been replaced by either 𝛾+
0,𝑥
(𝑡) or 𝛾−

0,𝑥
(𝑡).

Clearly, from (40) to (43) above, we have

𝜕𝑡𝛾
+
+(𝑠) = 𝜕𝑡𝛾

−
−(𝑠) = 0, 𝜕𝑡𝛾

−
+(𝑠) =

2𝜈𝑁(𝑠)

𝑁(𝑡)
> 0, 𝜕𝑡𝛾

+
−(𝑠) = −

2𝜈𝑁(𝑠)

𝑁(𝑡)
< 0. (46)

Now, suppose 𝓁(⋅) and ℎ(⋅) are both smooth, convex (and increasing) functions. Hence, 𝓁′(⋅) ≥
0 and ℎ′(⋅) ≥ 0, and both are increasing functions. Then, it is readily verified:
(i) Both Ψ++(𝑡) and Ψ−−(𝑡) are decreasing in 𝑡 ∈ [0, 𝑇], and so is Ψ+−(𝑡); whereas Ψ

−
+(𝑡) could be

both increasing and decreasing (i.e., non-monotone).
(ii) Furthermore, Ψ++(𝑡) ≥ Ψ−−(𝑡) for all 𝑡 ∈ [0, 𝑇].
For instance, for Ψ++(𝑡) in (i), consider

𝜕𝑡Ψ
+
+(𝑡) = 𝑒

−𝛽𝑇𝑁(𝑇)

(
ℎ
′′
(𝛾++(𝑇))𝜕𝑡𝛾

+
+(𝑇)

𝑁(𝑡)
−
ℎ′(𝛾++(𝑇))𝑁

′(𝑡)

𝑁2(𝑡)

)

−
𝑁′(𝑡)

𝑁2(𝑡) ∫
𝑇

𝑡

𝑒−𝛽𝑠𝑁(𝑠)𝓁′(𝛾++(𝑠))𝑑𝑠 − 𝑒
−𝛽𝑡𝓁′(𝛾++(𝑡))

+
1

𝑁(𝑡) ∫
𝑇

𝑡

𝑒−𝛽𝑠𝑁(𝑠)𝓁
′′
(𝛾++(𝑠))𝜕𝑡𝛾

+
+(𝑠)𝑑𝑠 ≤ 0, (47)

where ≤ 0 follows from 𝜕𝑡𝛾++(⋅) = 0 in both the first and last terms on the RHS. The other two
cases, 𝜕𝑡Ψ−−(𝑡) ≤ 0 and 𝜕𝑡Ψ+−(𝑡) ≤ 0, are similarly verified.

As in the case of linear utility, the properties above can be used to compare against 𝑃𝛽(𝑡) to
identify the optimal trading strategy. Consider the case of 𝑃𝛽(𝑡) being a constant, 𝑃𝛽(𝑡) = 𝑃(0) for
all 𝑡 ∈ [0, 𝑇], as in part (i) of Proposition 4.1. If Ψ++(𝑡) ≥ Ψ−−(𝑡) ≥ 𝑃(0) for all 𝑡 ∈ [0, 𝑡], then the
optimal strategy is to buy all the time and at rate 𝜈. If 𝑃(0) ≥ Ψ++(𝑡) > Ψ−−(𝑡) for all 𝑡 ∈ [0, 𝑡], then
it is optimal to sell all the time, at full capacity.

On the other hand, sinceΨ+− corresponds to sell first (before 𝑡) and then buy, this clearly cannot
be optimal, as it is impossible forΨ+− ≤ 𝑃(0) before 𝑡 andΨ+− ≥ 𝑃(0) after 𝑡, sinceΨ+− is decreasing
in 𝑡. Similarly,Ψ−+ corresponds to buy first (before 𝑡) and then sell, which can be optimal provided
if Ψ−+(𝑡) is decreasing in 𝑡.

The details are stated in the following proposition; and see Figure 4 for an illustration.
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TANG and YAO 21

F IGURE 4 Optimal stake trading with convex 𝓁(⋅), ℎ(⋅) when 𝑃𝛽(𝑡) is constant, and Ψ++(𝑇) < Ψ−(0, 𝑥) (left)
and Ψ++(𝑇) > Ψ−(0, 𝑥) (right). [Color figure can be viewed at wileyonlinelibrary.com]

Proposition4.3. Assume that𝓁(⋅)andℎ(⋅)are twice continuously differentiable, convex, and satisfy
the conditions in Assumption 2.1. Assume that 𝑃𝛽(𝑡) stays constant, that is, 𝑃𝛽(𝑡) = 𝑃(0) for all 𝑡 ∈
[0, 𝑇]. Further assume the condition (30), and that 𝑡 → Ψ−+(𝑡) is decreasing then

(a) If 𝑃(0) ≥ Ψ++(𝑇) ∨ Ψ−(0, 𝑥), then 𝜈∗(𝑡) = −𝜈 for all 0 ≤ 𝑡 ≤ 𝑇. That is, the participant sells at all
time at full capacity.

(b) If 𝑃(0) ≤ Ψ−+(𝑇), then 𝜈∗(𝑡) = 𝜈 for all 0 ≤ 𝑡 ≤ 𝑇. That is, the participant buys at all time at full
capacity.

(c) If Ψ++(𝑇) < Ψ−(0, 𝑥) and Ψ
−
+(𝑇) < 𝑃(0) < Ψ

−(0, 𝑥), then

𝜈∗(𝑡) =

{
𝜈 for 𝑡 ≤ 𝑡0,
−𝜈 for 𝑡 > 𝑡0,

where 𝑡0 is the unique point in [0, 𝑇] such that Ψ−+(𝑡) = 𝑃(0). That is, the participant first buys
and after some time sells, both at full capacity.

(d) If Ψ−(0, 𝑥) < Ψ++(𝑇), then
(1) if Ψ−(0, 𝑥) < 𝑃(0) < Ψ++(𝑇), then 𝜈∗(𝑡) = −𝜈 for all 0 ≤ 𝑡 ≤ 𝑇. That is, the participant sells

at all time at full capacity.
(2) if Ψ−+(𝑇) < 𝑃(0) ≤ Ψ−(0, 𝑥), then then

𝜈∗(𝑡) =

{
𝜈 for 𝑡 ≤ 𝑡0,
−𝜈 for 𝑡 > 𝑡0,

where 𝑡0 is the unique point in [0, 𝑇] such that Ψ−+(𝑡) = 𝑃(0). That is, the participant first
buys and after some time sells, both at full capacity.

5 EXTENSION: RISK CONTROL

In the previous sections, we have focused on profit seeking objectives in which a participant’s
utility increases with getting more stakes, or consuming more. In the modern finance literature,
Markowitz Markowitz (1959) pioneered the idea of balancing return and risk in any investment,
which is particularly relevant for cryptocurrency trading, which often involves substantial volatil-
ity. In this spirit, here we add to the utility objective two “cost” terms that penalize the deviation
of participant 𝑘’s holding of stakes from the average of all others. The idea is, to extent this
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22 TANG and YAO

deviation measures risk (analogous to the variance in the Markowitz model), it should be the
price to be paid for the utility (in holding stakes) that 𝑘 wants to maximize. (The same idea has
been used in Guo et al. (2022) in the context of stochastic games.) Specifically, the deviation of
participant 𝑘’s holding from the average all others can be expressed as |𝑋𝑘(𝑡) − 𝑁(𝑡)

𝐾
|, taking into

account 𝑁(𝑡) =
∑𝐾
𝑘=1
𝑋𝑘(𝑡). Hence, the new objective function is:

𝑈(𝑥) ∶= sup
{𝜈(𝑡),𝑏(𝑡)}

𝐽(𝜈, 𝑏) ∶= 𝔼

{
∫



0

𝑒−𝛽𝑡(𝑑𝑐(𝑡) + 𝓁(𝑋(𝑡))𝑑𝑡) + 𝑒−𝛽 (𝑏( ) + ℎ(𝑋( ))

− ∫


0

𝑒−𝛿𝑡𝑔

(
𝑋(𝑡) −

𝑁(𝑡)

𝐾

)
𝑑𝑡 − 𝑒−𝛿 𝑞

(
𝑋( ) − 𝑁( )

𝐾

)}
(48)

subject to 𝑋′(𝑡) = 𝜈(𝑡) +
𝑁′(𝑡)

𝑁(𝑡)
𝑋(𝑡), 𝑋(0) = 𝑥, (C0)

𝑑𝑐(𝑡) + 𝑑𝑏(𝑡) − 𝑟𝑏(𝑡)𝑑𝑡 + 𝑃(𝑡)𝜈(𝑡)𝑑𝑡 = 0, (C1)

𝑏(0) = 0, 𝑏(𝑡) ≥ 0 and 0 ≤ 𝑋(𝑡) ≤ 𝑁(𝑡), (C2)

|𝜈(𝑡)| ≤ 𝜈, (C3)

where 𝛿 > 0 is a discount factor (which may or may not be equal to 𝛽), and 𝑔 ∶ ℝ → ℝ+ and
𝑞 ∶ ℝ → ℝ+ are symmetric, and increasing onℝ+ (a typical example is 𝑔(𝑥) = 𝑔𝑥2 and 𝑞(𝑥) = 𝑞𝑥2
with 𝑔, 𝑞 > 0).

The theorem below follows the same argument as Theorem 3.4.

Theorem 5.1. Let the assumptions in Theorem 3.4 hold for the problem (48). Assume that 𝑔, 𝑞 ∈
1(ℝ)are symmetric, and increasing onℝ+. Then𝑈(𝑥) = 𝑣(0, 𝑥)where 𝑣(𝑡, 𝑥) is the unique viscosity
solution to the following HJB equation:

⎧⎪⎪⎨⎪⎪⎩
𝜕𝑡𝑣 + 𝑒

−𝛽𝑡𝓁(𝑥) − 𝑒−𝛿𝑡𝑔
(
𝑥 −

𝑁(𝑡)

𝐾

)
+
𝑥𝑁′(𝑡)

𝑁(𝑡)
𝜕𝑥𝑣 + sup|𝜈|≤𝜈{𝜈(𝜕𝑥𝑣 − 𝑃𝛽(𝑡))} = 0 in 𝑄,

𝑣(𝑇, 𝑥) = 𝑒−𝛽𝑇ℎ(𝑥) − 𝑒−𝛿𝑇𝑞
(
𝑥 −

𝑁(𝑇)

𝐾

)
,

𝑣(𝑡, 0) = 𝑒−𝛽𝑡ℎ(0) − 𝑒−𝛿𝑡𝑞
(
𝑁(𝑡)

𝐾

)
, 𝑣(𝑡, 𝑁(𝑡)) = 𝑒−𝛽𝑡ℎ(𝑁(𝑡)) − 𝑒−𝛿𝑡𝑞

(
(𝐾−1)𝑁(𝑡)

𝐾

)
.

(49)

Moreover, the optimal strategy is 𝑏∗(𝑡) = 0 and 𝜈∗(𝑡) = 𝜈∗(𝑡, 𝑋∗(𝑡)) for 0 ≤ 𝑡 ≤ ∗ (if it exists), where
𝜈∗(𝑡, 𝑥) achieves the supremum in (22), and 𝑋∗(𝑡) solves 𝑋′∗(𝑡) = 𝜈∗(𝑡, 𝑋∗(𝑡)) +

𝑁′(𝑡)

𝑁(𝑡)
𝑋∗(𝑡) with

𝑋∗(0) = 𝑥, and ∗ ∶= inf {𝑡 > 0 ∶ 𝑋∗(𝑡) = 0 or𝑁(𝑡)} ∧ 𝑇.
In general, the HJB equation (49) does not have a closed-form solution even when 𝓁, ℎ are

linear, and 𝑔, 𝑞 are quadratic. Again it requires numerical methods to solve the HJB equation,
and then find the optimal strategy 𝜈∗. Nevertheless, there is one exception where the participant
is only concerned with the risk entailed by the stakes. The objective is to solve the stake parity
problem:
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TANG and YAO 23

𝑈(𝑥) ∶= inf
𝜈(𝑡)
𝐽(𝜈) ∶= ∫



0

𝑒−𝛿𝑡𝑔

(
𝑋(𝑡) −

𝑁(𝑡)

𝐾

)
𝑑𝑡 + 𝑒−𝛿 𝑞

(
𝑋( ) − 𝑁( )

𝐾

)
(50)

subject to 𝑋′(𝑡) = 𝜈(𝑡) +
𝑁′(𝑡)

𝑁(𝑡)
𝑋(𝑡), 𝑋(0) = 𝑥, (C0)

𝑏(0) = 0, 𝑏(𝑡) ≥ 0 and 0 ≤ 𝑋(𝑡) ≤ 𝑁(𝑡), (C2’)

|𝜈(𝑡)| ≤ 𝜈. (C3)

Since 𝑔, ℎ attain the minimum at 0, if 𝑥 ≥ 𝑁∕𝐾, then the participant sells at full capacity until
hitting the average 𝑁(𝑡)∕𝐾; if if 𝑥 < 𝑁∕𝐾, then the participant purchases at full capacity until
hitting the average 𝑁(𝑡)∕𝐾. We record this simple fact in the following proposition.

Proposition 5.2. Assume that 𝑔, 𝑞 ∈ 1(ℝ)are symmetric, and increasing onℝ+ for the stake parity
problem (50). Let 𝛾+(𝑡) be defined by (10), and

𝛾−(𝑡) ∶= −𝜈𝑁(𝑡)∫
𝑡

0

𝑑𝑠

𝑁(𝑠)
+
𝑥𝑁(𝑡)

𝑁
for 0 ≤ 𝑡 ≤ 𝑇, (51)

and

𝑡± ∶= inf

{
𝑡 > 0 ∶ 𝜈 ∫

𝑡

0

𝑑𝑠

𝑁(𝑠)
= ±

(
1

𝐾
−
𝑥

𝑁

)}
. (52)

Then, the following results hold.

(i) If 𝑥 > 𝑁( 1
𝐾
+ 𝜈 ∫ 𝑇

0

𝑑𝑡

𝑁(𝑡)
), then the optimal strategy is 𝜈∗(𝑡) = −𝜈 for all 0 ≤ 𝑡 ≤ 𝑇, and𝑈(𝑥) =

∫ 𝑇
0
𝑒−𝛿𝑡𝑔(𝛾−(𝑡) −

𝑁(𝑡)

𝐾
)𝑑𝑡 + 𝑒−𝛿𝑇𝑞(𝛾−(𝑇) −

𝑁(𝑇)

𝐾
).

(ii) If 𝑁
𝐾
< 𝑥 ≤ 𝑁( 1

𝐾
+ 𝜈 ∫ 𝑇

0

𝑑𝑡

𝑁(𝑡)
), then the optimal strategy is

𝜈∗(𝑡) =

{
−𝜈 for 𝑡 ≤ 𝑡−,
0 for 𝑡 > 𝑡−,

and𝑈(𝑥) = ∫ 𝑡−
0
𝑒−𝛽𝑡𝑔(𝛾−(𝑡) −

𝑁(𝑡)

𝐾
)𝑑𝑡 +

𝑔(0)

𝛿
(𝑒−𝛿𝑡− − 𝑒−𝛿𝑇) + 𝑒−𝛿𝑇𝑞(0).

(iii) If𝑁( 1
𝐾
− 𝜈 ∫ 𝑇

0

𝑑𝑡

𝑁(𝑡)
) ≤ 𝑥 < 𝑁

𝐾
, then the optimal strategy is

𝜈∗(𝑡) =

{
𝜈 for 𝑡 ≤ 𝑡−,
0 for 𝑡 > 𝑡−,

and𝑈(𝑥) = ∫ 𝑡+
0
𝑒−𝛽𝑡𝑔(𝛾−(𝑡) −

𝑁(𝑡)

𝐾
)𝑑𝑡 +

𝑔(0)

𝛿
(𝑒−𝛿𝑡− − 𝑒−𝛿𝑇) + 𝑒−𝛿𝑇𝑞(0).

(iv) If 𝑥 < 𝑁( 1
𝐾
− 𝜈 ∫ 𝑇

0

𝑑𝑡

𝑁(𝑡)
), the the optimal strategy is 𝜈∗(𝑡) = 𝜈 for all 0 ≤ 𝑡 ≤ 𝑇, and 𝑈(𝑥) =

∫ 𝑇
0
𝑒−𝛿𝑡𝑔(𝛾+(𝑡) −

𝑁(𝑡)

𝐾
)𝑑𝑡 + 𝑒−𝛿𝑇𝑞(𝛾+(𝑇) −

𝑁(𝑇)

𝐾
).
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24 TANG and YAO

Proof. (i) If 𝑥 > 𝑁( 1
𝐾
+ 𝜈 ∫ 𝑇

0

𝑑𝑡

𝑁(𝑡)
), we have 𝛾−(𝑡) > 𝑁(𝑡)∕𝐾 for all 0 ≤ 𝑡 ≤ 𝑇. By a comparison

argument, we get 𝑋(𝑡) ≥ 𝛾−(𝑡) for all 0 ≤ 𝑡 ≤ 𝑇 given any feasible strategy 𝜈(𝑡). Since 𝑔, 𝑞 are
increasing on ℝ+, we obtain

∫
𝑇

0

𝑒−𝛿𝑡𝑔

(
𝑋(𝑡) −

𝑁(𝑡)

𝐾

)
𝑑𝑡 + 𝑒−𝛿𝑇𝑞

(
𝑋(𝑇) −

𝑁(𝑇)

𝐾

)

≥ ∫
𝑇

0

𝑒−𝛿𝑡𝑔

(
𝛾−(𝑡) −

𝑁(𝑡)

𝐾

)
𝑑𝑡 + 𝑒−𝛿𝑇𝑞

(
𝛾−(𝑇) −

𝑁(𝑇)

𝐾

)
,

which yields the desired result.
(ii) If 𝑁

𝐾
< 𝑥 ≤ 𝑁( 1

𝐾
+ 𝜈 ∫ 𝑇

0

𝑑𝑡

𝑁(𝑡)
), we have 𝛾−(𝑡) > 𝑁(𝑡)∕𝐾 for 0 ≤ 𝑡 < 𝑡− and 𝛾−(𝑡−) =

𝑁(𝑡−)∕𝐾. Again by the comparison argument, 𝑋(𝑡) ≥ 𝛾−(𝑡) for 0 ≤ 𝑡 ≤ 𝑡− given any strategy.
Thus,

∫
𝑇

0

𝑒−𝛿𝑡𝑔

(
𝑋(𝑡) −

𝑁(𝑡)

𝐾

)
𝑑𝑡 + 𝑒−𝛿𝑇𝑞

(
𝑋(𝑇) −

𝑁(𝑇)

𝐾

)

= ∫
𝑡−

0

𝑒−𝛿𝑡𝑔

(
𝑋(𝑡) −

𝑁(𝑡)

𝐾

)
𝑑𝑡 + ∫

𝑇

𝑡−

𝑒−𝛿𝑡𝑔

(
𝑋(𝑡) −

𝑁(𝑡)

𝐾

)
𝑑𝑡 + 𝑒−𝛿𝑇𝑞

(
𝑋(𝑇) −

𝑁(𝑇)

𝐾

)

≥ ∫
𝑡−

0

𝑒−𝛿𝑡𝑔

(
𝛾−(𝑡) −

𝑁(𝑡)

𝐾

)
𝑑𝑡 + 𝑔(0)∫

𝑇

𝑡−

𝑒−𝛿𝑡𝑑𝑡 + 𝑒𝛿𝑇𝑔(0),

which permits to conclude.
(iii) and (iv) follow the same argument as (1) and (2). □

6 CONCLUSION

We have developed in this paper a continuous-time control approach to the optimal trading
under the PoS protocol, formulated as a consumption-investment problem. We present general
solutions to the optimal control via dynamic programming and theHJB equations, and in the case
of linear and utility functions, close-form solutions in the form of bang-bang controls. Further-
more, we bring out the explicit connections between the rate of return in trading/holding stakes
and the participant’s risk-adjusted valuation of the stakes, such that the participant’s risk sensi-
tivity is explicitly accounted for in the trading strategy. We have also studied a risk-control version
of the consumption-investment problem, and for a special case, the “stake-parity” problem, we
show a mean-reverting strategy is the optimal solution.

While our focus here is entirely on an individual participant’s trading strategy in a PoS pro-
tocol, it is possible to study the interactions among the participants, and formulate the problem
of trading in a PoS protocol as a game (deterministic or stochastic), and to study issues such as
equilibrium, social welfare, and the inclusion of a trusted third party (or market maker). This will
be our focus of a follow-up paper.
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