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Abstract. This paper is concerned with the convergence rate of policy iteration for (determin-
istic) optimal control problems in continuous time. To overcome the problem of ill-posedness
due to lack of regularity, we consider a semi-discrete scheme by adding a viscosity term via finite
differences in space. We prove that PI for the semi-discrete scheme converges exponentially
fast, and provide a bound on the error induced by the semi-discrete scheme. We also consider
the discrete space-time scheme, where both space and time are discretized. Convergence rate
of PI and the discretization error are studied.

1. Introduction

Optimal control is ubiquitous in science and engineering with a variety of applications includ-
ing aerospace engineering [6, 10], chemical engineering [31], economy [24], operations research
[36, 37] and robotics [2, 12]. Dynamic programming (DP) has proved to be an efficient tool to
solve multistage optimal control problems since its inception by Bellman [5]. In recent years,
reinforcement learning (RL) has shown great success in resolving complex decision making
problems, notably AlphaGo [38] and humanoid tasks [18]. Policy iteration (PI), as a class of
approximate or adaptive dynamic programming (ADP), is instrumental in many RL algorithms
[40].

The idea of PI dates back to Howard [20] in a stochastic environment known as the Markov
decision process (MDP). Subsequent works [7, 33, 34] explored PI for MDPs in discrete time and
space; recently, [8, 30] considered PI for (deterministic) optimal control problems in discrete
time and continuous space. In these works, PIs are proved to converge to the optimal control
under suitable conditions on the model parameters. On the other hand, many real-world prob-
lems are modeled by dynamical systems evolving in continuous time, and it is known that DP
for optimal control in continuous time and space entails the Hamilton-Jacobi-Bellman (HJB)
partial differential equation (PDE). Despite its importance, PI for optimal control problems in
continuous time and space has not been rigorously studied until recently. [1, 43] proved the
convergence of PI for continuous-time linear quadratic optimal control problems; more general
cases were settled in [28] under a fixed point assumption. For the stochastic control problems,
[26, 35] showed that PI converges exponentially fast in the case where controls are only exer-
cised on the drift term of the state process. Similar results were derived for the corresponding
entropy-regularized problems [22, 41]. We also mention, in a closely related direction, [9, 45]
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studied value iteration for optimal control problems. See [29, 44] for recent progress on theory
and applications of ADP for optimal control and RL.

In this paper, we study the convergence rate of PI for optimal control problems in continuous
time and their discretization under fairly general conditions on the model parameters. Note
that the convergence analysis in [1, 43] relies on the linear quadratic structure of the problem,
while [28] assumed that the HJB operator enjoys a fixed point, or a contraction property
which is hard to verify. None of these works quantified the convergence of PI to the optimal
control. Moreover, PI for continuous-time control problems may even be ill-posed due to lack
of regularity. Our idea is to introduce a viscosity term “h∆h” in the policy evaluation, where
h is the mesh size and ∆h is the discrete Laplacian in space. We call it a semi-discrete scheme.
Essentially the viscosity term is of order 1, which assures that the finite difference scheme is
monotone. In fact, a monotone scheme is commonly desirable for numerical implementation so
the addition of the finite difference viscosity term is natural. On the other hand, the viscosity
term in the semi-discrete scheme mimics the vanishing viscosity approximation to first-order
PDEs [16], which forces PI to converge exponentially fast (Theorem 3.1) as for the stochastic
control problems. We also prove that the discrepancy between the optimal control problem
and its semi-discrete scheme is of order

√
h as h → 0 (Theorem 3.3). Further we consider

the time-discretization, called a discrete space-time scheme. The same results hold for PI for
the discrete space-time scheme (Theorem 4.1 and Theorem 4.2). Our results echo recent work
[19], which asserts that noise enhances the convergence of finite-horizon RL algorithms. In
our setting, noise corresponds to the viscosity term, and the importance of finite-horizon is
seen from various bounds with exponential dependence in time. Our analysis relies on PDE
techniques, and may carry over to the study of differential games in solving Hamilton-Jacobi-
Bellman-Issacs (HJBI) equations.

The rest of the paper is organized as follows. In Section 2, we provide background, and
present the semi-discrete and the discrete space-time schemes. In Section 3 we study the
semi-discrete scheme, and in Section 4 we analyze the discrete space-time scheme. We provide
further PDE perspectives in Section 5. We conclude with Section 6.

2. Setup and preliminary results

In this section, we present the semi-discrete and the discrete space-time schemes. Consider
a system whose state is governed by the ordinary differential equation:

dxt
dt

= f(t, xt, αt), (2.1)

where for 0 ≤ t ≤ T , xt ∈ Rd is the system state, and αt ∈ A ⊂ Rm is the control or policy.
Here, A is a given compact subset of Rm. The objective is

J(t, x, α) :=

∫ T

t
c(s, xs, αs) ds+ q(xT ) given xt = x, (2.2)

and the goal is to minimize this objective function. Denote by

v∗(t, x) := inf
α∈At

J(t, x, α), (2.3)

where At is the standard admissible policy defined as At = {α : [t, T ]→ A : α is measurable}.
It is known that under suitable conditions on c(·) and q(·) (see [17, Chapter 2] or [42, Chapter
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2]), v∗ defined by (2.3) is the viscosity solution to{
∂tv +H(t, x,∇v) = 0 in (0, T )× Rd,
v(T, x) = q(x) on Rd,

(2.4)

where the Hamiltonian H is given by H(t, x, p) := infa∈A [c(t, x, a) + p · f(t, x, a)]. The optimal
policy is given by

α∗(t, x) = α(t, x,∇v∗), (2.5)

where
α(t, x, p) := arg mina∈A [c(t, x, a) + p · f(t, x, a)] , (2.6)

is assumed for simplicity to be unique throughout this paper.

Policy iteration is an approximate dynamic programming, which alternates between policy
evaluation to get the value function with the current control and policy improvement to optimize
the value function. More precisely, for n = 0, 1, · · · , the iterative procedure is:

• Given αn(t, x), solve the PDE{
∂tvn + c(t, x, αn) +∇vn · f(t, x, αn) = 0 in (0, T )× Rd,
vn(T, x) = q(x) on Rd.

(2.7)

• Set

αn+1(t, x) = α(t, x,∇vn) = arg mina∈A [c(t, x, a) +∇vn(t, x) · f(t, x, a)] . (2.8)

The key is to understand how the sequence {vn} approximates the optimal value v∗, and how
{αn} approximates the optimal policy α∗.

On the other hand, it is not clear whether the policy iteration scheme (2.7)–(2.8) is well-
posed. Intuitively, to make sense of αn+1 we need vn to be Lipschitz continuous, for which we
then need αn to be Lipschitz. This in turn requires ∇vn−1 to be Lipschitz. After iterations,
this means that we need v0 to be smooth which is in general not true.

2.1. Semi-discrete schemes. For T ≥ 1, h ∈ (0, 1), N ≥ max{1, ‖f‖∞/2} and a given
continuous function α0 : R× Rd → A, we solve for n = 0, 1, · · ·{

∂tv
h
n + c(t, x, αn) +∇hvhn · f(t, x, αn) = −Nh∆hvhn in (0, T )× Rd

vhn(T, x) = q(x) on Rd.
(2.9)

Then set
αn+1(t, x) = α(t, x,∇hvhn) in (0, T )× Rd. (2.10)

Here, for any ϕ : Rd → R and h ∈ R \ {0}, we use the notations

∇hϕ(x) :=

(
ϕ(x+ he1)− ϕ(x− he1)

2h
, · · · , ϕ(x+ hed)− ϕ(x− hed)

2h

)
,

∆hϕ(x) :=
d∑
i=1

ϕ(x+ hei)− 2ϕ(x) + ϕ(x− hei)
h2

.

Later we will also write Dhϕ(x) :=
(
ϕ(x+he1)−ϕ(x)

h , · · · , ϕ(x+hed)−ϕ(x)
h

)
. It is clear that

∇hϕ(x) =
1

2
(Dhϕ(x)−D−hϕ(x)). (2.11)
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The assumption N ≥ ‖f‖∞/2 guarantees that the numerical Hamiltonian is monotone and,
as a consequence of this, the following comparison principle holds (see e.g., [13, 32, 42]).

Lemma 2.1. Let vh0 and ṽh0 be, respectively, a bounded continuous super- and sub- solution
to (2.9) with n = 0, and satisfy ṽh0 ≤ vh0 at t = T . Then ṽh0 ≤ vh0 in [0, T ] × Rd. Here by a
supersolution (resp. subsolution), we mean that it satisfies (2.9) with the first equality replaced
by ≤ (resp. ≥).

First, we show that the scheme (2.9)–(2.10) is well-posed. We need the following assumptions:

(A1) c(·, ·, ·), f(·, ·, ·), q(·) are uniformly bounded and Lipschitz continuous in all of their de-
pendences.

(A2) α(·, ·, ·) and α0(·, ·) are uniformly Lipschitz continuous in all of their dependences.

Throughout this paper, we write C as various universal constants that only depend on d,N ,
and the constants in (A1)–(A2) unless otherwise stated. Specifically, since T is not a universal
constant, we keep track of the dependence on T in most estimates. The constants C might
vary from one line to another. By CX or C(X) we mean a constant that depend on universal
constants and X.

Proposition 2.2. Assume (A1)–(A2) and N ≥ max{1, ‖f‖∞/2}. Then the iterative process
(2.9)–(2.10) is well-defined, that is, there are Lipschitz continuous functions vhn, αn satisfying
(2.9)–(2.10) and vhn are uniformly bounded for all n ≥ 0 and h > 0.

Proof. Since α0 is Lipschitz continuous, the unique solvability of (2.9) for n = 0 follows from
[27, Theorem 2.4]. If one can show that vh0 is uniformly bounded and Lipschitz continuous with
Lipschitz constant Ch, then α1 is Lipschitz continuous with Lipschitz constant Ch/h by the
assumption that α is Lipschitz. From the same argument, we obtain a unique bounded and
Lipschitz solution vh1 . The existence of solutions then follows from iterations.

First we prove the boundedness of vh0 . Since c(·, ·, ·), q(·) are uniformly bounded, we have that
± [‖q‖∞ + ‖c‖∞(T − t)] are a supersolution and a subsolution to (2.9) with n = 0, respectively.
Hence

−‖q‖∞ − ‖c‖∞(T − t) ≤ vh0 (t, x) ≤ ‖q‖∞ + ‖c‖∞(T − t),

for all (t, x) ∈ [0, T ]× Rd. Actually the same bound holds for all vhn by this argument.

Next we show that vh0 is Lipschitz continuous with Lipschitz constant independent of h when
T is sufficiently small depending only on the assumption (A1) (but not on q). The general
result follows immediately by iterations. For simplicity of notations, write

G(t, x, p) := c(t, x, α0(t, x)) + p · f(t, x, α0(t, x)).

Then for M := 2‖∇q‖∞ + 1, define

G̃(t, x, p) :=

{
G(t, x, p) if |p| ≤M,

G(t, x,Mp/|p|) if |p| > M.

It follows from (A1) and the choice of N that

|G̃t(t, x, p)|, |G̃x(t, x, p)| ≤ C(1 +M), |G̃p(t, x, p)| ≤ 2N. (2.12)
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Now let ṽh be the solution to{
∂tṽ

h + G̃(t, x,∇hṽh) = −Nh∆hṽh,

ṽh(T, x) = q(x).

The goal is to show that ṽh is Lipschitz continuous, and ṽh = vh0 in [0, T ]× Rd.
Note that for any e ∈ Sd−1 and s ∈ (0, 1), ps := ṽh(t,x+se)−ṽh(t,x)

s satisfies
∂tps +G1(t, x) +G2(t, x) · ∇hps = −Nh∆hps in (0, T )× Rd,

ps(T, x) =
q(x+ se)− q(x)

s
on Rd,

(2.13)

where

G1(t, x) :=
1

s

∫ s

0
G̃x

(
t, x+ ze,∇hṽh(t, x+ se)

)
· e dz,

G2(t, x) :=

∫ 1

0
G̃p

(
t, x,∇hṽh(t, x) + z(∇hṽh(t, x+ se)−∇hṽh(t, x))

)
dz.

It is clear from (2.12) that |G1| ≤ C(1 +M) and |G2| ≤ 2N . This yields that the comparison
principle for (2.13) holds. Thus, by comparing ps with ±(‖∇q‖∞+C(1+M)(T −t)), we obtain
|ps(t, x)| ≤ ‖∇q‖∞ + C(1 + M)(T − t). Sending s → 0 yields for some C depending only on
(A1), |∇eṽh(t, x)| ≤ ‖∇q‖∞+C(1 +M)(T − t). Thus, if t ≤ T ≤ (2C)−1, we have that ṽh(t, x)
is Lipschitz and

sup
(t,x)∈[0,T ]×Rd

|∇ṽh(t, x)| ≤ ‖∇q‖∞ + 1/2 +M/2 = M.

From the definition of ∇h, we get sup(t,x)∈[0,T ]×Rd |∇hṽh(t, x)| ≤M. Hence, ṽh is a solution to

(2.9) for n = 0. The uniqueness of the solution to (2.9) yields that vh0 ≡ ṽh. So we obtain the
uniform Lipschitz continuity of vh0 in space, with Lipschitz constant of the form C exp(CT ).
The Lipschitz regularity in time follows from the equation. �

We point out that the Lipschitz constant of vhn may depend on both n and h for n ≥
1. Another consequence of the comparison principle is that the functions vhn are monotone
decreasing in n.

Proposition 2.3. Under the assumptions of Proposition 2.2, we have for all n ≥ 0,

vhn+1 ≤ vhn in [0, T ]× Rd.

Proof. By the definition of αn,

c(t, x, αn+1(t, x)) +∇hvhn · f(t, x, αn+1(t, x))

≤ c(t, x, αn(t, x)) +∇hvhn · f(t, x, αn(t, x)).

Thus vhn is a supersolution to (2.9) with subscripts n+ 1 as it satisfies

∂tv
h
n + c(t, x, αn+1) +∇hvhn · f(t, x, αn+1) ≤ −Nh∆hvhn in (0, T )× Rd.

Therefore, the comparison principle yields vhn ≤ vhn+1 in [0, T ]× Rd for each n ≥ 0. �
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Since vhn is uniformly bounded for all n ≥ 0, the monotonicity property yields that vhn
converges locally uniformly as n → ∞. Let us denote the limit as vh. Then by the stability
property of viscosity solutions, vh solves{

∂tv
h +H(t, x,∇hvh) = −Nh∆hvh in (0, T )× Rd,

vh(T, x) = q(x) on Rd,
(2.14)

where
H(t, x, p) := c(t, x, α(t, x, p)) + p · f(t, x, α(t, x, p))

= min
a∈A

[c(t, x, a) + p · f(t, x, a)] . (2.15)

Since α(t, x, p) is assumed to be uniformly Lipschitz continuous in all of its dependences, there
exists C > 0 such that for all (t, x, p) ∈ [0, T ]× Rd × Rd,

|Ht(t, x, p)|, |Hx(t, x, p)| ≤ C(1 + |p|), |Hp(t, x, p)| ≤ C. (2.16)

Moreover, one can expect that vh converges as h → 0, and the limit v should be the unique
solution to (2.4).

It was proved in Proposition 2.2 that vh0 is uniformly bounded and Lipschitz continuous in
[0, T ]×Rd. By the same proof, we have that vh and v are also uniformly bounded and Lipschitz
continuous for all h > 0.

Lemma 2.4. Under the assumptions of Proposition 2.2, let vh0 , v
h and v be, respectively, solu-

tions to (2.9) (for n = 0), (2.14) and (2.4). Then in [0, T ] × Rd, vh0 , vh and v are bounded by
C(1 + T ) and are Lipschitz continuous with Lipschitz constant C exp(CT ) for some universal
constant C > 0.

For a general class of first-order Hamilton-Jacobi (continuous) equations, we refer to [3, 4]
for the regularity results.

2.2. Discrete space-time schemes. Now we consider the scheme that is discrete in both
space and time. Let τ, h ∈ (0, 1), and N such that

max{1, ‖f‖∞/2} ≤ N ≤ h/(2τ). (2.17)

Assuming that T/τ ∈ N+, we denote

NτT := {0, τ, 2τ, · · · , T}, Zdh := hZd,

Ωτ,h
T := NτT × Zdh and Ω′T := (NτT \{0})× Zdh.

Given a Lipschitz continuous function α0(t, x), let V τ,h
n : Ωτ,h

T → R be defined iteratively for
n = 0, 1, · · · as follows:{

∂τt V
τ,h
n (t, x) + c(t, x, αn) +∇hV τ,h

n · f(t, x, αn) = −Nh∆hV τ,h
n in Ω′T ,

V τ,h
n (T, x) = q(x) on Zdh

(2.18)

with

αn+1(t, x) := α(t, x,∇hV τ,h
n ) in Ω′T . (2.19)

Here we used the notation ∂τt V
τ,h
n (t, x) := V τ,hn (t,x)−V τ,hn (t−τ,x)

τ .
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We also consider the following equation{
∂τt V

τ,h +H(t, x,∇hV τ,h) = −Nh∆hV τ,h in Ω′T ,

V τ,h(T, x) = q(x) on Zdh.
(2.20)

where H is given by (2.15). The goal is to show that V τ,h
n converges to V τ,h as n → ∞, and

V τ,h converges to v as τ, h→ 0, where v is given by (2.4).

Similarly as before, we write

c := c(t, x, α(t, x,∇hV τ,h)) and f := f(t, x, α(t, x,∇hV τ,h))

cn := c(t, x, αn(t, x)) and fn := f(t, x, αn(t, x)))

for simplicity, when there is no confusion.

We will use the following operator. For each t ∈ NτT , let Ft : L∞(Zdh)→ L∞(Zdh) be defined
as

Ft(U)(x) := U(x) + τH(t, x,∇hU(x)) +Nhτ∆hU(x). (2.21)

Then the equation in (2.20) can be rewritten as V τ,h
n (t− τ, x) = Ft(V τ,h

n (t, ·))(x). We need

max{1, ‖Hp‖∞/2} ≤ N ≤ h/(2τ),

(which corresponds (2.17) as ‖Hp‖∞ = ‖f‖∞) to guarantee a monotonicity property of the

operator Ft. That is, for all t ∈ NτT and U, V ∈ L∞(Zdh) satisfying U ≤ V , we have Ft(U) ≤
Ft(V ), see e.g., [13, 42]. It is easy to see that the same holds if we replace H(t, x, p) by
cn(t, x) + p · fn(t, x).

The monotonicity property is important because it immediately implies the comparison prin-
ciple of (2.20) and the scheme (2.18)–(2.19), in the sense that is similar to Lemma 2.1. As a
consequence of this, one can show the following properties.

Proposition 2.5. Assume (A1)–(A2) and (2.17). Then in Ωτ,h
T , the solutions V τ,h

n , V τ,h are
bounded by C(1+T ), and are Lipschitz continuous with Lipschitz constant C exp(CT ) for some

universal constant C > 0. Moreover for all n ≥ 0 we have V τ,h
n+1 ≤ V

τ,h
n in Ωτ,h

T .

The proof of Proposition 2.5 is similar to those of Propositions 2.2, 2.3 and Lemma 2.4, and
hence we skip it.

3. Analysis of semi-discrete schemes

3.1. Convergence of PI. We show that for each fixed h ∈ (0, 1), vhn → vh as n → ∞
exponentially fast in L2

loc norm.

Theorem 3.1. Assume (A1)–(A2) and N ≥ 1. Let vhn and vh be, respectively, continuous
solutions to (2.9) and (2.14). Then there exists a universal constant C > 0 such that for all
n ≥ 1, R ≥ 1 and t ∈ [0, T ] we have∫

BR

∣∣∣vhn(t, x)− vh(t, x)
∣∣∣2 dx ≤ h

2n+1

∫ T

t

∫
Rd

exp
[
C(1 + ‖∇hvh‖2∞)(s− t)/h

]
×∣∣∣Dh(vh0 (s, x)− vh(s, x))

∣∣∣2 min
{

1, e−|x|+R+1
}
dxds.

In particular, we have supt∈[0,T ]

∫
BR

∣∣vhn(t, x)− vh(t, x)
∣∣2 dx ≤ C2−n exp [C exp(CT )/h]Rd.
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Proof. In this proof, let us write vn := vhn and v := vh, and assume T ≥ 1 for simplicity. For
any fixed R ≥ 1, let ϕ = ϕR : [0,∞)→ (0, 1] be C1 and satisfying

ϕ(r) = 1 on [0, R], ϕ(r) = e−r+R on [R+ 1,∞),

− ϕ′(r) ∈ [0, 4ϕ(r)] for all r > 0.
(3.1)

It is clear that such ϕ exists.

Next, for some A ≥ 1 to be determined, set

Et,n :=
1

2
eAt
∫
Rd
|vn(t, x)− v(t, x)|2ϕ(|x|) dx (3.2)

which is finite since vn, v are uniformly bounded. Direct computation yields

d

dt
Et,n = AEt,n + eAt

∫
Rd

(vn(t, x)− v(t, x)) (∂tvn(t, x)− ∂tv(t, x))ϕ(|x|) dx︸ ︷︷ ︸
=:Xt,n

. (3.3)

Recall from (2.15) that H(t, x,∇hv) = c(t, x, α(t, x,∇hv)) +∇v · f(t, x, α(t, x,∇hv)). Write
c := c(t, x, α(t, x,∇hv)), f := f(t, x, α(t, x,∇hv)), cn := c(t, x, αn(t, x)) and fn := f(t, x, αn(t, x))
for simplicity. Then, using∫

Rd
∆hv vϕ dx = −

∫
Rd
|Dhv|2ϕdx+

1

h2

d∑
i=1

∫
Rd
v(t, x+ hei)(v(t, x+ hei)− v(t, x))ϕ(t, x) dx

− 1

h2

d∑
i=1

∫
Rd
v(t, x)(v(t, x)− v(t, x− hei))ϕ(t, x) dx

= −
∫
Rd
|Dhv|2ϕdx−

∫
Rd
vD−hv ·D−hϕdx,

we obtain from the equation that

Xt,n = −
∫
Rd

(vn − v)(∇hvn · fn + cn +Nh∆hvn −∇hv · f − c−Nh∆hv)ϕdx

≥ Nh
∫
Rd
|Dh(vn − v)|2ϕdx−Nh

∫
Rd
|vn − v||D−h(vn − v)||D−hϕ| dx

−
∫
Rd
|vn − v|

(
|∇h(vn − v)||fn|+ |fn − f ||∇hv|+ |cn − c|

)
ϕdx.

(3.4)

Due to (3.1), |D−hϕ(|x|)| ≤ Cϕ(|x|) for some constant C > 0. Also, using ‖f‖∞ < ∞
and (2.11), we have |∇h(vn − v)||fn| ≤ C(|Dh(vn − v)| + |D−h(vn − v)|). Since v is Lipschitz
continuous, |∇hv| ≤M for some M ≥ 1. So, by (2.10) and the uniform Lipschitz continuity of
f, c and α, we have for some C > 0,

|fn − f ||∇hv|+ |cn − c| ≤ CM(|Dh(vn−1 − v)|+ |D−h(vn−1 − v)|). (3.5)

With all these, if denoting

Ght,n :=

∫
Rd
|Dh(vn(t, x)− v(t, x))|2ϕ(|x|) dx,
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it follows from (3.4) that for some C > 0,

Xt,n ≥ NhGht,n − C
∫
Rd
|vn − v|(|Dh(vn − v)|+ |D−h(vn − v)|)ϕdx

− CM
∫
Rd
|vn − v|(|Dh(vn−1 − v)|+ |D−h(vn−1 − v)|)ϕdx.

By the choice of ϕ, there exists C > 0 such that

G−ht,n ≤ (1 + Ch)Ght,n (3.6)

Then, using (3.2) and Young’s inequality, we get for any σ1, σ2 > 0,

Xt,n ≥ NhGht,n −
σ1

2 + Ch

∫
Rd

(|Dh(vn − v)|2 + |D−h(vn − v)|2)ϕdx

− σ2

2 + Ch

∫
Rd

(|Dh(vn−1 − v)|2 + |D−h(vn−1 − v)|2)ϕdx

− C(2 + Ch)(σ−1
1 +M2σ−1

2 )

∫
Rd
|vn − v|2ϕdx

≥ (Nh− σ1)Ght,n − σ2G
h
t,n−1 − C(σ−1

1 +M2σ−1
2 )e−AtEt,n.

Using this and ET,n = 0, and integrating (3.3) over [t, T ], we obtain for some universal C > 0,

−Et,n ≥ (A− Cσ−1
1 − CM

2σ−1
2 )

∫ T

t
Es,n ds

+ (Nh− σ1)

∫ T

t
eAsGhs,n ds− σ2

∫ T

t
eAsGhs,n−1 ds.

(3.7)

Now taking σ1 := h/2, σ2 := h/4 and A := 6CM2/h, then (3.7) and N ≥ 1 yield∫ T

t
eAsGhs,n ds ≤

1

2

∫ T

t
eAsGhs,n−1 ds ≤ . . . ≤ 2−n

∫ T

t
eAsGhs,0 ds.

With this, (3.7) also shows that Et,n ≤ h
4

∫ T
t eAsGhs,n−1 ds ≤ h

2n+1

∫ T
t eAsGhs,0 ds. Therefore, for

all n ≥ 0 and t ∈ [0, T ], we obtain∫
BR

|vn(t, x)− v(t, x)|2 dx ≤ h

2n+1

∫ T

t

∫
Rd
eA(s−t)|Dh(v0(s, x)− v(s, x))|2ϕ(|x|) dxds,

which, combined with Lemma 2.4, concludes the proof. �

Remark 3.1. In the proof of Theorem 3.1, we only used the following: uniform Lipschitz
continuity of f, c and α, and uniform boundedness of f and |∇hvh|. In particular, the solutions
vhn and vh are allowed to have certain growth at x = ∞, and the comparison principle is not
needed.

By Theorem 3.1, we immediately have the convergence of the policies.

Theorem 3.2. Assume (A1)–(A2) and N ≥ 1. Then there exists a universal constant C > 0
such that for all n ≥ 0 and R ≥ 1 we have

sup
t∈[0,T ]

∫
BR

∣∣∣α(t, x,∇hvhn(t, x))− α(t, x,∇hvh(t, x))
∣∣∣2 dx ≤ C2−n exp [C exp(CT )/h]Rd.
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Proof. Since α is Lipschitz continuous,∫
BR

∣∣∣α(t, x,∇hvhn(t, x))− α(t, x,∇hvh(t, x))
∣∣∣2 dx

≤ C

h2

d∑
i=1

∫
BR

∣∣∣vhn(t, x+ hei)− vh(t, x+ hei)− vhn(t, x− hei) + vh(t, x− hei)
∣∣∣2 dx.

We can then conclude the proof from Theorem 3.1. �

3.2. Convergence of vh as h → 0. Let vh and v be, respectively, solutions to (2.14) and

(2.4). We show |vh − v| ≤ CT
√
h, where the rate is sharp (we refer to a simple example given

in [14]).

Theorem 3.3. Assume (A1)–(A2) and N ≥ max{1, ‖f‖∞/2}. Then there exists a universal
constant C > 0 such that

sup
(t,x)∈[0,T ]×Rd

|v(t, x)− vh(t, x)| ≤ C(1 + T )(1 + ‖∇v‖∞)
√
h.

In particular, we have sup(t,x)∈[0,T ]×Rd |v(t, x)− vh(t, x)| ≤ C exp(CT )
√
h.

Remark 3.2. This rate was obtained in [15, 27] for a large class of parabolic Bellman equa-
tions with Lipschitz coefficients. We apply a different argument – the classical doubling variable
method that is used in [13] in which a discrete space-time homogeneous Hamilton-Jacobi equa-
tion is discussed. This argument allows us to obtain the same sharp estimate for the scheme
(2.18), while it seems that the method in [15, 27] cannot (see Remark 4.1). See also [11] for a
different proof of this convergence rate via the nonlinear adjoint method.

Proof. Let us assume that T ≥ 1. Suppose for some (t0, x0) ∈ [0, T ]× Rd such that

8σ := v(t0, x0)− vh(t0, x0) ≥ 1

2
sup

(t,x)∈[0,T ]×Rd

[
v(t, x)− vh(t, x)

]
> 0. (3.8)

Below we will show σ ≤ CT (1 + ‖∇v‖∞)
√
h.

Consider a smooth function g : Rd+1 → [0, 1] such that

(g1) g(t, x) = 1− t2 − |x|2 if t2 + |x|2 < 1/2,

(g2) 0 ≤ g(t, x) ≤ 1/2 if t2 + |x|2 > 1/2, and g(t, x) = 0 if t2 + |x|2 > 1.

For ε > 0, denote gε(t, x) := g(t/ε, x/ε), and

L := sup
{
v(t, x),−vh(t, x) : (t, x) ∈ [0, T ]× Rd

}
+ 1 ≥ 1,

By Lemma 2.4, σ ≤ L ≤ CT for some universal constant C > 0. Next, for φ(x) := (1 + |x|2)1/2

and R ≥ |x0|+ T , we define Φh : [0, T ]2 × R2d → R by

Φh(t, s, x, y) := v(t, x)− vh(s, y)− σ

T
(2T − t− s)

− σ

R
(φ(x) + φ(y)) + (8L+ 2σ)gε(t− s, x− y).

Since v, vh are bounded, there exists (t1, s1, x1, y1) ∈ [0, T ]2 × R2d such that

Φh(t1, s1, x1, y1) = max
[0,T ]2×R2d

Φh(t, s, x, y). (3.9)
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Due to φ(x0) ≤ R, by (3.8),

Φh(t1, s1, x1, y1) ≥ Φh(t0, t0, x0, x0) ≥ 8L+ 6σ. (3.10)

Since max{v(t1, x1),−vh(s1, y1)} ≤ L, we deduce Φh(t1, s1, x1, y1) ≤ 2L + (8L + 2σ)gε(t1 −
s1, x1 − y1), which, together with (3.10), implies gε(t1 − s1, x1 − y1) ≥ 3/4. Then by (g1), we
get that for some C > 0,

gε(t− s, x− y) = 1− ε−2|t− s|2 − ε−2|x− y|2, (3.11)

whenever |t− t1|, |s− s1|, |x− x1|, |y − y1| ≤ ε/C.

Now, by (3.9), the mapping

(t, x) 7→ v(t, x) +
σ

T
t− σ

R
φ(x) + (8L+ 2σ)gε(t− s1, x− y1). (3.12)

is maximized at (t, x) = (t1, x1). Together with the fact that v is Lipschitz continuous (taking
M := 1+‖∇v‖∞) and |∇φ| ≤ 1, we find that |∇x gε(t1−s1, x1−y1)| ≤ (M+σR−1)(8L+2σ)−1

and, |∂t gε(t1 − s1, x1 − y1)| ≤ (M + σT−1)(8L + 2σ)−1. By (3.11), σ ≤ L ≤ CT and R ≥ T ,
these yield

|x1 − y1| ≤ Cε2(M + σR−1)(L+ σ)−1 ≤ Cε2ML−1, (3.13)

and
|t1 − s1| ≤ Cε2(M + σT−1)(L+ σ)−1 ≤ Cε2ML−1. (3.14)

Now, we firstly assume that t1, s1 < T . In view of (3.12), we apply the viscosity solution
test for v to get

− σ

T
− (8L+ 2σ) ∂tgε(t1 − s1, x1 − y1)

+H
(
t1, x1,

σ

R
∇φ(x1)− (8L+ 2σ)∇x gε(t1 − s1, x1 − y1))

)
≥ 0.

(3.15)

Similarly, since (s, y) → vh(s, y) − σ
T s + σ

Rφ(y) − (8L + 2σ)gε(t1 − s, x1 − y) is minimized at
(s1, y1), the comparison principle yields

σ

T
− (8L+ 2σ) ∂tgε(t1 − s1, x1 − y1)

+H
(
s1, y1,−

σ

R
∇hφ(y1)− (8L+ 2σ)∇hx gε(t1 − s1, x1 − y1)

)
−Nh∆h

[ σ
R
φ(y1)− (8L+ 2σ)gε(t1 − s1, x1 − y1))

]
≤ 0.

Thus we get

2σ

T
≤ H

(
t1, x1,

σ

R
∇φ(x1)− (8L+ 2σ)∇x gε(t1 − s1, x1 − y1))

)
−H

(
s1, y1,−

σ

R
∇φ(y1)− (8L+ 2σ)∇hx gε(t1 − s1, x1 − y1)

)
+Nh∆h

[ σ
R
φ(y1)− (8L+ 2σ)gε(t1 − s1, x1 − y1))

]
.

(3.16)

It follows from (3.11) that for h� ε, we have at point (t1 − s1, x1 − y1),

∇hx gε = ∇x gε = 2ε−2(x1 − y1), ∆hgε = −2dε−2. (3.17)

Due to |∇φ| ≤ 1 and ∆hφ ≤ C, we get

Nh∆h
[ σ
R
φ(y1)− (8L+ 2σ)gε(t1 − s1, x1 − y1))

]
≤ CLε−2h. (3.18)
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Using (3.16)–(3.18) and the regularity of H (see (2.16)), we obtain for some universal C,

2σT−1 ≤ CσR−1(|∇φ(x1)|+ |∇φ(y1)|) + CLε−2h

+ C(|t1 − s1|+ |x1 − y1|) [1 + (8L+ 2σ)|∇x gε(t1 − s1, x1 − y1)|]
≤ CσR−1 + CLε−2h+ C(|t1 − s1|+ |x1 − y1|)

(
1 + Lε−2|x1 − y1|

)
which, by (3.13) and (3.14), yields σT−1 ≤ CσR−1 +CLε−2h+Cε2M2L−1. Now we take ε :=

M−1/2L1/2h1/4 and pass R → ∞. Then when h is sufficiently small, we obtain σ ≤ CTM
√
h

for some universal C > 0. This finishes the proof of the upper bound of sup[0,T ]×Rd(v − vh) in
the case when t1, s1 < T .

Next, suppose that one of t1 and s1 equals to T . Let us only prove for the case when t1 = T .
By (3.10) and the definition of Φh,

8L+ 6σ ≤ v(t1, x1)− vh(s1, y1) + (8L+ 2σ)gε(t1 − s1, x1 − y1).

It follows from the proof Lemma 2.4 that vh is Lipschitz continuous with unit Lipschitz constant
when |T − t| ≤ C. Note that ε2ML−1 ≤ C. Hence (3.13) and (3.14) yield

8L+ 6σ ≤ |v(T, x1)− q(y1)|+ |q(y1)− vh(s1, y1)|+ (8L+ 2σ)gε(T − s1, x1 − y1)

≤ C(|x1 − y1|+ |T − s1|) + 8L+ 2σ ≤ Cε2ML−1 + 8L+ 2σ.

This yields σ ≤ C
√
h for some universal C > 0.

Finally, the upper bound estimate for sup[0,T ]×BR(vh−v) follows by using the same argument
as the above. Applying Lemma 2.4 permits to conclude. �

3.3. Almost everywhere convergence of the policy. It was proved in [23] that the solution
v to (2.4) is semi-concave in space. From this, we are able to derive the almost everywhere
convergence of the policies.

Below we say that a function g : Rd → R is uniformly semi-concave if there exists C > 0 such
that for all x, y ∈ Rd we have g(x+y)+g(x−y)−2g(x) ≤ C|y|2. If g is uniformly bounded and
Lipschitz continuous, and both ±g are uniformly semi-concave, then g is bounded in W 2,∞(Rd).
We make the following assumption:

(A3) q(·) is uniformly semi-concave, and c(t, ·, a), f(t, ·, a) are bounded in W 2,∞(Rd) uni-
formly in t ∈ [0, T ] and a ∈ A.

Theorem 3.4. Under the assumptions of Theorem 3.3, further assume (A3). Then v(t, ·) is
uniformly semi-concave for all t ∈ [0, T ]. Moreover, for each t ∈ [0, T ] we have for a.e. x ∈ Rd,

α(th, xh,∇hvh(th, xh))→ α(t, x,∇v(t, x)) as h→ 0

where [0, T ]× Rd 3 (th, xh)→ (t, x) as h→ 0.

We next show a weak type of semi-concavity of vh.

Theorem 3.5. Under the assumptions of Theorem 3.4, there exists C > 0 (also depending on
(A3)) such that for all h ∈ (0, 1), t ∈ [0, T ] and x, y ∈ Rd,

vh(t, x+ y) + vh(t, x− y)− 2vh(t, x) ≤ C exp(CT ) (|y|2 +
√
h).

The proofs of the two theorems are similar to those of Theorem 4.3 and Theorem 4.4, and
we choose to write the full details down there (as it is slightly more complicated there).
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4. Analysis of discrete space-time schemes

4.1. Convergence of PI. The parallel result of Theorem 3.1 on the convergence of V τ,h
n →

V τ,h holds the same. However the proof is more involved due to the discretization in the time
direction. In it, we will emphasize the difference.

Theorem 4.1. Assume (A1)–(A2) and N ≥ 1. Let Vn := V τ,h
n and V := V τ,h be, respectively,

continuous solutions to (2.18) and (2.20). Then there exists a universal constant C > 0 such
that if C(1 + ‖∇hV ‖2∞)τ ≤ h, we have for all n ≥ 1, R ≥ 1 and t ∈ NτT ,∑
x∈Zdh,|x|≤R

|Vn(t, x)− V (t, x)|2 ≤ hτ

2n+1

∑
t≤s∈NτT

∑
x∈Zdh

exp
[
C exp(1 + ‖∇hV ‖2∞)(s− t)/h

] ∣∣∣Dh(V0(s, x)− V (s, x))
∣∣∣2 min

{
1, e−|x|+R+1

}
.

In particular, we have

max
t∈NτT

∑
x∈Zdh,|x|≤R

|Vn(t, x)− V (t, x)|2 ≤ C2−n exp [C exp(CT )/h]Rd.

max
t∈NτT

∑
x∈Zdh,|x|≤R

∣∣∣α(t, x,∇hVn(t, x))− α(t, x,∇hV (t, x))
∣∣∣2 ≤ C2−n exp [C exp(CT )/h]Rd.

Proof. Assume T ≥ 1. Let ϕ = ϕR : [0,∞) → [0, 1] be C1 and satisfying (3.1), and let
A := CT 2/h for some C > 0 to be determined. Then for t ∈ NτT set

Et,n :=
1

2
eAt

∑
x∈Zdh

|Vn(t, x)− V (t, x)|2ϕ(|x|)

which is finite. Direct computation yields

Et,n − Et−τ,n
τ

≥ Ae−AτEt,n +
1

2
eA(t−τ)

∑
x∈Zdh

(Vn(t, x) + Vn(t− τ, x)− V (t, x)− V (t− τ, x))×

(∂τt Vn(t, x)− ∂τt V (t, x))ϕ(|x|)

= Ae−AτEt,n + eA(t−τ)
∑
x∈Zdh

(Vn(t, x)− V (t, x))(∂τt Vn(t, x)− ∂τt V (t, x))ϕ(|x|)

− τ

2
eA(t−τ)

∑
x∈Zdh

|∂τt Vn(t, x)− ∂τt V (t, x)|2 ϕ(|x|)

=: Ae−AτEt,n + eA(t−τ)Xt,n −
τ

2
eA(t−τ)Yt,n.

(4.1)

First, we consider the term Yt,n (which does not appear in the semi-discretization problem
in Theorem 3.1). It follows from the equations (2.18) and (2.20) that

Yt,n =
∑
x∈Zdh

∣∣∣cn +∇hVn · fn +Nh∆hVn −H(t, x,∇hV )−Nh∆hV
∣∣∣2 ϕ(|x|)
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Recall that α = α(t, x,∇hV ), H(t, x,∇hV ) = c(t, x, α) + f(t, x, α) · ∇hV , and |∇hV | ≤ M for
some M ≥ 1. Since αn = α(t, x,∇hVn−1), the regularity assumptions and (2.11) yield

Yt,n ≤ C
∑
x∈Zdh

(
M2|DhVn−1 −DhV |2 +M2|D−hVn−1 −D−hV |2+

|DhVn −DhV |2 + |D−hVn −D−hV |2
)
ϕ(|x|) ≤ C

(
M2Ght,n−1 +Ght,n

)
,

where in the last inequality we used the notation Ght,n :=
∑

x∈Zdh
|DhVn(t, x)−DhV (t, x)|2ϕ(|x|).

and (3.6) with the above defined Ght,n (which clearly holds the same).

Next, we consider the termXt,n. Note that for any v ∈ L∞(Zdh),
∑

x∈Zdh
∆hv vϕ = −

∑
x∈Zdh

|Dhv|2ϕ−∑
x∈Zdh

vD−hv ·D−hϕ. So, similarly as before (also using the equation, (3.1), (3.6), the uniform

Lipschitz assumptions, and Young’s inequality), we have for any σ1, σ2 > 0,

Xt,n ≥ NhGht,n − C
∑
x∈Zdh

|Vn − V |(|Dh(Vn − V )|+ |D−h(Vn − V )|)ϕ

− CM
∑
x∈Zdh

|Vn − V |(|Dh(Vn−1 − V )|+ |D−h(Vn−1 − V )|)ϕ

≥ (Nh− σ1)Ght,n − σ2G
h
t,n−1 − C(σ−1

1 +M2σ−1
2 )e−AtEt,n.

Since ET,n ≡ 0, putting the above together and summing up (4.1) with respect to t yield

−Et,n/τ ≥ (Nh− σ1 − Cτ)
∑

t+τ≤s∈NτT

eA(s−τ)Ghs,n − (σ2 + CM2τ)
∑

t+τ≤s∈NτT

eA(s−τ)Ghs,n−1

+ (A− Cσ−1
1 − CM

2σ−1
2 )e−Aτ

∑
t+τ≤s∈NτT

Ehs,n

(4.2)
for some universal constant C > 0.

Finally we take σ1 := h/4, σ2 := h/8, A := 12CM2/h. Then if τ ≤ h/(8CM2), (4.2) yields∑
t+τ≤s∈NτT

eA(s−τ)Ghs,n ≤
1

2

∑
t+τ≤s∈NτT

eA(s−τ)Ghs,n−1 ≤ . . . ≤ 2−n
∑

t+τ≤s∈NτT

eA(s−τ)Ghs,0,

and then Et,n ≤ hτ
4

∑
t+τ≤s∈NτT

eA(s−τ)Ghs,n−1 ≤ hτ
2n+1

∑
t+τ≤s∈NτT

eA(s−τ)Ghs,0. This, together

with Proposition 2.5, concludes the proof of the first claim as before.

The second claim follows similarly as in Theorem 3.2. �

By shifting the solutions, we actually obtain uniform pointwise exponential convergence of

V τ,h
n to V τ,h and α(·, ·,∇hV τ,h

n ) to α(·, ·,∇hV τ,h) as n→∞, in Ωτ,h
T .

4.2. Convergence of V τ,h as τ, h → 0. Let V τ,h and v be, respectively, solutions to (2.20)
and (2.4). The following theorem proves that the difference between V τ,h and v is at most of

order
√
h. The argument follows the idea of [13, Theorem 1], which considered the discrete

space-time scheme for the homogeneous Hamilton-Jacobi equation vt +H(Dv) = 0.
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Theorem 4.2. Assume (A1)–(A2) and (2.17). Then there exists a universal C > 0 such that

sup
(t,x)∈Ωτ,hT

|v(t, x)− V τ,h(t, x)| ≤ C(1 + T )(1 + ‖∇v‖∞)
√
h.

In particular, we have sup
(t,x)∈Ωτ,hT

|v(t, x)− V τ,h(t, x)| ≤ C exp(CT )
√
h.

Remark 4.1. It was shown in [14, 15, 27] that

sup
(t,x)∈Ωτ,hT

|v(t, x)− V τ,h(t, x)| ≤ C(τ1/4 + h1/2) for some C = C(T ) > 0,

where v solves a general degenerate parabolic Bellman equation and V τ,h is its space-time fi-
nite difference approximation. For the first order equations, our Theorem 4.2 obtains a better
convergence rate.

Proof. Assume T ≥ 1. And suppose for some (t0, x0) ∈ Ωτ,h
T such that

8σ := v(t0, x0)− V τ,h(t0, x0) ≥ 1

2
sup

(t,x)∈Ωτ,hT

[
v(t, x)− V τ,h(t, x)

]
> 0. (4.3)

Let DT,τ,h := [0, T ]× NτT × Rd × Zdh, and

L := sup
{
v(t, x),−V τ,h(t, x) : (t, x) ∈ Ωτ,h

T

}
+ 1.

Then σ ≤ L ≤ CT for some universal constant C > 0. Moreover, let R, g and gε with ε ∈ (0, 1),
and φ be from the proof of Theorem 3.3, and define Φh : DT,τ,h → R by

Φh(t, s, x, y) := v(t, x)− V τ,h(s, y)− σ

T
(2T − t− s)

− σ

R
(φ(x) + φ(y)) + (8L+ 2σ)gε(t− s, x− y).

Suppose

Φh(t1, s1, x1, y1) = max
DT,τ,h

Φh(t, s, x, y). (4.4)

It is clear that (3.10)–(3.14) hold the same. By (3.14) if τ � ε2M/L, we get

|t1 − s1 − τ | ≤ Cε2M/L with M = 1 + ‖∇v‖∞. (4.5)

First, assume t1, s1 < T . The viscosity solution test for v shows (3.15) by (3.12). Next since

Ωτ,h
T 3 (s, y)→ V τ,h(s, y)− σ

T s+ σ
Rφ(y)− (8L+ 2σ)gε(t1 − s, x1 − y) is minimized at (s1, y1),

then for all (s, y) ∈ Ωτ,h
T ,

V τ,h(s, y) ≥ V τ,h(s1, y1)− σ

T
(s1 − s) +

σ

R
(φ(y1)− φ(y))

− (8L+ 2σ) [gε(t1 − s1, x1 − y1)− gε(t1 − s, x1 − y)] =: Ṽ (s, y).

Recall that s1 + τ ≤ T and Ft from (2.21) satisfies the monotonicity property. We obtain

V τ,h(s1, y1) = Fs1+τ (V τ,h(s1 + τ, ·))(y1) ≥ Fs1+τ (Ṽ (s1 + τ, ·))(y1),
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which gives

0 ≥ σ

T
− (8L+ 2σ) ∂τt gε(t1 − s1, x1 − y1)

+H
(
s1 + τ, y1,−

σ

R
∇hφ(y1)− (8L+ 2σ)∇hx gε(t1 − s1 − τ, x1 − y1)

)
−Nh∆h

[ σ
R
φ(y1)− (8L+ 2σ)gε(t1 − s1 − τ, x1 − y1))

]
.

(4.6)

By (3.11), if τ, h� ε2,

|∂τt gε(t1 − s1, x1 − y1)− ∂tgε(t1 − s1, x1 − y1)| ≤ Cε−2τ, (4.7)

∇hx gε(t1 − s1 − τ, x1 − y1) = ∇x gε(t1 − s1, x1 − y1) = 2ε−2(x1 − y1). (4.8)

Combining (4.6) with (3.15), and using (4.7) and (4.8) yield

2σ

T
≤ H

(
t1, x1,

σ

R
∇φ(x1)− (8L+ 2σ)2ε−2(x1 − y1)

)
−H

(
s1 + τ, y1,−

σ

R
∇φ(y1)− (8L+ 2σ)2ε−2(x1 − y1)

)
+Nh∆h

[ σ
R
φ(y1)− (8L+ 2σ)gε(t1 − s1 − τ, x1 − y1))

]
+ CLε−2τ.

(4.9)

The definitions of φ and gε show (3.18). Then, applying (2.16) and (3.18) into (4.9), if (τ ≤
)h� ε2 we deduce for some C > 0 that

σT−1 ≤ CσR−1(|∇φ(x1)|+ |∇φ(y1)|) + CLε−2h+ CLε−2τ

+ C(|t1 − s1 − τ |+ |x1 − y1|)
[
1 + (8L+ 2σ)2ε−2|x1 − y1|

]
≤ CσR−1 + CLε−2h+ Cε2M2L−1

(4.10)

where in the second inequality we also used (3.13) and (4.5).

Now we take ε := M−1/2L1/2h1/4, and send R→∞. It is clear that τ � ε2M/L is satisfied

when h is small. We obtain from (4.10) that σ ≤ CTM
√
h, which finishes the proof of the

upper bound of sup
Ωτ,hT

(v − V τ,h) in the case when t1, s1 < T .

Next, if at least one of t1 and s1 equals to T , the argument of Theorem 3.3 applies the same
except that we need to use Proposition 2.5 in place of Lemma 2.4. Finally, the proof for the
upper bound of sup

Ωτ,hT
(V τ,h − v) is the same. �

4.3. Almost everywhere convergence of the policy. We show the almost everywhere
convergence of the policy, and some semi-concavity property of the solution.

Theorem 4.3. Under the assumptions of Theorem 4.2, further assume (A3). Then v is uni-
formly semi-concave for all t ∈ [0, T ]. Moreover, for each t ∈ [0, T ] we have for a.e. x ∈ Rd,

α(th, xh,∇hV τh,h(th, xh))→ α(t, x,∇v(t, x)) as h→ 0

where Ωτh,h
T 3 (th, xh)→ (t, x) as h→ 0 and τh satisfies 0 < 2Nτh ≤ h.

Proof. The semi-concavity of v(t, ·) follows from [23].

For the second claim, it suffices to prove that for a fixed t ∈ [0, T ), and for a.e. x ∈ Rd,

∇hV τh,h(th, xh)→ ∇v(t, x) as h→ 0. (4.11)
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For any function g : Rd → R, let us denote by D+g(x) the set of subdifferential of g:

D+g(x) :=

{
p ∈ Rd

∣∣ lim sup
y→x

g(y)− g(x)− p · (y − x)

|y − x|
≤ 0

}
.

Due to v(t, ·) is semi-concave, D+v(t, x) is non-empty for all x ∈ Rd.
Because v(t, ·) is Lipschitz continuous, ∇xv(t, x) exists for a.e. x ∈ Rd. We fix one such x.

Since V τh,h are Lipschitz continuous uniformly in h, after passing to a subsequence of h→ 0, we
can assume that ∇hV τh,h(th, xh)→ p for some p ∈ Rd. Since V τh,h(th, xh)→ v(t, x) as h→ 0,
the stability of subdifferential yields that p ∈ D+v(t, x). While because ∇xv(t, x) exists, we
get p = ∇xv(t, x). Note that this is for any convergent subsequence of ∇hV τh,h(th, xh), and so
we obtain (4.11). �

Below, we show a weak type of semi-concavity of V τ,h(t, ·). We adopt the “doubling variable”
method, see e.g., [23].

Theorem 4.4. Under the assumptions of Theorem 4.3, there exists C > 0 (also depending on
(A3)) such that for all t ∈ NτT and x, y ∈ Zdh,

V τ,h(t, x+ y) + V τ,h(t, x− y)− 2V τ,h(t, x) ≤ C exp(CT ) (|y|2 +
√
h).

Proof. It suffices to show that there exist CT , C
′
T > 0 depending on the assumptions such that

V τ,h(t, x) + V τ,h(t, z)− 2V τ,h(t, y) ≤ CT
(
|x− y|2 + |z − y|2 + |x+ z − 2y|

)
+ C ′T

√
h (4.12)

for all t ∈ NτT and x, y, z ∈ Zdh. By the assumption on q, the inequality holds for t = T with
CT = ‖q‖W 2,∞ =: C0, and C ′T = 0.

Suppose for contradiction that (4.12) fails. Then we have for some C1 ≥ 1 to be determined,
and some C ≥ 2,

V τ,h(t, x) + V τ,h(t, z)− 2V τ,h(t, y)

− 2C0e
C1(T−t) (|x− y|4 + |z − y|4 + |x+ z − 2y|2

)1/2 ≥ CeC1(T−t)√h
(4.13)

for some (t, x, y, z) = (t′, x′, y′, z′) ∈ NτT × Zdh. Since V τ,h(t, ·) is Lipschitz continuous (with
Lipschitz constant bounded by C exp(C(T − t)) by Proposition 2.5 with a shift in time), after
possibly enlarging the constant C in (4.13), we can assume that

|x′ + z′ − 2y′| ≥
√
h. (4.14)

Let us denote ψ(x, y, z) := |x−y|4+|z−y|4+|x+z−2y|2, and by (4.14), δ := ψ(x′, y′, z′)1/2 ≥√
h. Then for all ε > 0 sufficiently small, we obtain from (4.13) that

Φ(t, x, y, z) := eC1t
(
V τ,h(t, x) + V τ,h(t, z)− 2V τ,h(t, y)

)
− C0e

C1T
(
δ + δ−1ψ(x, y, z)

)
− ε|y|2

satisfies Φ(t′, x′, y′, z′) ≥ eC1T
√
h. With the positive ε-term, Φ obtains its positive maximum

that is at least eC1T
√
h in Ωτ,h

T at some point (t0, x0, y0, z0) ∈ NτT × Zdh, where (t0, x0, y0, z0)
depends on ε and δ. It is clear that t0 ≤ T − τ by the choice of C0. Moreover, for γ0 :=
δ + δ−1ψ(x0, y0, z0), we have

V τ,h(t0, x0) + V τ,h(t0, z0)− 2V τ,h(t0, y0) ≥ C0e
C1(T−t0)γ0 + eC1(T−t0)

√
h. (4.15)

Due to uniform boundedness of V τ,h, by further taking ε to be small enough depending on C, T
and h, it is easy to get ε|y0| ≤ h.
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Now since Ωτ,h
T 3 (t, x) → eC1tV τ,h(t, x) − C0e

C1T δ−1
(
|x− y0|4 + |x+ z0 − 2y0|2

)
is maxi-

mized at (t0, x0), we get for all (t, x) ∈ Ωτ,h
T that

V τ,h(t, x) ≤ eC1(t0−t)V τ,h(t0, x0) + C0e
C1(T−t)δ−1

(
|x− y0|4 + |x+ z0 − 2y0|2

)
− C0e

C1(T−t0)δ−1
(
|x0 − y0|4 + |x0 + z0 − 2y0|2

)
=: Ṽ (t, x).

Due to the equation and the monotonicity property of Ft (defined in (2.21)), V τ,h(t0, x0) =

Ft0+τ (V τ,h(t0 + τ, ·))(x0) ≤ Ft0+τ (Ṽ (t0 + τ, ·))(x0). By direct computation,

∇hx(|x− y0|4 + |x+ z0 − 2y0|2) = 4(|x− y0|2 + h2)(x− y0) + 2(x+ z0 − 2y0),

∆h
x(|x− y0|4 + |x+ z0 − 2y0|2) = (8 + 4d)|x− y0|2 + 2dh2 + 2d.

We then get

(1− e−C1τ )

τ
V τ,h(t0, x0) ≤ H

(
t0 + τ, x0,∇hxṼ (t0 + τ, x0)

)
+Nh∆h

xṼ (t0 + τ, x0)

≤ H (t0 + τ, x0, 2CT,δ(qx0 + p0)) + CCT,δh(|x0 − y0|2 + 1)

(4.16)

where qx0 := 2(|x0 − y0|2 + h2)(x0 − y0),

CT,δ := C0e
C1(T−t0−τ)/δ and p0 := x0 + z0 − 2y0. (4.17)

Similarly, since Ωτ,h
T 3 (t, z) → eC1tV τ,h(t, z) − C0e

C1T δ−1(|z − y0|4 + |x0 + z − 2y0|2) is
maximized at (t0, z0), we get

(1− e−C1τ )

τ
V τ,h(t0, z0) ≤ H (t0 + τ, z0, 2CT,δ(qz0 + p0)) + CCT,δh(|z0 − y0|2 + 1). (4.18)

where qz0 := 2(|z0 − y0|2 + h2)(z0 − y0).

Next, note that Ωτ,h
T 3 (t, y) → 2eC1tV τ,h(t, y) + C0e

C1T δ−1ψ(x0, y, z0) + ε|y|2 is minimized

at (t0, y0). Hence we get V τ,h(t0, y0) ≥ Ft0+τ (V̂ (t0 + τ, ·))(y0) where

V̂ (t, y) := eC1(t0−t)V τ,h(t0, y0)− (ε/2)|y|2 + (ε/2)|y0|2

− (C0/2)eC1(T−t)δ−1ψ(x0, y, z0) + (C0/2)eC1(T−t0)δ−1ψ(x0, y0, z0).

From this we obtain

−(1− e−C1τ )

τ
V τ,h(t0, y0) ≤ −H (t0 + τ, y0, 2CT,δ(qy0 + p0)− εy0)

+ CCT,δh(|x0 − y0|2 + |z0 − y0|2 + 1) + Chε

where qy0 := (|x0 − y0|2 + h2)(x0 − y0) + (|z0 − y0|2 + h2)(z0 − y0), and CT,δ and p0 are given
in (4.17). Using |Hp| ≤ C and ε|y0| ≤ h yields

−(1− e−C1τ )

τ
V τ,h(t0, y0) ≤ −H (t0 + τ, y0, 2CT,δ(qy0 + p0))

+ CCT,δh(|x0 − y0|2 + |z0 − y0|2 + 1) + Ch

(4.19)

Now let α ∈ A be such that

H (t0 + τ, y0, 2CT,δ(qy0 + p0)) = c(t0 + τ, y0, α) + 2CT,δf(t0 + τ, y0, α) · (qy0 + p0).
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By (2.15), denoting cα(·) := c(t0 + τ, ·, α) and fα(·) := f(t0 + τ, ·, α), we have

H (t0 + τ, x0, 2CT,δ(qx0 + p0)) +H (t0 + τ, z0, 2CT,δ(qz0 + p0))

− 2H (t0 + τ, y0, 2CT,δ(qy0 + p0))

≤ cα(x0) + cα(z0)− 2cα(y0) + 2CT,δ [fα(x0) · (qx0 + p0)

+ fα(z0) · (qx0 + p0)− 2fα(y0) · (qy0 + p0)]

= cα(x0) + cα(z0)− 2cα(y0) + 2CT,δ [(fα(x0)− fα(y0)) · qx0 + (fα(z0)− fα(y0)) · qz0+

+ (fα(x0) + fα(z0)− 2fα(y0)) · p0]

≤ ‖cα‖W 2,∞(|x0 − y0|2 + |z0 − y0|2 + |x0 + z0 − 2y0|)
+ 2CT,δ‖fα‖Lip(|x0 − y0||qx0 |+ |z0 − y0||qz0 |)
+ 2CT,δ‖fα‖W 2,∞(|x0 − y0|2 + |z0 − y0|2 + |x0 + z0 − 2y0|)|x0 + z0 − 2y0|,

(4.20)

where we used 2qy0 = qx0 + qz0 and that for any x, y, z ∈ Rd and g ∈W 2,∞(Rd), |g(x) + g(z)−
2g(y)| ≤ ‖g‖W 2,∞(|x−y|2 + |z−y|2 + |x+z−2y|). By Young’s inequality, we get |x0−y0||qx0 |+
|z0 − y0||qz0 | ≤ 2|x0 − y0|4 + 2|z0 − y0|4 + h4. Also using the definitions of CT,δ and ψ, we get

the left-hand side of (4.20) ≤ CeC1(T−t0)(δ+δ−1ψ(x0, y0, z0)) = CeC1(T−t0)γ0 +CeC1(T−t0)h4/δ
with C > 0 only depending on ‖q‖W 2,∞ , ‖cα‖W 2,∞ and ‖fα‖W 2,∞ .

Now summing up (4.16), (4.18) and twice of (4.19), we get

(1− e−C1τ )

τ

[
V τ,h(t0, x0) + V τ,h(t0, z0)− 2V τ,h(t0, y0)

]
≤ CeC1(T−t0)γ0 + CeC1(T−t0)h4/δ + CCT,δh(|x0 − y0|2 + |z0 − y0|2 + 1) + Ch

≤ CeC1(T−t0)γ0 + CeC1(T−t0)δ−1(|x0 − y0|4 + |z0 − y0|4) + CeC1(T−t0)
√
h

≤ CeC1(T−t0)γ0 + CeC1(T−t0)
√
h,

where in the second inequality, we used δ ≥
√
h. Finally, this and (4.15) yield

C1(C0e
C1(T−t0)γ0 + eC1(T−t0)

√
h) ≤ CeC1(T−t0)γ0 + CeC1(T−t0)

√
h,

with C > 0 depending only on d,N and the regularity assumptions of q, c, f . Thus, if C1 is
sufficiently large depending only on the assumptions, we get a contradiction which finishes the
proof of (4.12), which finishes the proof. �

5. Generalization: a PDE perspective

In this section, we consider PI for HJB equations with a general Hamiltonian. For convenient
use of the Legendre transform, we write the system in the forward-in-time setting. It is easy
to carry over to the backward-in-time setting.

Suppose H : [0, T ] × Rd × Rd → R is continuous such that H(t, x, p) is convex in p. Let
L(t, x, µ) be the Legendre transform of H, that is,

L(t, x, µ) := sup
p∈Rd

[p · µ−H(t, x, p)] for (t, x, µ) ∈ [0, T ]× Rd × Rd.

We always have the following inequality L(t, x, µ) +H(t, x, p) ≥ p ·µ, with equality holds if and
only if µ = ∇pH(t, x, p), and if and only if p = ∇µL(t, x, µ).
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The HJB equation is {
∂tv +H(t, x,∇v) = 0 in (0, T )× Rd,

v(0, x) = q(x) on Rd.
(5.1)

Under some assumptions (see [3, 42]), it is a classical result that v is uniformly Lipschitz
continuous if q is Lipschitz continuous. So we can assume

‖∇v‖L∞([0,T ]×Rd) ≤M for some M > 0. (5.2)

Now we take m1 := min |p|=2M,

t∈[0,T ],x∈Rd
H(t, x, p) and m2 ≥ max |p|=3M,

t∈[0,T ],x∈Rd
[H(t, x, p) −m1]/M ,

and we can assume that m2 ≥ 2. Then define

H̃(t, x, p) :=


H(t, x, p) if |p| ≤ 2M,

max {H(t, x, p),m1 +m2(|p| − 2M)} if 2M < |p| ≤ 3M,

m1 +m2(|p| − 2M) if |p| > 3M.

It is not hard to verify that H̃ is continuous in all its dependencies, and is convex in p. Due
to (5.2), v is also a solution of (5.1) with H replaced by H̃. Moreover for N := m2/2 ≥ 1, we
have

|H̃p(t, x, p)| ≤ 2N in [0, T ]× Rd × Rd. (5.3)

We define L̃ as the Legendre transform of H̃. Since the goal is to approximate v, it suffices to
study H̃ and L̃ instead of H and L. From now on, with a slight abuse of notation, we write H
and L as H̃ and L̃, respectively.

With the modified operators, we can consider the semi-discretization. For h > 0,{
∂tv

h +H(t, x,∇hvh) = Nh∆hvh in (0, T )× Rd,

vh(0, x) = q(x) on Rd.
(5.4)

As before, N ≥ ‖∇pH‖∞/2 guarantees that the finite difference scheme is monotone. Let us

also assume that there exists C > 0 such that for all t, x, p ∈ [0, T ]× Rd × Rd,

|Ht(t, x, p)|, |Hx(t, x, p)| ≤ C(1 + |p|), |H(t, x, 0)| ≤ C. (5.5)

Actually, we can replace C(1 + |p|) by just C for the modified operator. We will not discuss
the space-time discretization of (5.1) since it is similar.

Now we present the iteration scheme for (5.4). Fixing small h > 0, we start with a uniformly
bounded and Lipschitz continuous function vh0 (t, x), and then iteratively compute vhn as follows.
For n ≥ 1, let vhn(t, x) be the solution to{

∂tv
h
n +∇pH(t, x,∇hvhn−1) · ∇hvhn − L(t, x, µhn−1) = Nh∆hvhn in (0, T )× Rd,

vhn(0, x) = q(x) on Rd
(5.6)

where we denoted µhn(t, x) := ∇pH(t, x,∇hvhn). Note L(t, x, µhn) is finite due to µhn ≤ 2N .

Essentially, vhn solves a linearized equation of (5.4).

Let vhn (for each n ≥ 1 with given vh0 ), vh and v be, respectively, Lipschitz continuous solutions
to (5.6), (5.4) and (5.1). We have the following monotonicity property.
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Proposition 5.1. Suppose N ≥ max{1, ‖∇pH‖∞/2}, and H(t, x, p) is convex in p and satisfies

(5.3) and (5.5). Let q and vh0 be uniformly bounded and Lipschitz continuous for all h > 0.
Then the solutions vhn are uniformly bounded for all n ≥ 1 and h > 0. Moreover, we have for
all n ≥ 0,

vhn+1 ≤ vhn in [0, T ]× Rd.

We also have the following convergence results.

Theorem 5.2. Under the assumptions of Proposition 5.1, for all R ≥ 1 there exists a constant
C depending only on T and the assumptions such that we have for all t ∈ [0, T ],∫

BR

∣∣∣vhn(t, x)− vh(t, x)
∣∣∣2 dx ≤ C2−nheCt/hRd,∫

BR

∣∣∣α(t, x,∇hvhn(t, x))− α(t, x,∇hvh(t, x))
∣∣∣2 dx ≤ C2−neCt/hRd/h.

Moreover, we have sup(t,x)∈[0,T ]×Rd |vh(t, x)− v(t, x)| ≤ C
√
h.

Next, let H take the form H(t, x, p) := supa∈A [c(t, x, a) + p · f(t, x, a)], where A is some set,
c : [0, T ]× Rd ×A→ R and f : [0, T ]× Rd ×A→ Rd.

Theorem 5.3. Under the assumptions of Theorem 5.2, assume that c(t, ·, a), f(t, ·, a) are
bounded in W 2,∞(Rd) uniformly for all t ∈ [0, T ] and a ∈ A. Then for each t ∈ [0, T ], we
have for a.e. x ∈ Rd,

α(th, xh,∇hvh(th, xh))→ α(t, x,∇v(t, x)) as h→ 0,

where [0, T ]× Rd 3 (th, xh)→ (t, x) as h→ 0.

Moreover, there exists C > 0 depending only on the assumptions such that for all h ∈ (0, 1),

t ∈ [0, T ] and x, y ∈ Rd, vh(t, x+ y) + vh(t, x− y)− 2vh(t, x) ≤ C exp(CT )(|y|2 +
√
h).

6. Conclusion

In this paper, we study the convergence rate of PI for optimal control problems in continuous
time. To overcome the problem of ill-posedness, we consider a semi-discrete scheme by adding a
viscosity term using finite differences. We prove that PI for the semi-discrete scheme converges
exponentially fast, and provide a bound on the discrepancy between the semi-discrete scheme
and the optimal control. We also study the discrete space-time scheme, where both space and
time are discretized.

There are a few directions to extend this work. First, under what conditions on the model
parameters does PI (2.7)–(2.8) converge exponentially fast? For instance, for f(t, x, a) = a,
c(t, x, a) = 1

2 |a|
2 and q ≡ 0, the HJB equation is ∂tv − 1

2 |∇v|
2 = 0 and v(T, x) = 0, which

has the solution v∗ ≡ 0. On the other hand, PI yields vn(t, x) = cn(t)x2 with c1(t) = 1
2 for

a suitable initialization. It is easy to check that cn(t) ≤ 2−n for n ≥ 1, and thus we get the
exponential convergence of vn to v∗ on any compact set. However, it is not clear what are the
right conditions to impose on the model parameters so that PI converges exponentially fast.
It is also interesting to adapt PI to the differential game setting and design efficient numerical
schemes (see e.g. [21]). We refer to [25, 39] for the use of PI to solve numerically fully nonlinear
HJB and HJBI equations.
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